兔活性氧ROSELISA试剂盒实验原理

兔活性氧ROSELISA试剂盒实验原理
兔活性氧ROSELISA试剂盒实验原理

兔活性氧(ROS)ELISA试剂盒实验原理:本试剂盒应用双抗体夹心法测定标本中兔活性氧(ROS)水平。用纯化的兔活性氧(ROS)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入活性氧(ROS),再与HRP标记的活性氧(ROS)抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物TMB显色。TMB在HRP酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的活性氧(ROS)呈正相关。用酶标仪在450nm波长下测定吸光度(OD值),通过标准曲线计算样品中兔活性氧(ROS)浓度。

兔活性氧(ROS)ELISA试剂盒样本处理及要求:1. 血清:室温血液自然凝固10-20分钟,离心20分钟左右(2000-3000转/分)。仔细收集上清,保存过程中如出现沉淀,应再次离心。

2. 血浆:应根据标本的要求选择EDTA或柠檬酸钠作为抗凝剂,混合10-20分钟后,离心20分钟左右(2000-3000转/分)。仔细收集上清,保存过程中如有沉淀形成,应该再次离心。

3. 尿液:用无菌管收集,离心20分钟左右(2000-3000转/分)。仔细收集上清,保存过程中如有沉淀形成,应再次离心。胸腹水、脑脊液参照实行。

4. 细胞培养上清:检测分泌性的成份时,用无菌管收集。离心20分钟左右(2000-3000转/分)。仔细收集上清。检测细胞内的成份时,用PBS(PH7.2-7.4)稀释细胞悬液,细胞浓度达到100万/ml左右。通过反复冻融,以使细胞破坏并放出细胞内成份。离心20分钟左右(2000-3000转/分)。仔细收集上清。保存过程中如有沉淀形成,应再次离心。

5. 组织标本:切割标本后,称取重量。加入一定量的PBS,PH7.4。用液氮迅速冷冻保存备用。标本融化后仍然保持2-8℃的温度。加入一定量的PBS(PH7.4),用手工或匀浆器将标本匀浆充分。离心20分钟左右(2000-3000转/分)。仔细收集上清。分装后一份待检测,其余冷冻备用。

6. 标本采集后尽早进行提取,提取按相关文献进行,提取后应尽快进行实验。若不能马上进行试验,可将标本放于-20℃保存,但应避免反复冻融.

7. 不能检测含NaN3的样品,因NaN3抑制辣根过氧化物酶的(HRP)活性。兔活性氧(ROS)ELISA试剂盒操作步骤:1. 标准品的稀释与加样:在酶标包被板上设标准品孔10孔,在第一、第二孔中分别加标准品100μl,然后在第一、第二孔中加标准品稀释液50μl,混匀;然后从第一孔、第二孔中各取100μl 分别加到第三孔和第四孔,再在第三、第四孔分别加标准品稀释液50μl,混匀;然后在第三孔和第四孔中先各取50μl弃掉,再各取50μl分别加到第五、第六孔中,再在第五、第六孔中分别加标准品稀释液50ul,混匀;混匀后从第五、第六孔中各取50μl分别加到第七、第八孔中,再在第七、第八孔中分别加标准品稀释液50μl,混匀后从第七、第八孔中分别取50μl加到第九、第十孔中,再在第九第十孔分别加标准品稀释液50μl,混匀后从第九第十孔中各取50μl弃掉。(稀释后各孔加样量都为50μl,浓度分别为480IU/ml,320IU/ml ,160IU/ml,80IU/ml,40IU/m)。

2. 加样:分别设空白孔(空白对照孔不加样品及酶标试剂,其余各步操作相同)、待测样品孔。在酶标包被板上待测样品孔中先加样品稀释液40μl,然后再加待测样品10μl(样品最终稀释度为5倍)。加样将样品加于酶标板孔底部,尽量不触及孔壁,轻轻晃动混匀。

3. 温育:用封板膜封板后置37℃温育30分钟。

4. 配液:将30(48T的20倍)倍浓缩洗涤液用蒸馏水30(48T的20倍)倍稀释后备用。

5. 洗涤:小心揭掉封板膜,弃去液体,甩干,每孔加满洗涤液,静置30秒后弃去,如此重复5次,拍干。

6. 加酶:每孔加入酶标试剂50μl,空白孔除外。

7. 温育:操作同3。

8. 洗涤:操作同5。

9. 显色:每孔先加入显色剂A50μl,再加入显色剂B50μl,轻轻震荡混匀,37℃避光显色15分钟.

10. 终止:每孔加终止液50μl,终止反应(此时蓝色立转黄色)。

11. 测定:以空白空调零,450nm波长依序测量各孔的吸光度(OD值)。测定应在加终止液后15分钟以内进行。兔活性氧(ROS)ELISA试剂盒注意事项:1.试剂盒从冷藏环境中取出应在室温平衡15-30分钟后方可使用,酶标包被板开封后如未用完,板条应装入密封袋中保存。2.浓洗涤液可能会有结晶析出,稀释时可在水浴中加温助溶,洗涤时不影响结果。3.各步加样均应使用加样器,并经常校对其准确性,以避免试验误差。一次加样时间最好控制在5分钟内,如标本数量多,推荐使用排枪加样。4.请每次测定的同时做标准曲线,最好做复孔。如标本中待测物质含量过高(样本OD值大于标准品孔第一孔的OD值),请先用样品稀释液稀释一定倍数(n倍)后再测定,计算时请最后乘以总稀释倍数(×n×5)。5.封板膜只限一次性使用,以避免交叉污染。6.底物请避光保存。7.严格按照说明书的操作进行,试验结果判定必须以酶标仪读数为准. 8.所有样品,洗涤液和各种废弃物都应按传染物处理。9.本试剂不同批号组分不得混用。

