废水中总磷的测定方法

废水中总磷的测定方法

概念:在天然水和废水中,磷几乎都以各种磷酸盐的形式存在,如元素磷、正磷酸盐、缩合磷酸盐、集磷酸盐、偏磷酸盐和有机团结合的磷酸盐等。

步骤:总磷的监测分析一般必须有2个步骤,一是预处理即将水样中不同形态的磷转化为正磷酸盐,二是测定正磷酸盐。

①在中性条件下用过硫酸钾(或高氯酸-硝酸)使水样消解,将水样所含磷全

部氧化为正磷酸盐,然后在酸性条件下,使正磷酸盐与钼酸铵、酒石酸锑氧钾反应,生成磷钼杂多酸后,被抗坏血酸还原,生成蓝色的配合物,通常称磷钼蓝。

②取7支50ml的具塞磨口刻度管分别加入0.00,0.50,1.00,3.00,5.00,

10.00,15.00ml磷标准使用溶液加水稀释至25ml。过硫酸钾消解:分别向上

述7个试样中各加4ml过硫酸钾,将具塞刻度管的盖塞紧后,用一小块纱布和线将玻璃塞扎紧,放在大烧杯中置于压力蒸汽消毒器加热,当压力达到

1.1~1.4kg/cm2时,温度为120℃~124℃保持40min后停止加热,待压力表

读数降至零后,取出放冷,用水稀释至标度。向各个试样中各加1ml抗坏血酸,2ml钼酸盐,摇均。放置15min后,用722型可见分光光度计在700nm 波长下,用光程10mm的比色皿,以水作参比,测量吸光度。

缺点:使用的比色管磨口不容易打开,并且还有可能弹出,这样就会使溶液外漏,导致测定结果偏小。使用压力蒸汽消毒器,温度难以控制,稳定性比较差。消解过程中时间比较长,并且吸光度不是很稳定。消解不彻底,氧化剂分解不彻底。

水质中总磷的测定采用钼氨酸分光光度法

水质中总磷的测定采用钼氨酸分光光度法 一、实验原理 在中性条件下用过硫酸钾(或硝酸-高氯酸)使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。 二、实验仪器 可见分光光度计,消解装置,比色管。 三、药品配制 1. 1:1硫酸(H 2SO 4)溶液 2. 100g/L 抗坏血酸(C 6H 8O 6)溶液:称取10g 抗坏血酸溶于水中,稀释至100mL 。 贮存于棕色瓶中。 3.钼酸盐溶液:称取13g 钼酸铵[(NH4)6Mo 7O 24·4H 2O]于100mL 水中。溶解0.35g 酒石酸锑钾[KSbC 4H 4O 7·2 1 H 2O]于100mL 水中。在不断搅拌下把钼酸铵溶液 徐徐加到300mL 1:1硫酸中,加酒石酸锑钾溶液并且混合均匀。此溶液贮存于棕色试剂瓶中。 4.磷标准贮备溶液:称取0.2197±0.001g 于110℃干燥2h 在干燥器中放冷的磷 酸二氢钾(KH 2PO 4),用水溶解后转移至1000mL 容量瓶中,加入大约800mL 水、加5mL 1:1硫酸用水稀释至标线并混匀。1.00mL 此标准溶液含50.0μg 磷。 5.磷标准使用溶液:将10.0mL 的磷标准贮备溶液转移至250mL 容量瓶中,用 水稀释至标线并混匀。1.00mL 此标准溶液含2.0μg 磷。