10. 如与英文说明书有异,以英文说明书为准。

微程序控制器实验

计算机科学与技术系 实验报告 专业名称计算机科学与技术 课程名称计算机组成原理 项目名称微程序控制器实验 班级

学号 姓名 同组人员 实验日期 一、实验目的与要求 实验目的 (1)掌握微程序控制器的组成原理 (2)掌握微程序控制器的编制、写入,观察微程序的运行过程 实验要求 (1)实验之前,应认真准备,写出实验步骤和具体设计内容,否则实验效率会很低,一次实验时间根本无法完成实验任务,即使基本做对了,也很难说懂得了些什么重要教学内容; (2)应在实验前掌握所有控制信号的作用,写出实验预习报告并带入实验室; (3)实验过程中,应认真进行实验操作,既不要因为粗心造成短路等事故而损坏设备,又要仔细思考实验有关内容,把自己想不明白的问题通过实验理解清楚; (4)实验之后,应认真思考总结,写出实验报告,包括实验步骤和具体实验结果,遇到的问题和分析与解决思路。还应写出自己的心得体会,也可以对教学实验提出新的建议等。实验报告要交给教师评阅后并给出实验成绩; 二、实验逻辑原理图与分析 画实验逻辑原理图

逻辑原理图分析 微程序控制器的基本任务是完成当前指令的翻译个执行,即将当前指令的功能转换成可以控制的硬件逻辑部件工作的微命令序列,完成数据传送和各种处理操作。 它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示成为微指令。这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。微程序存储在一种专用的存储器中,称为控制存储器。 三、数据通路图及分析(画出数据通路图并作出分析) (1)连接实验线路,检查无误后接通电源。如果有警报声响起,说明有总线竞争现象,应关闭电源,检查连线,直至错误排除。 (2)对微控制器进行读写操作,分两种情况:手动读写和联机读写。 1、手动读写

硬件基础-微程序控制器实验报告

大学 HUNAN UNIVERSITY 硬件基础实验2 实验报告 一、实验预习 1.书中的图形实现微程序控制器,中间的映射逻辑究竟是怎么实现的? 答:但出现分支时,预设端信号由IR决定。IR为1时信号有效,输出为1. 通过IR的值映射为下址的低三位,从而产生下址。 2.书中设计用到了强写强读,为什么要设计这个功能? 答:满足用户因为没有初始化mif文件时输入数据的需要。

二、实验目的 微程序控制器实验的主要任务:生成CPU里的控制信号,并使程序按正确的顺序执行。核心部分是ROM,存放机器指令的微程序。 1、掌握微程序控制器的组成、工作原理; 2、掌握微程序控制器的基本概念和术语:微命令、微操作、微指令、微 程序等; 3、掌握微指令、微程序的设计及调试方法; 4、通过单步运行若干条微指令,深入理解微程序控制器的工作原理; 二、实验电路 图1 附:电路图过大,请放大观察详情 三、实验原理 将机器指令的操作(从取指到执行)分解为若干个更基本的微操作序列,并将有关的控制信息(微命令)以微码的形式编成微指令输入到控制存储器中。这样,每条机器指令将与一段微程序对应,取出微指令就产生微命令,以实现机器指令要求的信息传送与加工。

四、实验步骤及概述 1)设计状态机部分 a、编写VHDL代码如下 LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY zhuangtaiji IS PORT ( reset : IN STD_LOGIC := '0'; clock : IN STD_LOGIC; qd : IN STD_LOGIC := '0'; dp : IN STD_LOGIC := '0'; tj : IN STD_LOGIC := '0'; t1 : OUT STD_LOGIC; t2 : OUT STD_LOGIC; t3 : OUT STD_LOGIC; t4 : OUT STD_LOGIC ); END zhuangtaiji; ARCHITECTURE BEHAVIOR OF zhuangtaiji IS TYPE type_fstate IS (idle,st1,s_st2,st4,st2,st3,s_st4,s_st3); SIGNAL fstate : type_fstate; SIGNAL reg_fstate : type_fstate; BEGIN PROCESS (clock,reset,reg_fstate) BEGIN IF (reset='1') THEN fstate <= idle; ELSIF (clock='1' AND clock'event) THEN fstate <= reg_fstate; END IF; END PROCESS; PROCESS (fstate,qd,dp,tj) BEGIN t1 <= '0'; t2 <= '0'; t3 <= '0'; t4 <= '0'; CASE fstate IS WHEN idle => IF (NOT((qd = '1'))) THEN reg_fstate <= st1;

过氧化氢酶(CAT)活性检测试剂盒说明书 紫外分光光度法

过氧化氢酶(CAT)活性检测试剂盒说明书紫外分光光度法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。货号:BC0200规格:50T/48S 产品内容: 提取液:液体60mL×1瓶,4℃保存;试剂一:液体60mL×1瓶,4℃保存;试剂二:液体100μL×3瓶,4℃保存。产品说明: CAT(EC 1.11.1.6)广泛存在于动物、植物、微生物和培养细胞中,是最主要的H 2O 2清除酶,在活性氧清除系统中具有重要作用。 H 2O 2在240nm 下有特征吸收峰,CAT 能够分解H 2O 2,使反应溶液240nm 下的吸光度随反应时间而下降,根据吸光度的变化率可计算出CAT 活性。试验中所需的仪器和试剂: 紫外分光光度计、台式离心机、可调式移液器、1mL 石英比色皿、研钵、冰和蒸馏水操作步骤:一、粗酶液提取: 1、细菌、细胞或组织样品的制备 细菌或培养细胞:收集细菌或细胞到离心管内,离心后弃上清;按照细菌或细胞数量(104 个):提取液体积(mL)为500-1000:1的比例(建议500万细菌或细胞加入1mL 提取液),超声波破碎细菌或细胞(功率20%或200w,超声3秒,间隔10秒。重复30次);8000g 4℃离心10分钟,取上清,置冰上待测。 组织:按照组织质量(g):提取液体积(mL)为1:5-10的比例(建议称取约0.1g 组织,加入1mL 提取液),进行冰浴匀浆。8000g 4℃离心10分钟,取上清,置冰上待测。2、血清(浆)样品:直接检测。

二、CAT 测定操作 1、分光光度计预热30min 以上,调节波长至240nm 处,蒸馏水调零。 2、CAT 检测工作液的配置:用时在每瓶试剂二(100μL)中加入20ml 试剂一,充分混匀,作为工作液; 用不完的试剂4℃保存一周。 3、测定前将CAT 检测工作液37℃(哺乳动物)或25℃(其他物种)水浴10min。 4、取1mLCAT 检测工作液于1mL 石英比色皿中,再加入35μL 样本,混匀5s;室温下立即测定240nm 下的 初始吸光值A1和1min 后的吸光值A2。计算ΔA=A1-A2。三、CAT 活性计算: 1、血清(浆)CAT 活力的计算: 单位的定义:每毫升血清(浆)在反应体系中每分钟催化1nmol H 2O 2降解定义为一个酶活力单位。CAT(U/mL)=[ΔA×V 反总÷(ε×d)×109 ]÷V 样÷T=678×ΔA 2、组织、细菌或细胞中CAT 活力计算:(1)按样本蛋白浓度计算: 单位的定义:每mg 组织蛋白在反应体系中每分钟催化1nmol H 2O 2降解定义为一个酶活力单位。CAT(U/mg prot)=[ΔA×V 反总÷(ε×d)×109 ]÷(V 样×Cpr)÷T=678×ΔA÷Cpr (2)按样本鲜重计算: 单位的定义:每g 组织在反应体系中每分钟催化1nmol H 2O 2降解定义为一个酶活力单位。CAT(U/g 鲜重)=[ΔA×V 反总÷(ε×d)×109 ]÷(W×V 样÷V 样总)÷T=678×ΔA÷W 3、按细菌或细胞中CAT 活力计算: 单位的定义:每1万个细菌或细胞在反应体系中每分钟催化1nmol H 2O 2降解定义为一个酶活力单位。CAT(U/104cell)=[ΔA×V 反总÷(ε×d)×109]÷(500×V 样÷V 样总)÷T=1.356×ΔA V 反总:反应体系总体积,1.035×10-3L;ε:H 2O 2摩尔吸光系数,4.36×104L/mol/cm;d:比色皿光径,1cm; V 样:加入样本体积,0.035mL;V 样总:加入提取液体积,1mL;T:反应时间,1min。 W:样本鲜重,g; Cpr:上清液蛋白浓度,mg/mL;

微程序控制器的设计与实现

微程序控制器的设计与实现 一、设计目的 1、巩固和深刻理解“计算机组成原理”课程所讲解的原理, 加深对计算机各模块协同工作的认识。 2、掌握微程序设计的思想和具体流程、操作方法。 3、培养学生独立工作和创新思维的能力,取得设计与调试的 实践经验。 4、尝试利用编程实现微程序指令的识别和解释的工作流程。 二、设计内容 按照要求设计一指令系统,该指令系统能够实现数据传送,进行加、减运算和无条件转移,具有累加器寻址、寄存器寻址、寄存器间接寻址、存储器直接寻址、立即数寻址等五种寻址方式。 三、设计具体要求 1、仔细复习所学过的理论知识,掌握微程序设计的思想,并根、 据掌握的理论写出要设计的指令系统的微程序流程。指令系统至少要包括六条指令,具有上述功能和寻址方式。 2、根据微操作流程及给定的微指令格式写出相应的微程序 3、将所设计的微程序在虚拟环境中运行调试程序,并给出测试思 路和具体程序段 4、撰写课程设计报告。

四、设计环境 1、伟福COP2000型组成原理实验仪,COP2000虚拟软件。 2、VC开发环境或者Java开发环境。 五、设计方案 (1)设计思想 编写一个指令系统,根据所编写的指令的功能来设计相应的微程序。首先利用MOV传送指令来给寄存器和累加器传送立即数,实现立即数寻址;利用寄存器寻址方式,用ADDC指令对两者进行相加运算;利用寄存器间接寻址方式,用SUB指令实现减运算;利用累加器寻址方式,用CPL指令实现对累加器寻址;利用存储器寻址方式,用JMP 指令实现程序的无条件跳转。这样,所要设计的指令系统的功能就全部实现了。 (2)微指令格式 采用水平微指令格式的设计,一次能定义并执行多个并行操作微命令的微指令,叫做水平型微指令。其一般格式如下: 按照控制字段的编码方法不同,水平型微指令又分为三种:全水平型(不译法)微指令,字段译码法水平型微指令,以及直接和译码相混合的水平型微指令。 (3)24个微指令的意义 COP2000 模型机包括了一个标准CPU 所具备所有部件,这些部件包括:运算器ALU、累加器A、工作寄存器W、左移门L、直通门D、右

微程序控制器实验2

实 验 项 目 微程序控制器实验实验时间2015年10月31日 实验目的(1) 掌握微程序控制器的组成原理。 (2) 掌握微程序的编制、写入,观察微程序的运行过程。 实 验 设 备 PC机一台,TD-CMA实验系统一套 实验原理 微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制的硬件逻辑部件工作的微命令序列,完成数据传送和各种处理操作。它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。微程序存储在一种专用的存储器中,称为控制存储器,微程序控制器原理框图如图3-2-1 所示。 控制器是严格按照系统时序来工作的,因而时序控制对于控制器的设计是非常重要的,从前面的实验可以很清楚地了解时序电路的工作原理,本实验所用的时序由时序单元来提供,分为四拍TS1、TS2、TS3、TS4,时序单元的介绍见附录2。 微程序控制器的组成见图3-2-2,其中控制存储器采用3 片2816 的E2PROM,具有掉电保 护功能,微命令寄存器18 位,用两片8D 触发器(273)和一片4D(175)触发器组成。微地址寄存器6 位,用三片正沿触发的双D 触发器(74)组成,它们带有清“0”端和预置端。在不判别测试的情况下,T2 时刻打入微地址寄存器的内容即为下一条微指令地址。当T4 时刻进行测试判别时,转移逻辑满足条件后输出的负脉冲通过强置端将某一触发器置为“1”状态,完成地址修改。

在实验平台中设有一组编程控制开关KK3、KK4、KK5(位于时序与操作台单元),可实现对存储器(包括存储器和控制存储器)的三种操作:编程、校验、运行。考虑到对于存储器(包括存储器和控制存储器)的操作大多集中在一个地址连续的存储空间中,实验平台提供了便利 的手动操作方式。以向00H 单元中写入332211 为例,对于控制存储器进行编辑的具体操作步骤如下:首先将KK1 拨至‘停止’档、KK3 拨至‘编程’档、KK4 拨至‘控存’档、KK5 拨至 ‘置数’档,由CON 单元的SD05——SD00 开关给出需要编辑的控存单元首地址(000000),IN 单元开关给出该控存单元数据的低8 位(00010001),连续两次按动时序与操作台单元的开关ST(第一次按动后MC 单元低8 位显示该单元以前存储的数据,第二次按动后显示当前改动的数据),此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M7——M0 显示当前数据(00010001)。然后将KK5 拨至‘加1’档,IN 单元开关给出该控存单元数据的中8 位(00100010),连续两次按动开关ST,完成对该控存单元中8 位数据的修改,此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M15——M8 显示当前数据(00100010);再由IN 单元开关给出该控存单元数据的高8 位(00110011),连续两次按动开关ST,完成对该控存单元高8 位数据的修改此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M23——M16 显示当前数据(00110011)。此时被编辑的控存单元地址会自动加1(01H),由IN 单元开关依次给出该控存单元数据的低8 位、中8 位和高8 位配合每次开关ST 的两次按动,即可完成对后续单元的编辑。