6.50g/L 过硫酸钾(K 2S 2O 8)溶液:称取5g 过硫酸钾溶于水,稀释至100mL 。 7.6 mol/L 氢氧化钠(NaOH )溶液:称取24g 氢氧化钠溶于水中,稀释至100mL 。 调样品pH 用。 8.6 mol/L 氢氧化钠(NaOH )溶液:称取24g 氢氧化钠溶于水中,稀释至100mL 。 9. l mol/L 2 1 H 2SO 4溶液:将27mL 硫酸,加入到973mL 水中。 10. 10g/L 酚酞指示剂:称取0.5g 酚酞溶于50mL 95%乙醇中。 注:未说明的实验试剂均为标准分析纯或者实验纯药品。 四、实验步骤 1.取待测样品,摇匀。将待测样品和空白样品消解,冷却。 绘制磷标准曲线。将处理后的试样(待测试样和空白试样),加入抑制剂和显色剂,显色。显色后放置一段时间,测吸光度。 2.洗涤并标记实验仪器: 药品标记:药品名称、药品浓度、配制时间、配制人员; 比色管、具塞刻度管(或锥形瓶)标记:ZL-BX-0、ZL-BX-1、ZL-BX-2、ZL-BX-3、ZL-BX-4、ZL-BX-5、ZL-BX-6、ZL-CK-1、ZL-CK-2、ZL-CK-3、ZL-YP-1、ZL-YP-2、ZL-YP-3。(字母意义:ZL-总磷、BX-标线、CK-空白、YP-样品)。 3.将样品摇匀后,取样品25mL 于具塞刻度管(或者锥形瓶)中,准备消解。 a .过硫酸钾消解:向试样中加4mL 50g/L 过硫酸钾,将具塞刻度管的盖塞紧后,用一小块布和线将玻璃塞扎紧(或用其他方法固定),放在大烧杯中置于高压蒸汽消毒器中加热,待压力达

高氨氮废水处理方法

高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比

例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 1.4MAP沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 1.5 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。

水样氨氮的测定方法

氨氮的测定 氨氮的测定方法,通常有纳氏比色法、苯酚—次氯酸盐(或水杨酸—次氯酸盐)比色法和电极法等。纳氏比色法具有操作简便、灵敏等特点,但钙、镁、铁等金属离子、硫化物、醛、酮类,以及水中色度和混浊等干扰测定,需要相应的预处理。以下是纳氏试剂比色法的测定方法。 一、纳氏试剂比色法的原理 碘化钾和碘化汞的碱性溶液与氨反应生成淡红棕色胶态化和物,其色度与氨氮含量成正比,通常可在410-425nm范围内测其吸光度,计算其含量。 本法最低检出浓度为0.025mg/L(光度法),测定上限为2 mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地面水、地下水、工业废水和生活污水。 二、仪器 1、带氮球的定氮蒸馏装置:500 mL凯氏烧瓶、氮球、直形冷凝 管。 2、分光光度计 3、PH计 三、试剂 做次实验配制试剂均应用无氨水配制。 1、无氨水。配制可选用以下任意一种方法制备: (1)蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸

馏,弃去50mL初馏液,接取其余馏出液于具塞磨口的玻璃瓶中,密塞保存。 (2)离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 2、1mol/L的盐酸溶液 3、1mol/L的氢氧化钠溶液 4、轻质氧化镁:将氧化镁在500℃下加热,以除去碳酸盐。 5、0.05%溴百里酚蓝指示计(PH6.0-7.6)。 6、防沫剂:如石蜡碎片 7、吸收剂:①硼酸溶液:称取20g硼酸溶于水,稀释至1L。②0.01mol/L硫酸溶液。 8、纳氏试剂。可选用下列方法之一制备: (1)称取20g碘化钾溶于约25mL水中,边搅拌边分次加入少量的二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色不易降解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2)称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。 另称取7g碘化钾和碘化汞溶于水,然后将次溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。