呼吸链依赖性纯化线粒体氧化应激活性氧高质荧光测定试剂盒

呼吸链依赖性纯化线粒体氧化应激活性氧高质荧光测定试剂盒产品说明书 (中文版) 主要用途 呼吸链依赖性纯化线粒体氧化应激活性氧(ROS)高质荧光测定试剂是一种旨在通过透膜荧光染 色剂氯甲基二氯二氢荧光素二乙酯,在线粒体氧化条件下,选择性阻止膜电位,所产生的荧光,来定量检测线粒体内膜电位依赖性活性氧族的生成和增加的权威而经典的技术方法。该技术由大师级科学家精心研制、成功实验证明的。可以被用于线粒体功能、氧化激发和抑制机理等的研究。产品严格无菌,即到即用,操作简易,活体检测,性能稳定。 技术背景 超氧自由基阴离子(superoxide radical;O2-)、过氧化氢(hydrogen peroxide;H2O2)、羟自由基或氢氧基(hydroxyl radical;OH-)、过氧化基(peroxyl radical;ROO-)、氢过氧自由基(hydroperoxyl;HOO)、烷氧自由基(alcoxyl radical)、氮氧基(nitric Oxide;NO-)、过氧亚硝基阴离子(peroxynitrite anion;ONOO-)次氯酸(hypochlorous acid;HOCl)、半醌自由基(semiquinone radical)、单线态氧气(singlet oxygen)等细胞内活性氧族(Reactive Oxygen Species;ROS)的产生和增多,将导致细胞衰老或凋亡。氯甲基二氯二氢荧光素二乙酯(6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester;CM-H2DCFDA)是取代二氯二氢荧光素二乙酯(2′,7′-dichlorodihydrofluorescin diacetate;DCFH-DA)的升级产品,一种完全自由通过细胞膜,并在细胞内长期滞留而不易外漏的染色剂。一旦被过氧化氢、羟自由基或氢氧基、过氧化基、次氯酸等氧化,便产生荧光。据此测定线粒体活性氧族的浓度。三氟甲氧基苯腙羧基氰化物(carbonyl cyanide 4-trifluoromethoxy henylhydrazone;FCCP)使线粒体膜化学离子梯度消失。 产品内容 缓冲液(Reagent A)毫升 选择液(Reagent B)微升 补充液(Reagent C)毫升 染色液(Reagent D)微升 产品说明书1份 保存方式 保存在-20℃冰箱里,染色液(Reagent D),严格避免光照;有效保证12月 用户自备 培养箱:用于染色孵育 (共聚焦)荧光显微镜:用于观察荧光线粒体 荧光分光光度仪或荧光酶标仪:用于测定线粒体荧光强度 1

观察水的沸腾实验报告

观察水的沸腾实验报告 实验名称:观察水的沸腾 实验目的: 1、通过实验,知道水的沸点。 2、经历用图像方法探究物理量变化规律的过程,理解液体沸腾的条件和特点。 3、学会观察,在观察实验中培养实事求是的科学态度。 实验器材: 温度计、酒精灯、小烧杯、铁架台、石棉网、秒表、火柴 实验步骤: 1、向烧杯中注入适量温水,用酒精灯加热。 2、观察并记录实验中声音和气泡的情况。 3、当水温升到90℃时,每隔0.5分钟记录温度计的示数。 4、沸腾后,拿走酒精灯停止加热,观察水的沸腾情况。 5、数据分析。 看一看: 气泡:水中气泡上升过程中,在沸腾前___________,沸腾时___________。 温度:沸腾前,对水加热,水的温度____ ___,沸腾时,继续对水加热,此时水的温度是_______摄氏度,说明水沸腾后温度保持_______。 听一听: 声音:水的声音在沸腾前___________,沸腾时___________。 做一做: 水沸腾后拿走酒精灯,停止加热,水___________,说明水沸腾时要__________热; 实验时水到达_____℃,才开始沸腾; 水沸腾的条件:1、___________,2、___________(两个条件必须 满足才能沸腾)。 画一画: 温度/℃ 水的沸腾图象 1、试以横坐标表示加热时间,纵坐标表示温度,根据记录的数据,在右图中标出各个时刻水的温度,然后用平滑的曲线把它们连起来。这就是沸腾前后温度随时间变化的图像 2、试观察水沸腾的图像,说说沸腾的特点 90 95 100 105 0 1 2 3 4 5 6 时间/min

查一查: 液体沸腾时的温度叫做沸点。查看沸点表可知,(1)液体的沸点与有关。(2)不同物质的沸点__ __,一个标准大气压下水的沸点为。(3)水银的沸点是_______,酒精的沸点是_______,故测量沸水应用_______温度计。(4)在表中液态氮和液态的氧的沸点_______,由此可用于分离和提纯气体。 想一想: www: 1、烧杯中的水从开始加热直到沸腾,水中的气泡在上升过程中大小是如何变化的?想一 想,气泡的大小发生这种变化的原因是什么? 2、煨炖食物时,有经验的人总是先用大火将水烧开,然后改用小火炖。试说明其中的道理。 3、俗话说:“开水不响,响水不开。”通过查阅资料,了解其中的物理道理。 4、在一次实验中小明发现了一个有趣的现象,他用纸做的锅烧水,结果发现锅中的水沸腾了,纸锅却完好无损。联系“观察水的沸腾”实验,查阅资料,说说其中的道理。