总磷的测定——钼酸铵分光光度法

总磷的测定——钼酸铵分光光度法 (GB 11893—89) 一、目的和要求 1.1 掌握总磷的测定方法与原理。 1.2 了解水体中过量的磷对水环境的影响。 二、原理 在中性条件下用过硫酸钾(或硝酸-高氯酸)使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。 本标准规定了用过硫酸钾(或硝酸—高氯酸)为氧化剂,将未经过滤的水样消解,用钼酸铵分光光度法测定总磷的方法。 总磷包括溶解的、颗粒的、有机的和无机磷。 本标准适用于地面水、污水和工业废水。 取25mL水样,本标准的最低检出浓度为0.01mg/L,测定上限为0.6mg/L。 在酸性条件下,砷、铬、硫干扰测定。 三、试剂 3.1 硫酸,密度为1.84g/mL。 3.2 硝酸,密度为1.4g/mL。 3.3 高氯酸,优级纯,密度为1.68g/mL。 3.4 硫酸(V/V),1+1。 3.5 硫酸,约0.5mol/L,将27mL硫酸(3.1)加入到973mL水中。 3.6 氢氧化钠溶液,1mol/L,将40g氢氧化钠溶于水并稀释至1000mL。 3.7 氢氧化钠溶液,6mol/L,将240g氢氧化钠溶于水并稀释至1000mL。 3.8 过硫酸钾溶液,50g/L,将5g过硫酸钾(K2S2O8)溶于水,并稀释至100mL。 3.9 抗坏血酸溶液,100g/L,将10g抗坏血酸溶于水中,并稀释至100mL。此溶液贮于棕色的试剂瓶中,在冷处可稳定几周,如不变色可长时间使用。 3.10 钼酸盐溶液:将13g钼酸铵[(NH4)6MO7O24·4H2O]溶于100mL水中,将0.35g酒石酸锑钾[KSbC4HO7·0.5H2O]溶于100mL水中。在不断搅拌下分别把上述钼酸铵溶液、酒石酸梯钾溶液徐徐加到300mL硫酸(3.4)中,混合均匀。此溶液贮存于棕色瓶中,在冷处可保存三个月。 3.11 浊度—色度补偿液,混合二体积硫酸(3.4)和一体积抗坏血酸(3.9)。使用当天配制。 3.12 磷标准贮备溶液,称取0.2197g于110℃干燥2h在干燥器中放冷的磷酸二氢钾(KH2PO4),用水溶解后转移到1000mL容量瓶中,加入大约800mL水,加5mL硫酸(3.4), μ磷。本溶液在玻璃瓶中可贮存然后用水稀释至标线,混匀。1.00mL此标准溶液含50.0g 至少六个月。 3.13 磷标准使用溶液,将10.00mL磷标准贮备溶液(3.12)转移至250mL容量瓶中,用水 μ磷。使用当天配制。 稀释至标线并混匀。1.00mL此标准溶液含2.0g 3.14 酚酞溶液,10g/L,将0.5g酚酞溶于50mL95%的乙醇中。

氨氮废水处理方法

高氨氮废水处理技术 介绍各类氨氮废水处理技术及其原理,包括各种方法的优缺点、适用范围、高浓度氨氮废水处理技术的研究进展。通过对比分析,明确不同类型高氨氮废水处理的选择方法,为治理高氨氮废水提供一条便捷的选择方法。 近年来,随着环境保护工作的日益加强,水体中有机物的代表指标-COD基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。本文总结了国内外高氨氮废水处理技术及其优缺点、适用范围等。 1、废水中氨氮处理的主要技术应用与新进展 1.1吹脱法 吹脱法是将废水中的离子态铵(NH4+),通过调节pH值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH值、水温、布水负荷、气液比、足够的气液分离空间。 NH4++OH-→NH3+H2O 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理,回收利用的氨部分抵消了产生蒸汽的高费用。石灰一般用来提高pH值。用蒸汽比用空气更易控制结垢现象,若用烧碱则可大大减轻结垢的程度。吹脱法一般采用填料吹脱塔,主要特征是在塔内装置一定高度的填料层,利用大表面积的填充塔来达到气水充分接触,以利于气水间的传质过程。常用的填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。胡允良等人研究了某制药厂生产乙胺碘呋酮时产生的一部分高浓度氨氮废水的静态吹脱效果。结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 氨吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 1.2化学沉淀法(MAP法)

废水中氨氮测定方法

氨氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的p H值。当p H值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1.方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至p H<2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预处理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮凝沉淀法 概述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪器 100ml具塞量筒或比色管。 试剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。(3)硫酸ρ=1.84。 步骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节p H至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。

总磷测定方法

总磷 在天然水和废水中,磷几乎都以各种磷酸盐的形式存在,它们分为正磷酸盐,缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷酸盐,它们存在于溶液中,腐殖质粒子中或水生生物中。 天然水中磷酸盐含量较微。化肥、冶炼、合成洗涤剂等行业的工业废水及生水污水中常含有较大量磷。磷是生物生长的必需的元素之一。但水体中磷含量过高(超过0.2mg/L)可造成藻类的过量繁殖,直至数量上达到有害的程度(称为富营养化),造成湖泊、河流透明度降低,水质变坏。 1.方法的选择 水中磷的测定,通常按其存在的形式,而分别测定总磷、溶解性正磷酸盐和总溶解性磷,如下图所示 消解 2.样品的采集和保存

总磷的测定,于水样采集后,加硫酸酸化至PH≤1保存。溶解性正磷酸盐的测定,不加任何试剂。于2—5℃冷处保存,在24h内进行分析。 水样的预处理 采集的水样立即经0.45μm微孔滤膜过滤,其滤液可溶性正磷酸盐的测定。滤液经下述强氧化剂的氧化分解,测得可溶性总磷。取混合水样(包括悬浮物),也经下述强氧化剂分解,测得水中总磷含量。 (一)过硫酸钾消解法 仪器 (1)医用手提式高压蒸汽消毒器或一般民用压力锅(1— 1.5kg/cm2)。 (2)电炉,2kw。 (3)调压器、2kvA(0—220v) (4)50ml(磨口)具塞刻度管。 试剂 5%(m/V)过硫酸钾溶液:溶解5g过硫酸钾于水中,并稀释至100 ml。 步骤

(1)吸取25.00 ml混匀水样(必要时,酌情少取水样,并加水至 25 ml,使含磷量不超过30μg)于50 ml具塞刻度管中,加过硫 酸钾溶液4 ml,加塞后管口包一小块纱布并用线扎紧,以免加热时玻璃塞冲出。将具塞刻度管放在大烧杯中,置于高压蒸汽消毒器或民用压力锅中加热,待锅内压力达1.0kg/cm2 (相应温度为120℃)时,调节电炉温度使保持此压力30min后,停止加热,待压力表指针将至零后,取出放冷。 (2)试剂空白和标准溶液系列也经同样的消解操作。 注意事项 (1)如采样时水样用酸固定,则用过硫酸钾消解前将水样调至中性。 (2)一般民用压力锅,在加热至顶压阀出气孔冒气时,锅内温度为120℃。 (3)当不具备压力消解条件时,亦可在常压下进行,但操作步骤如下: 分取适量混匀水样(含磷不超过30μg)于150ml锥形瓶中,加水至50 ml,加数粒玻璃珠,加1 ml3+7硫酸溶液,5ml 5%过硫酸钾溶液,置电炉上加热煮沸,调节温度使保持微沸30—40min,至最后体积为10ml 止。放冷,加1滴酚酞指示剂,滴加氢氧化钠溶液至刚呈微红色,再滴加1mol/L硫酸溶液使红色腿去,充分摇匀。如溶液不澄清,则用滤纸过滤于50 ml比色管中,用水洗锥形瓶及滤纸,一并移入比色管中,加水至标线,供分析用。

废水中氨氮测定方法()

氨氮 氨氮(NH 3-N)以游离氨(NH 3 )或铵盐(NH 4 +)形式存在于水中,两者的组成比取决 于水的p H值。当p H值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1.方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至p H<2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预处理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮凝沉淀法 概述

加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪器 100ml具塞量筒或比色管。 试剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。(3)硫酸ρ=1.84。 步骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节p H至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (一)纳氏试剂光度法 GB7479--87概述 1.方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2.干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围

水中磷含量的测定

实验2 钼锑抗法测定磷含量 一、实验目的 1. 学习并掌握钼锑抗分光光度法测定磷的原理及操作方法。 2. 掌握分光光度计的使用方法及其原理。 二、实验原理 钼锑抗分光光度法测定磷,在一定酸度、锑离子存在下,磷酸根与钼酸铵形成锑磷钼混合杂多酸,它在常温下可迅速被抗坏血酸还原为钼蓝,可在波长为 700nm下测定吸光度。此测定方法的适宜酸度为~·L-1H 2SO 4 ,温度为20~60℃, 显色时间为30~60min,可稳定24h,在磷含量为5×10-6~2×10-4%内符合线性关系。 三、实验材料与仪器 材料:硫酸,抗坏血酸,钼酸铵,酒石酸锑钾,磷酸二氢钾。 仪器:10支50mL比色管;分光光度计;移液管、容量瓶等。 四、实验试剂的配制 1. 1+1硫酸:浓硫酸与蒸馏水的体积比为1:1混匀 2. 抗坏血酸溶液:100g/L(10%) 3. 钼酸盐溶液:13g钼酸铵((NH 4) 6 Mo 7 O 24 ·4H 2 O)溶于100ml蒸馏水,0.35g酒石酸 锑钾(KSbC 4H 4 O 7 · 2 1H 2 O)溶于100ml蒸馏水。在不断搅拌的情况下把钼酸铵徐徐 加到300ml 1+1硫酸中,加酒石酸锑钾溶液混匀。 4. 磷酸盐储备溶液:110℃干燥2h的磷酸二氢钾0.2197g溶于水,移入1000ml 容量瓶中,加5mL 1+1硫酸定容至1000mL。此时浓度为50μg/mL 5. 磷酸盐标准溶液:吸取10mL磷酸盐储备液至250mL容量瓶中,定容至250mL。此时浓度为2μg/mL 五、实验步骤 1. 标准曲线的绘制