实验四 微程序控制器原理实验

2015 年 5 月 24 日 课程名称:计算机组成原理实验名称:微程序控制器原理实验 班级:学号:姓名: 指导教师评定:_________________ 签名:_____________________ 一、实验目的: 1.掌握微程序控制器的组成及工作过程; 2.通过用单步方式执行若干条微指令的实验,理解微程序控制器的工作原理。 二、预习要求: 1.复习微程序控制器工作原理; 2.预习本电路中所用到的各种芯片的技术资料。 三、实验设备: EL-JY-II型计算机组成原理实验系统一台,连接线若干。 四、电路组成: 微程序控制器的原理图见图4-1(a)、4-1(b)、4-1(c)。 图4-1(a)控制存储器电路

图4-1(b)微地址形成电路 图4-1(c)微指令译码电路 以上电路除一片三态输出8D触发器74LS374、三片EFPROM2816和一片三态门74LS245,其余逻辑控制电路均集成于EP1K10内部。28C16、74LS374、74LS245

芯片的技术资料分别见图4-2~图4-4. 图4-2(a )28C16引脚 图4-2(b ) 28C16引脚说明 工作方式 /CE /OE /WE 输入/输出 读 后 备 字 节 写 字节擦除 写 禁 止 写 禁 止 输出禁止 L L H H × × L H L L 12V L × × H × L × × H × 数据输出 高 阻 数据输入 高 阻 高 阻 高 阻 高 阻 图4-2(c )28C16工作方式选择 图4-5(a )74LS374引脚 图4-5(b )74LS374功能

图4-8(a)74LS245引脚图4-8(b)74LS245功能 五、工作原理: 1.写入微指令 在写入状态下,图4-1(a)中K2须为高电平状态,K3必须接至脉冲/T1端,否则无法写入。MS1-MS24为24位写入微代码,由24位微代码开关(此次实验采用开关方式)。uA5-uA0为写入微地址,采用开关方式则由微地址开关提供。K1须接低电平使74LS374有效,在脉冲T1时刻,uAJ1的数据被锁存形成微地址(如图4-1(b)所示),同时写脉冲将24位微代码写入当前微地址中(如图4-1(a)所示)。 2.读出微指令 在写入状态下,图4-1(a)中K2须为低电平状态,K3须接至高电平。 K1须接低电平使74LS374有效,在脉冲T1时刻,uAJ1的数据被锁存形成微地址uA5-uA0(如图4-1(b)所示),同时将当前微地址的24位微代码由MS1-MS24输出。 3.运行微指令 在运行状态下,K2接低电平,K3接高电平。K1接高电平。使控制存储器2816处于读出状态,74LS374无效因而微地址由微程序内部产生。在脉冲T1时刻,当前地址的微代码由MS1-MS24输出;T2时刻将MS24-MS7打入18位寄存器中,然后译码输出各种控制信号(如图4-1(c)所示,控制信号功能见实验五);在同一时刻MS6-MS1被锁存,然后在T3时刻,由指令译码器输出的SA5-SA0将其中某几个触发器的输出端强制置位,从而形成新的微地址uA5-uA0,这就是将要运行的下一条微代码的地址。当下一个脉冲T1来到

微程序控制器实验报告 (2)

组成原理No、4实验--- 微程序控制器实验 组员: 组号:21号 时间:周二5、6节?

【实验目的】 (1)掌握时序发生器的组成原理。 (2)掌握微程序控制器的组成原理。 (3)掌握微程序的编制、写入、观察微程序的运行情况 【实验设备】 TDN-CM++, 【实验原理】 微程序控制器的基本任务就是完成当前指令的翻译与执行,即将当前指令的功能转换成可以控制硬件逻辑部件工作的微命令序列,以完成数据传输与各种处理操作。它的执行方法就就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。微程序存储在一种专用的存储器中,该存储器称为控制存储器。 实验所用的时序控制电路框图如图1 所示, 可产生四个等间隔的时序信号TS1~TS4。在 图1中,为时钟信号,由实验台左上方的 方波信号源提供,可产生频率及脉宽可调额 方波信号;STEP就是来自实验板上方中部的 一个二进制开关STEP的模拟信号;START 键就是来自实验板上方左部的一个微动开关 START的按键信号。当STEP开关为EXEC(0)时,一旦按下START启动键,时序信号TS1~TS4将周而复始地发送出去。当STEP为STEP(1)时,按下START启动键,机器便处于单步运行状态,即此时只发送一个CPU周期的时序信号就停机了。利用单步方式,每次只读一条微指令,可以观察微指令的代码与当前微指令的执行结果。另外,如果STEP开关置“STEP”,会使机器停机,CLR开关执行1→0→1操作可以使时序清零。时序状态图如下图所示。 ?由于时序电路的内部线路已经连好,因此只需将时序电路与方波信号源连接,即将时序电路的时钟脉冲输入端接至方波信号发生器输入端H23上,按动启动 键START后,就可产生时序信号TS1~TS4、时序电路的CLR已接至CLR 模拟开关上。 ?编程开关具有三种状态:PROM(编程)、READ(校验)与RUN(运行)。 微指令格式如 下: 【实验步骤】

微程序控制器实验审批稿

微程序控制器实验 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

评语: 课中检查完成的题号及题数: 课后完成的题号与题数: 成绩: 自评成绩: 实验报告 实验名称:微程序控制器实验 日 期: 班级:学号: 姓 名: 一、实验目的: 1.掌握微程序控制器的组成原理。 2.掌握微程序的编制、写入,观察微程序的运行过程。 二、实验内容: 1.了解如何将微码加载到微控存中,了解指令并运行。 2.通过微程序控制器实验能得简单运算结果。 3.设计并修改电路,编写用微程序实现存储器中两个单字节十六进制数的加法运算,结果输出至OUT单元。 三、项目要求及分析: 要求:操作数由IN单元输入至MEM,在由MEM中读出操作数并在ALU中运算。 四、具体实现: 1. 按图1-3-10 所示连接实验线路,仔细查线无误后接通电源。如果有‘滴’报警声,说明总线有竞争现象,应关闭电源,检查接线,直到错误排除。