取7支50mL比色管,分别加入磷酸盐标准溶液:0ml、、、、、7mL、10mL,加水定容至刻度。此时系列标准液浓度为:0、、、、、、μg/mL。 2. 显色测量 在比色管中加入1mL抗坏血酸溶液,混匀静置30s,加2mL钼酸盐溶液充分混匀,静置15min。700nm下,以0μg/mL标准液为空白,测定吸光度。 3. 样品的测定 取5mL试样于50mL比色管内,加水定容至刻度。按上述方法操作。比较其颜色,若不在范围内,则进行浓缩或稀释。

总磷的测定方法

总磷的测定方法 (2009-12-01 23:17:37) 转载 标签: 杂谈 在天然水和废水中,磷几乎都以各种磷酸盐的形式存在,它们分为正磷酸盐,缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷酸盐,它们存在于溶液中,腐殖质粒子中或水生生物中。 天然水中磷酸盐含量较微。化肥、冶炼、合成洗涤剂等行业的工业废水及生水污水中常含有较大量磷。磷是生物生长的必需的元素之一。但水体中磷含量过高(超过0.2mg/L )可造成藻类的过量繁殖,直至数量上达到有害的程度(称为富营养化),造成湖泊、河流透明度降低,水质变坏。 1. 方法的选择 水中磷的测定,通常按其存在的形式,而分别测定总磷、溶解性正磷 酸盐和总溶解性磷,如下图所示 水 样 总 磷 用0.45μ滤膜 过滤的滤 可溶性正磷酸盐 可溶性总磷酸盐 正磷酸盐的测定,可采用钼锑抗光度法;氯化亚锡钼蓝法;离子色谱法。 1. 样品的采集和保存 消解 消解

总磷的测定,于水样采集后,加硫酸酸化至PH≤1保存。溶解性正磷酸盐的测定,不加任何试剂。于2—5℃冷处保存,在24h内进行分析。 水样的预处理 采集的水样立即经0.45μm微孔滤膜过滤,其滤液可溶性正磷酸盐的测定。滤液经下述强氧化剂的氧化分解,测得可溶性总磷。取混合水样(包括悬浮物),也经下述强氧化剂分解,测得水中总磷含量。 (一)过硫酸钾消解法 仪器 (1)医用手提式高压蒸汽消毒器或一般民用压力锅(1—1.5kg/cm2)。(2)电炉,2kw。 (3)调压器、2kvA(0—220v) (4) 50ml(磨口)具塞刻度管。 试剂 5%(m/V)过硫酸钾溶液:溶解5g过硫酸钾于水中,并稀释至100 ml。 步骤 (1)吸取25.00 ml混匀水样(必要时,酌情少取水样,并加水至25 ml,使含磷量不超过30μg)于50 ml具塞刻度管中,加过硫酸钾溶液4 ml,加塞后管口包一小块纱布并用线扎紧,以免加热时玻璃塞冲出。将具塞刻度管放在大烧杯中,置于高压蒸汽消毒器或民用压力锅中加热,待锅内压力达1.0kg/cm2(相应温度为120℃)时,调节电炉温度使保持此压力30min后,停止加热,待压力表指针将至零后,取出放冷。 (2)试剂空白和标准溶液系列也经同样的消解操作。 注意事项 (1)如采样时水样用酸固定,则用过硫酸钾消解前将水样调至中性。

吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水 作者:周明罗陈建中刘志勇 简介:对垃圾渗滤液处理难点进行了分析,阐述了垃圾渗滤液国内外处理现状、处理工艺对比、以及存在弊端,概述OFR新型专利技术处理垃圾渗滤液的原理、使用范围、技术优势及其推广方向,提出OFR 技术在高浓度有机废水处理有特殊的效果,已成功使用于国内外多家企业,尤其在垃圾渗滤液前预处理和经膜技术处理后的浓液处理方面有广阔的使用前景。 关键字:垃圾渗滤液浓缩液氨氮 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的使用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究使用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH4++OH-NH3+H2O (1) 氨和氨离子之间的百分分配率可用下式进行计算: Ka=Kw /K b=(C NH3·C H+)/C NH4+(2) 式中:Ka———氨离子的电离常数;

氨氮测定方法

氨氮 氮是有好几个指标:氨氮,总氮,硝酸盐氮,亚硝酸盐氮,凯式氮等 氨氮比较简便准确,精密度尚可的就是纳氏试剂比色法,不过一般根据水样浑浊程度,确定采用哪种预处理方法,一般较浑浊的用蒸馏法预处理,较清洁的用絮凝沉降预处理。预处理过的水样,测定氨氮一般用纳氏试剂法测定,含量高点也 可以用滴定法。都是国标。 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1.方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测

量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH<2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预处理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮凝沉淀法 概述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪器 100ml具塞量筒或比色管。 试剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。(2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=。 步骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和— 25%

水质总磷的测定_钼酸铵分光光度法

水质总磷的测定钼酸铵分光光度法 Water quality-Determination of total phosphorus- Ammonium molybdate spectrophotometric method GB 11893-89 批准日期1989-09-01 实施日期1991-09-01 1 主题内容与适用范围 本标准规定了用过硫酸钾(或硝酸-高氯酸)为氧化剂,将未经过滤的水样消解,用钼酸铵分光光度测定总磷的方法。 总磷包括溶解的、颗粒的、有机的和无机磷。 本标准适用于地面水、污水和工业废水。 取25mL试料,本标准的最低检出浓度为L,测定上限为L。 在酸性条件下,砷、铬、硫干扰测定。 2 原理 在中性条件下用过硫酸钾(或硝酸-高氯酸)使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。 3 试剂 本标准所用试剂除另有说明外,均应使用符合国家标准或专业标准的分析试剂和蒸馏水或同等纯度的水。 硫酸(H 2SO 4 ),密度为mL。 硝酸(HNO 3 ),密度为mL。 高氯酸(HClO 4 ),优级纯,密度为mL。 硫酸(H 2SO 4 ),1:1。 硫酸,约c(1/2H 2SO 4 )=1mo1/L:将27mL硫酸加入到973mL水中。 氢氧化钠(NaOH),1mo1/L溶液:将40g氢氧化钠溶于水并稀释至1000mL。氢氧化钠(NaOH),6mo1/L溶液;将240g氢氧化钠溶于水并稀释至1000mL。 过硫酸钾,50g/L溶液:将5g过硫酸钾(K 2S 2 O 8 )溶解干水,并稀释至100mL。 抗坏血酸,100g/L溶液:溶解10g抗坏血酸(C 6H 8 O 6 )于水中,并稀释至100mL。 此溶液贮于棕色的试剂瓶中,在冷处可稳定几周。如不变色可长时间使用。 钼酸盐溶液:溶解13g钼酸铵[(NH 4) 6 Mo 7 O 24 ·4H 2 O]于100mL水中。溶解酒石酸锑钾 [KSbC 4H 4 O 7 · 1 H 2 O]于100mL水中。在不断搅拌下把钼酸铵溶液徐徐加到300mL硫酸中, 加酒石酸锑钾溶液并且混合均匀。 此溶液贮存于棕色试剂瓶中,在冷处可保存二个月。 浊度-色度补偿液:混合两个体积硫酸和一个体积抗坏血酸溶液。使用当天配制。

高浓度氨氮废水处理方法与工艺

高浓度氨氮废水处理 废水处理, 高浓度废水处理, 高浓度 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L 以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

污水氨氮的测定方法

氨氮的测定方法 氨氮的测定方法,通常有纳氏比色法、苯酚—次氯酸盐(或水杨酸—次氯酸盐)比色法和电极法等。纳氏比色法具有操作简便、灵敏等特点,但钙、镁、铁等金属离子、硫化物、醛、酮类,以及水中色度和混浊等干扰测定,需要相应的预处理。以下是纳氏试剂比色法的测定方法。 一、纳氏试剂比色法的原理 碘化钾和碘化汞的碱性溶液与氨反应生成淡红棕色胶态化和物,其色度与氨氮含量成正比,通常可在 410-425nm 范围内测其吸光度,计算其含量。 本法最低检出浓度为 0.025mg/L(光度法),测定上限为 2 mg/L。采用目视比色法,最低检出浓度为 0.02mg/L。水样作适当的预处理后,本法可适用于地面水、地下水、工业废水和生活污水。 二、仪器 1、带氮球的定氮蒸馏装置:500 mL 凯氏烧瓶、氮球、直形冷凝管。 2、分光光度计 3、 PH 计 三、试剂 做次实验配制试剂均应用无氨水配制。 1、无氨水。配制可选用以下任意一种方法制备: (1)蒸馏法:每升蒸馏水中加 0.1mL 硫酸,在全玻璃蒸馏器中重蒸馏,弃去 50mL 初馏液,接取其余馏出液于具塞磨口的玻璃瓶中,密塞保存。 (2)离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 2、1mol/L 的盐酸溶液 3、1mol/L 的氢氧化钠溶液 4、轻质氧化镁:将氧化镁在 500℃下加热,以除去碳酸盐。