图1-3-10 实验接线图 2. 对微控器进行读写操作,分两种情况:手动读写和联机读写。 1) 手动读写 进行手动读或是写,都需要手动给出地址,系统专门安排了一个ADDR 单元,做为地址输入。ADDR 单元原理如图1-3-11 所示,可以看出本单元实为一个加减计数器。当开关为‘加1’档时,在T2 的下沿计数器进行加1 计数,当开关为‘减1’档时,在T2 的下沿计数器进行减1计数,当开关置为‘置数’档时,计数器置初值,其作用相当于直通,SA7…SA0 的输出值就是二进制开关组的值。 在实验中选择什么档位,取决于写入数据的地址是否连续,如果是连续地址,选 择‘加1’或是‘减1’档会方便一些。如果是离散地址,选择‘置数’档会方便一些。

五邑大学计算机组成原理实验报告三:微程序控制器实验

《计算机组成原理》 实验报告 学院:计算机学院 专业:计算机科学与技术 班级学号:150801 3115000820 学生姓名:黄家燊 实验日期:2016.12.25 指导老师:李鹤喜 五邑大学计算机学院计算机组成原理实验室

实验一 一、实验名称:微程序控制器实验 二、实验目的 (1)掌握微程序控制器的功能、组成知识。 (2)掌握为程序的编制、写入、观察微程序的运行 二、实验设备: PC机一台,TD-CM3+实验系统一套 三、实验原理: 微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制的硬件逻辑部件的为命令序列,完成数据传送和个汇总处理操作,他的执行方法是将控制各部件的微命令的集合进行编码,即将微命令的集合仿照及其指令一眼,用数字代码的形式表示,这种表示陈伟微指令。这样就可以用一个微指令序列表示一条机器指令,这种为指令序列称作为程序。微程序存储在一种专用的存储器中,成为控制储存器 四、实验步骤 1.对为控制器进行读写操作: (1)手动读写: ①按图连线:

②将MC单元编程开关置为“编程”档,时序单元状态开关置为“单步”档,ADDR 单元状态开关置为“置数”档 ③使用ADDR单元的低六位SA5…SA0给出微地址MA5…MA0,微地址可以通过MC 单元的MA5…MA0微地址灯显示 ④CON单元SD27…SD20,SD17…SD10,SD07…SD00开关上置24位微代码,待写入值由MC单元的M23…M024位LED灯显示 ⑤启动时序电路(按动一次TS按钮),即将微代码写入到E2PROM2816的相应地址对应单元中 ⑥重复③④⑤三步,将下图微代码写入2816芯片中 二进制代码表 (2)联机读写: ①将微程序写入文件,联机软件提供了微程序下载功能,以代替手动读写微控制器,但微程序得以指定的格式写入 本次试验的微程序如下: ://************************************************************// :// // :// 微控器实验指令文件 // :// // ://************************************************************// ://***************Start Of MicroController Data****************//

水的沸腾实验报告单

班级姓名桌号日期实验 内容 观察水的沸腾 实验目的(1)通过实验观察,了解沸腾是液体内部和表面同时发生的剧烈的汽化现象; (2)通过探究活动了解液体沸腾时的温度特点; (3)通过探究活动,激发学习兴趣,乐于探索自然现象,乐于了解日常生活中物理道理。 实验仪器酒精灯、铁架台、铁夹、铁圈(或三脚架)、温度计、烧杯、石棉网、水等 实验步骤实验分工: 计时员观察气泡员观察温度员记录员作图员 (1)在烧杯中加入一些水,放到有石棉网的铁架上,用夹子夹住温度计的吊绳,并将温度计调到适当位置,用温度计测量水温。 (2)点燃酒精灯给水加热,当水温上升到90℃时,计时员每隔10s让观察温度员 .....观察一次温度计的示数,记录员将温度记录到下面的表格中。 (3)观察气泡员观察水中开始出现气泡时(即沸腾前),气泡在上升过程中怎样变化?出现大量气泡后(即沸腾后),气泡在上升的过程中怎样变化? (4)继续每隔10s记录一次温度计的示数,直到水沸腾后再记录2min。 (5)沸腾后将酒精灯移走,观察水是否还会继续沸腾;再用酒精灯继续加热,观察水是否沸腾。(6)作图员根据实验记录数据绘制水沸腾时水温随时间变化的图像。 (7)小组讨论,得出结论。 (8)实验完毕,整理器材。 实验记录 附实验记录表格: 时间t/s 0 10 20 30 40 50 60 70 80 90 100 温度t/℃ 时间t/s 110 120 130 140 150 160 170 180 190 200 210 温度t/℃ 时间t/s 220 230 240 250 260 270 280 290 300 310 320 温度t/℃

实验四 常规型微程序控制器组成实验

实验员述职报告 实验四常规型微程序控制器组成实验 一、实验目的 1.掌握时序发生器的组成原理。 2.掌握微程序控制器的组成原理。 二、实验电路 1.时序发生器 本实验所用的时序电路见图3.4。电路由一个500KHz晶振、2片GAL22V10、一片74LS390组成,可产生两级等间隔时序信号T1-T4、W1-W3,其中一个W由一轮T1-T4组成,相当于一个微指令周期或硬连线控制器的一拍,而一轮W1-W3可以执行硬连线控制器的一条机器指令。另外,供数字逻辑实验使用的时钟由MF经一片74LS390分频后产生。 图3.4 时序信号发生器 本次实验不涉及硬连线控制器,因此时序发生器中产生W1-W3的部分也可根据需要放到硬连线控制器实验中介绍。 产生时序信号T1-T4的功能集成在图中左边的一片GAL22V10中,另外它还产生节拍信号W1-W3的控制时钟CLK1。该芯片的逻辑功能用ABEL语言实现。其源程序如下:MODULE TIMER1 TITLE 'CLOCK GENERATOR T1-T4' CLK = .C.; "INPUT MF, CLR, QD, DP, TJ, DB PIN 1..6; W3 PIN 7; "OUTPUT T1, T2, T3, T4 PIN 15..18 ISTYPE 'REG'; CLK1 PIN 14 ISTYPE 'COM'; 常用软件课程设计

实验员述职报告 QD1, QD2, QDR PIN ISTYPE 'REG'; ACT PIN ISTYPE 'COM'; S = [T1, T2, T3, T4, QD1, QD2, QDR]; EQUATIONS QD1 := QD; QD2 := QD1; ACT = QD1 & !QD2; QDR := CLR & QD # CLR & QDR; T1 := CLR & T4 & ACT # CLR & T4 & ! (DP # TJ # DB & W3) & QDR; T2 := CLR & T1; T3 := CLR & T2; T4 := !CLR # T3 # T4 & !ACT & (DP #TJ# DB& W3) # !QDR; CLK1 = T1 # !CLR & MF; S.CLK = MF; END 节拍电位信号W1-W3只在硬连线控制器中使用,产生W信号的功能集成在右边一片GAL22V10中,用ABEL语言实现。其源程序如下: MODULE TIMER2 //头部 TITLE 'CLOCK GENERATOR W1-W3' DECLARATIONS //说明部 CLK = .C.; "INPUT CLK1, CLR, SKIP PIN 1..3; "OUTPUT W1, W2, W3 PIN 16..18 ISTYPE 'REG'; W = [W1, W2, W3]; EQUATIONS //逻辑描述部 W1 := CLR & W3; W2 := CLR & W1 & !SKIP; W3 := !CLR # W2 # W1 & SKIP; W.CLK = CLK1; END TIMER2 //结束部 左边GAL的时钟输入MF是晶振的输出,频率为500KHz。T1-T4的脉宽为2μs。CLR实际上是控制台的CLR#信号,因为ABEL语言的书写关系改为CLR,仍为低有效。CLR#=0将系统复位,此时时序停在T4、W3,微程序地址为000000B。建议每次实验台加电后,先按CLR#复位一次。实验台上CLR#到时序电路的连接已连好。 对时序发生器TJ输入引脚的连接要慎重,当不需要暂停微程序的运行时,将它接地;常用软件课程设计

实验四 常规型微程序控制器组成实验

实验四常规型微程序控制器组成实验 一、实验目的 1.掌握时序发生器的组成原理。 2.掌握微程序控制器的组成原理。 二、实验电路 1.时序发生器 本实验所用的时序电路见图3.4。电路由一个500KHz晶振、2片GAL22V10、一片74LS390组成,可产生两级等间隔时序信号T1-T4、W1-W3,其中一个W由一轮T1-T4组成,相当于一个微指令周期或硬连线控制器的一拍,而一轮W1-W3可以执行硬连线控制器的一条机器指令。另外,供数字逻辑实验使用的时钟由MF经一片74LS390分频后产生。 图3.4 时序信号发生器 本次实验不涉及硬连线控制器,因此时序发生器中产生W1-W3的部分也可根据需要放到硬连线控制器实验中介绍。 产生时序信号T1-T4的功能集成在图中左边的一片GAL22V10中,另外它还产生节拍信号W1-W3的控制时钟CLK1。该芯片的逻辑功能用ABEL语言实现。其源程序如下:MODULE TIMER1 TITLE 'CLOCK GENERATOR T1-T4' C LK = .C.; "INPUT M F, CLR, QD, DP, TJ, DB PIN 1..6; W3 PIN 7; "OUTPUT T1, T2, T3, T4 PIN 15..18 ISTYPE 'REG'; C LK1 PIN 14 ISTYPE 'COM'; Q D1, QD2, QDR PIN ISTYPE 'REG';

A CT PIN ISTYPE 'COM'; S = [T1, T2, T3, T4, QD1, QD2, QDR]; EQUATIONS Q D1 := QD; Q D2 := QD1; A CT = QD1 & !QD2; Q DR := CLR & QD # CLR & QDR; T1 := CLR & T4 & ACT # CLR & T4 & ! (DP # TJ # DB & W3) & QDR; T2 := CLR & T1; T3 := CLR & T2; T4 := !CLR # T3 # T4 & !ACT & (DP #TJ# DB& W3) # !QDR; C LK1 = T1 # !CLR & MF; S.CLK = MF; END 节拍电位信号W1-W3只在硬连线控制器中使用,产生W信号的功能集成在右边一片GAL22V10中,用ABEL语言实现。其源程序如下: MODULE TIMER2 //头部 TITLE 'CLOCK GENERATOR W1-W3' DECLARATIONS //说明部 C LK = .C.; "INPUT C LK1, CLR, SKIP PIN 1..3; "OUTPUT W1, W2, W3 PIN 16..18 ISTYPE 'REG'; W = [W1, W2, W3]; EQUATIONS //逻辑描述部 W1 := CLR & W3; W2 := CLR & W1 & !SKIP; W3 := !CLR # W2 # W1 & SKIP; W.CLK = CLK1; END TIMER2 //结束部 左边GAL的时钟输入MF是晶振的输出,频率为500KHz。T1-T4的脉宽为2μs。CLR实际上是控制台的CLR#信号,因为ABEL语言的书写关系改为CLR,仍为低有效。CLR#=0将系统复位,此时时序停在T4、W3,微程序地址为000000B。建议每次实验台加电后,先按CLR#复位一次。实验台上CLR#到时序电路的连接已连好。 对时序发生器TJ输入引脚的连接要慎重,当不需要暂停微程序的运行时,将它接地;如果需要的话,将它与微程序控制器的输出微命令TJ相连。QD(启动)是单脉冲信号,在

活性氧检测试验方案

活性氧检测试验方案 一:实验原理 活性氧检测试剂盒(Reactive Oxygen Species Assay Kit)是一种利用荧光探针DCFH-DA进行活性氧检测的试剂盒。DCFH-DA本身没有荧光,可以自由穿过细胞膜,进入细胞内后,可以被细胞内的酯酶水解生成DCFH。而DCFH不能通透细胞膜,从而使探针很容易被装载到细胞内。细胞内的活性氧可以氧化无荧光的DCFH生成有荧光的DCF。检测DCF的荧光就可以知道细胞内活性氧的水平。 本试剂盒提供了活性氧阳性对照试剂Rosup,以便于活性氧的检测。Rosup是一种混合物(compound mixture),浓度为50mg/ml。二:实验步骤 ⑴取20 ul DCFH-DA(试剂盒有100ul)按照1:1000用无血清培养液即20ml稀释DCFH-DA,使 终浓度为10微摩尔/ 升。 ⑵吸取12ml细胞培养液(细胞浓度为一百万至二千万/毫升)加入24孔板中(设3个阳性对照, 3个浓度梯度分别做3个重复,每孔加入1ml细胞培养液),放入细胞培养箱中培养。 ⑶培养24小时后去除细胞培养液,每孔加入稀释好的DCFH-DA 1ml (加入的体积以能充分 盖住细胞为宜)。 ⑷ 37℃细胞培养箱内孵育20分钟。