5、0.05%溴百里酚蓝指示计(PH6.0-7.6)。 6、防沫剂:如石蜡碎片 7、吸收剂:①硼酸溶液:称取 20g 硼酸溶于水,稀释至 1L。② 0.01mol/L 硫酸溶液。 8、纳氏试剂。可选用下列方法之一制备: (1)称取 20g 碘化钾溶于约 25mL 水中,边搅拌边分次加入少量的二氯化汞(HgCl 2)结晶粉末(约 10g),至出现朱红色不易降解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加氯化汞溶液。 另称取 60g 氢氧化钾溶于水,并稀释至 250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至 400mL,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2)称取 16g 氢氧化钠,溶于 50mL 水中,充分冷却至室温。另称取 7g 碘化钾和碘化汞溶于水,然后将次溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至 100mL,贮于聚乙烯瓶中,密塞保存。 9、酒石酸钾钠溶液:称取 50g 酒石酸钾钠(KNaC 4H 4 O 6 .4H 2 O)溶于100mL 水中,加热煮 沸以除去氨,放冷,定容至 100mL。 10、铵标准贮备溶液:称取 3.819g 经 100℃干燥过的氯化氨(NH 4 Cl)溶于水中,移入 1000mL 容量瓶中,稀释至标线。从溶液每毫升含1.00mg 氨氮。 11、铵标准使用溶液:移取5.00 mL 铵标准贮备溶液于500mL 容量瓶中,用水稀释至标线。此溶液每毫升含0.01mg 氨氮。 四、测定步骤 1、水样预处理:取 250mL 水样(如氨氮含量较高,可取适量并加水至 250mL,使氨氮含量不超过 2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调节至 PH 为 7 左右。加入 0.25g 轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏,至馏出液达 200mL 时,停止蒸馏。定容至 250mL。 采用酸滴定法或纳氏比色法时,以 50mL 硼酸溶液为吸收剂;采用水扬酸—次氯酸盐比色法时,改用 50mL0.01mol/L 硫酸溶液为吸收剂。 2、标准曲线的绘制:吸取 0、0.50、1.00、3.00、5.00、7.00 和10.00mL 铵标准使用

水质总磷的测定——钼酸铵分光光度法

水质总磷的测定 ——钼酸铵分光光度法 1.主要内容和适用范围 本实验用过硫酸钾为氧化剂,将未经过滤的水样消解,用钼酸铵分光光度测定总磷的方法。 总磷包括溶解的、悬浮的、有机的和无机磷。 本方法适用于地面水、污水和工业废水。 2.原理 在中性条件下,用过硫酸钾使试样消解,产生如下反应: K2S2O8 + H2O 2 KHSO4 + [O] 从而将水中所含磷氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。 3. 试剂 3.1 过硫酸钾,50g/L溶液:将5g 过硫酸钾(K2S2O8)溶于水并稀释至100mL 3.2 抗坏血酸,100 g/L溶液:溶解10g抗坏血酸(C6H8O6)于水中,并稀释至 100 mL。 此溶液储存于棕色的试剂瓶中,在冷处可稳定几周。如不变色可长时间使用。 3.3 钼酸盐溶液:溶解13g钼酸铵[(NH4)6Mo7O24·4H2O]于100mL水中。溶解 0.35g半水酒石酸锑钾[KSbC4H4O7·1/2H2O]于100mL水中,在不断搅拌 下把钼酸铵溶液缓缓加到300mL(1+1)硫酸中,再加酒石酸锑钾溶液并混合均匀。 此溶液储存在棕色瓶中,在冷处可保存二个月。 3.4 硫酸(H2SO4),密度为1.84g/mL。 3.5 硫酸(H2SO4),1+1 3.6 磷标准贮备溶液:称取0.2197±0.001g于110℃干燥2小时在干燥器中放冷 的磷酸二氢钾(KH2PO4),用水溶解后移至1000mL容量瓶中。加入大约800mL水,加5mL硫酸(3.5)用水稀释至标线并混匀。此溶液为50.0μg/mL

氨氮废水处理

氨氮废水处理 2氨氮废水的危害 水环境中存在过量的氨氮会造成多方面的有害影响。 (1)由于NH4+-N的氧化,会造成水体中溶解氧浓度降低,导致水体发黑发臭,水质下降,对水生动植物的生存造成影响。在有利的环境条件下,废水中所含的有机氮将会转化成NH4+-N,NH4+-N是还原力最强的无机氮形态,会进一步转化成NO2--N和NO3--N。根据生化反应计量关系,1gNH4+-N氧化成NO2--N消耗氧气3.43g,氧化成NO3--N耗氧4.57g。 (2)水中氮素含量太多会导致水体富营养化,进而造成一系列的严重后果。由于氮的存在,致使光合微生物(大多数为藻类)的数量增加,即水体发生富营养化现象,结果造成:堵塞滤池,造成滤池运转周期缩短,从而增加了水处理的费用;妨碍水上运动;藻类代谢的最终产物可产生引起有色度和味道的化合物;由于蓝-绿藻类产生的毒素,家畜损伤,鱼类死亡;由于藻类的腐烂,使水体中出现氧亏现象。 (3)水中的NO2--N和NO3--N对人和水生生物有较大的危害作用。长期饮用NO3--N含量超过10mg/L的水,会发生高铁血红蛋白症,当血液中高铁血红蛋白含量达到70mg/L,即发生窒息。水中的NO2--N和胺作用会生成亚硝胺,而亚硝胺是“三致”物质。NH4+-N和氯反应会生成氯胺,氯胺的消毒作用比自由氯小,因此当有NH4+-N存在时,水处理厂将需要更大的加氯量,从而增加处理成本。近年来,含氨氮废水随意排放造成的人畜饮水困难甚至中毒事件时有发生,我国长江、淮河、钱塘江、四川沱江等流域都有过相关报道,相应地区曾出现过诸如蓝藻污染导致数百万居民生活饮水困难,以及相关水域受到了“牵连”等重大事件,因此去除废水中的氨氮已成为环境工作者研究的热点之一。 1氨氮废水的来源 含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。人类的活动也是水环境中氮的重要来源,主要包括未处理或处理过的城市生活和工业废水、各种浸滤液和地表径流等。人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。随着石油、化工、食品和制药等工

HJ水质氨氮的测定纳氏试剂分光光度法

氨氮的测定纳氏试剂分光光度法 目次 言 ... III 1适用范 围 .......... . (1) 2方法原 理 .......... . (1) 3干扰及消 除 .......... . (1) 试剂和材4 料 .......... . (1) 5仪器和设备

3 5 6 品 ..................................... ..3 7 骤 ..... 分 (4) 析 步 8 结 果 计 算 ..... (4) 9 准 确 度 和 精 密 度 .. ..5 10 质 量 保 证 和 质 量 控 制 ..................................... 为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》 ,保

护环境,保障人体健康,规范水中氨氮的监测方法,制定本标准。 本标准规定了测定水中氨氮的纳氏试剂分光光度法。 本标准是对《水质铵的测定纳氏试剂比色法》(GB7479-87)的修订。本标准首次发布于1987 年,原标准起草单位是江苏省环境监测中心站,本次为首次修订。本次修订的主要内容如下: ——标准的名称由《水质铵的测定纳氏试剂比色法》改为《水质氨氮的测定纳氏试剂分光光度法》。 ――增加了比色皿的光程(10 mm^20 mm)降低了方法的检出限,扩大了方法 的适用范围。明确规定了方法的测定下限和测定上限。 ――取消了目视比色法。 ――规范和调整了标准文本的结构和格式。 ――在主要试剂配制和样品预处理的关键步骤增加了注意事项。 ――合并了结果的计算公式。 自本标准实施之日起,原国家环境保护局1987 年 3 月14日批准、发布的国家 环境保护标准《水质铵的测定纳氏试剂比色法》(GB7479-87)废止。 本标准由环境保护部科技标准司组织制订。 本标准主要起草单位:沈阳市环境监测中心站 本标准环境保护部2009年12月31日批准。

相关文档
最新文档