⑸去除孵育后的DCFH-DA稀释液,每孔加入1ml无血清细胞培养液洗涤细胞(重复洗涤三次, 以充分去除未进入细胞内的DCFH-DA)。洗涤完后每孔加入1ml细胞培养液。 ⑹在酶标仪下使用488nm激发波长,525nm发射波长,实时或逐时间点检测刺激前荧光的强 弱即OD值。 ⑺实验组中每孔加入已配制好的松茸多糖20ul(浓度分别为5mg/ml、10mg/ml、20mg/ml), 对照组中加入阳性对照物Rosup 20ul,放入细胞培养箱内继续培养。 ⑻4小时后,在酶标仪下使用488nm激发波长,525nm发射波长,实时或逐时间点检测刺激后 荧光的强弱即OD值。 三:数据处理 实验组:癌细胞活性氧降低率=(刺激前OD值-刺激后OD值)/刺激前OD值×100% 阳性对照组:癌细胞活性氧升高率=(刺激后OD值-刺激前OD值)/刺激前OD值×100% 四:注意事项 ⑴探针装载后,一定要洗净残余的未进入细胞内的探针,否则会导致背景较高。

实验六-微程序控制单元实验上课讲义

实验六 微程序控制单元实验 一、实验目的 1. 熟悉微程序控制器的工作原理。 2. 掌握微程序编制及微指令格式。 二、实验要求 按照实验步骤完成实验项目,熟悉微程序的编制、写入、观察运行状态。 三、实验原理 ⒈ 微程序控制电路 微程序控制器的组成见图6-1,其中控制存储器采用4片6116静态存储器 ,微命令寄存器32位,用三片8D 触发器(273)和一片4D(175)触发器组成。微地址寄存器6位,用三片正沿触发的双D 触发器(74)组成,它们带有清零端和置位端。在不判别测试的情况下,T2时刻打入微地址寄存器的内容即为下一条微指令地址。当T4时刻进行测试判别时,转移逻辑满足条件后输出的负脉冲通过置位端将某一触发器输出端置为“1”状态,完成地址修改。 ⒉ 微指令格式 A 字段 B 字段 A 、 B 二译码字段,分别由6个控制位译码输出多位。B 段中的PX3、PX2、PX1 三个测试字位。其功能是根据机器指令及相应微代码进行译码,使微程序转入相应的微地址入口,从而实现微程序的顺序、分支、循环运行。

⒊微程序流程与代码 图6-2为几条机器指令对应的参考微程序流程图,将全部微程序按微指令格式变成二进制代码,可得到模型机(一)所例举的8位指令代码。 图6-2微程序流程图 四、实验内容 (一)微程序的编写 为了解决微程序的编写,本装置设有微程序读写命令键,学生可根据微地址和微指令格式将微指令代码以快捷方式写入到微程序控制单元。具体的操作方法是按动位于本实验装置右中则的红色复位按钮使系统进入初始待令状态。再按动【增址】命令键使工作方式提示位显示“H”。 微程序存贮器读写的状态标志是:显示器上显示8个数字,左边1、2位显示实验装置的当前状态,左边3、4位显示区域号(区域的分配见表7-2),左边5、6位数字是微存贮单元地址,硬件定义的微地址线是ua0~ua5共6根,因此它的可寻址范围为 00H~3FH;右边2位数字是该单元的微程序,光标在第7位与第8位之间,表示等待修改单元内容。

PH0630 活性氧检测试剂盒实验操作手册 Phygene

PH0630|活性氧检测试剂盒 Reactive Oxygen Species Assay Kit Catalog No:PH0603Size:?100~500Tests Store at-20℃ 活性氧检测试剂盒(Reactive Oxygen Species Assay Kit)是一种基于荧光染料DCFH-DA(2,7-Dichlorodi-hydrofluorescein diacetate)的荧光强度变化,定量检测细胞内活性氧水平的最常用方法。 DCFH-DA本身没有荧光,可以自由穿过细胞膜。进入细胞内后,可以被细胞内的酯酶水解生成DCFH。而DCFH不会通透细胞膜,因此探针很容易被积聚在细胞内。细胞内的活性氧能够氧化无荧光的DCFH生成有荧光的DCF。绿色荧光强度与活性氧的水平成正比。在最大激发波长480nm,最大发射波长525nm处,使用荧光显微镜,流式细胞仪或激光共聚焦显微镜等检测荧光信号。Rosup为活性氧阳性诱导药物,根据其荧光信号强度,可分析活性氧的真正水平。 根据检测体系和检测方法的不同,本试剂盒可测定100~500次。 试剂存储 冰袋运输。-20℃干燥避光保存,有效期一年。 试剂组分 编号组分规格保存方法 PH0630-A DCFH-DA(10mM)0.1mL-20℃,避光保存 PH0630-B活性氧阳性对照(Rosup,100mM) 1.0mL-20℃,避光保存 使用说明 检测步骤 1.装载探针 1.1原位装载探针(仅适用于贴壁细胞) ①细胞准备:检测前一天进行细胞铺板,确保检测时细胞汇合度达到50~70%。 【注】:必须保证细胞状态健康,且检测时不会过度生长。 ②药物诱导:去除细胞培养液,加入适量经合适的缓冲液或无血清培养基稀释到工作浓度的药物,于37℃细胞培养箱内避光孵育,具体诱导时间根据药物本身特性,以及细胞类型来决定。 (可选)阳性对照:先用无血清培养基等稀释阳性对照(Rosup,100mM)到常用工作浓度100μM,加入细胞,一般37℃避光孵育30min-4h 可显著看到活性氧水平提高,但依细胞类型会有比较明显差异。【如,HeLa细胞孵育30min;MRC5人胚胎成纤维细胞1.5h;】 ③探针准备:探针装载前按照1:1000用无血清培养液稀释DCFH-DA,使其终浓度为10μM。 ④探针装载:吸除诱导用药物,加入适当体积稀释好的DCFH-DA工作液。加入的体积以能充分盖住细胞为宜。如,对于6孔板通常不少于1000μl,对于96孔板通常不少于100μl。37℃细胞培养箱内避光孵育30min。

相关文档
最新文档