2013简易旋转倒立摆

2013简易旋转倒立摆
2013简易旋转倒立摆

一.方案论证与比较

1.1.主控方案的选择

1.1.1方案一 STC89C52单片机

STC89C52 是一种带8K字节闪烁可编程可擦除只读存储器的低电压,高性能COMOS8 的微处理器,该器件采用STC高密度非易失存储器制造技术制造,与工业标准的 MCS-51 指令集和输出管脚相兼容。满足题目要求。

图一 STC控制方案

1.2.角度传感器的选择

1.2.1方案一:ADXL345角度传感器

ADXL345采用14引脚塑料封装,具有3mm x 5mm x 1mm的小巧纤薄的外形尺寸。具有高分辨率(3.9 mg/LSB),能够测量约 0.25°的倾角变化。使用 ADXL345 等数字输出加速度计时,可以无需进行模数转换,从而可以节省系统成本和电路板面积。

图二 ADXL345角度传感器

1.3.倾斜角检测方案比较

方案二:双轴倾斜计算

与单轴解决方案一样,x轴检测到的加速度与倾斜角的正弦具有比例关系,同时,与x轴垂直的y轴加速度与倾斜角的余弦成比例。随着某个轴的增量灵敏度的降低,另一轴的灵敏度则会增加。采用第二轴的另一个优势是能够对各个向量进行分区,并能够在整个360度内测量角度。故本设计采用此方案。

1.4.倒立摆系统控制算法的选择

方案一:PID控制

通过对倒立摆系统物理模型进行力学分析,建立其动力学模型,设计出PID 控制器实现稳定控制。PID参数的选择通常采用尝试法进行,但PID方案比较成熟,可以使用。

二.理论分析与计算

2.1双轴倾斜计算

(1)恒定灵敏度

x轴检测到的加速度与倾斜角的正弦具有比例关系,同时,与x轴垂直的y轴加速度与倾斜角的余弦成比例(如图1所示)。随着某个轴的增量灵敏度的降低,另一轴的灵敏度则会增加。

图3 双轴倾斜检测中的输出加速度与倾斜角

将测得加速度转换为倾斜角的一种方法是计算x 轴的反正弦与y 轴的反余弦。然而,一种更简单、更有效的方法是使用来自以下等式的两个值之比:

)

(t a n t a n s i n lg sin lg ,,1

,,A

A A

A OUT

Y OUT

X OUT

Y OUT

X -==??=

θθθθ)

()

()

其中倾斜角θ单位为弧度。

不同于单轴,利用两个轴之比来确定倾斜角的方法极大地增加了确定增量灵敏度的难度。由于一个轴的增量灵敏度会随着另一轴的减少而增加,因此两者的最终结果是一种几乎恒定的有效增量灵敏度。

(2)对重心面对齐度的依赖行降低

使用双轴或多轴的一个重要优势在于,在单轴解决方案下,除x 轴以外的任何轴发生倾斜都会造成重大误差,与此不同,在使用第二轴时,即使第三轴存在倾斜时也可测得精确的值。这是因为有效增量灵敏度与目标轴重力的和方根(RSS )值具有比例关系。

当重力完全处于x y 平面之内时,这些轴上检测到的加速度和方根的理想值等于1g 。 如果x z 平面或y z 平面中存在倾斜,则重力导致的总加速度会减少,同时会减少有效增量灵敏度。这又会加大既定加速度计分辨率下的倾斜步长,但仍可提供精确的测量值。经倾斜计算得到的角度对应于x y 平面的旋转。

(3)全角度360度倾斜检测

采用第二个轴的另一个主要优势是能够对各个象限进行分区,并能在整个360度内测量角度。如图2所示,每个象限均拥有与x 轴和y 轴加速度相关联的不同符号组合。

图4 象限检测的倾斜角与加速度符号

若操作数A A OUT Y OUT X ,,/为正,则反正切函数在象限Ⅰ中返回一值;如果该操作数为负,则反正切函数在象限Ⅲ中返回一值。由于象限Ⅳ中的操作数为负,当角度处于该象限时,必须在计算结果中加上180度的值。由于象限Ⅲ中的操作数为正,当角度处于该象限时,必须从计算结果中减去180度的值。计算所得角度的正确象限可通过考察各轴上测得加速度的符号来确定。

(4)反馈调节

图5 反馈调节框图

A :传感器角度值;T :设定值;

A-T:传感器角度值与设定值的差值

传感器角度值变化:根据反馈调节理论,控制A-T=0,输入为A-T ,输出为T=A 。在这个调节过程中,由于惯性作用,A 会有一个波动,如图4所示:

图6 角度波动图

2.2电动机的选型 2.2.1刚体受力分析 刚体绕定轴转动微分方程 第 k 个质元

切线方向

在上式两边同乘以rk

对所有质元求和

刚体绕定轴转动微分方程(刚体的转动定律) 2.2.2机械结构的综合考虑

考虑到旋转臂要与电机的转轴合理连接,而碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为230~430Gpa 亦高于钢。因此选择碳纤维杆作为旋转臂。

考虑到摆杆的重心要在一定范围内可调,以选择最佳的力矩与电机配合。因此,我们制作重心可调控制杆作为摆杆。

考虑到摆杆绕轴转动,轴选用直径4MM 的轴承作为转轴。摩擦力小,光滑。

k

k k k a m f F

=+τττk k k k a m f F =+k k k k k k k r a m r f r F τττ=+∑∑∑=+αττ )(2k

k k k k k r m r f r F αJ M =

2.2.3电动机选择

齿轮减速电机,是在普通直流电机的基础上,加上配套齿轮减速箱。齿轮减速箱的作用是,提供较低的转速,较大的力矩。同时,齿轮箱不同的减速比可以提供不同的转速和力矩。这大大提高了,直流电机在自动化行业中的使用率。本文选择ZGA25齿轮减速电机。作为动力装置。

齿轮减速电机是指齿轮减速箱和电机(马达)的组成体。这种组成体通常也可称为齿轮箱电机或减速电机,通常由专业的减速机生产厂进行集成组装好后成套供货。齿轮减速马达的应用非常广泛,属于机械设备不可或缺的动力设备。

2.3驱动与控制算法

2.3.1 PID控制算法

在模拟控制系统中,控制器最常用的控制规律是PID控制。PID控制器又称PID调节器,是工业控制中系统中常用的有源校正装置。可以用软件实现PID控制算法,而且可以利用计算机的逻辑功能,使PID控制更加灵活。数字PID控制生产过程是一种最普遍采用的控制方法。如下图所示。

图7 PID原理

系统的传感器得到的测量结果控制器作出决定通过一个输出设备来作出反应控制器从传感器得到测量结果,然后用需求结果减去测量结果来得到误差。然后用误差来计算出一个对系统的纠正值来作为输入结果,这样系统就可以从它的输出结果中消除误差。

最为理想的控制当属比例-积分-微分控制规律。它集三者之长:既有比例作用的及时迅速,又有积分作用的消除余差能力,还有微分作用的超前控制功能。

当偏差阶跃出现时,微分立即大幅度动作,抑制偏差的这种跃变;比例也同时起消除偏差的作用,使偏差幅度减小,由于比例作用是持久和起主要作用的控制规

律,因此可使系统比较稳定;而积分作用慢慢把余差克服掉。只要三个作用的控制参数选择得当,便可充分发挥三种控制规律的优点,得到较为理想的控制效果。

本方案采用单回路PID控制方案,选取摆杆角度作为反馈信号,此方案间接对摆杆进行控制,系统结构框图如下图所示。

图8PID控制算法

规定这个流程是用来为直流电机调速的;

1.输入量rin(t)为电机转速预定值;

2.输出量rout(t)为电机转速实际值;

3.执行器为直流电机;

4.传感器为光电码盘,假设码盘为10线;

5.直流电机采用PWM调速转速用单位转/min 表示;

6.偏差量为预定值和实际值之差(转/min);

每个电压对应一个转速,电压和转速之间呈现线性关系。但是我考虑这种方法的前提是把直流电机的特性理解为线性了,而实际情况下,直流电机的特性绝对不是线性的,所以在正式进行调速设计之前,需要现有开环系统,测试电机和转速之间的特性曲线(或者查阅电机的资料说明),然后再进行闭环参数整定。

假设采样间隔为T,则在第K T时刻:

偏差err(K)=rin(K)-rout(K);

积分环节用加和的形式表示,即err(K)+err(K+1)+……;

微分环节用斜率的形式表示,即[err(K)-err(K-1)]/T;

从而形成如下PID离散表示形式:

2.2.2PID子程序流程图

三.硬件电路设计

本系统主要由主控制器模块,角度检测模块,机械结构模块等组成,系统连接图如图所示:

图9系统模块组成

3.1硬件电路设计

硬件电路部分主要由单片机控制模块、电机驱动模块、角度传感器检测模块、电源模块等部分组成,系统原理图如下图所示:

3.1.1 单片机最小系统电路图

图10单片机最小系统图

3.1.2 L298N电机驱动模块电路图

图11电机驱动图3.1.3 角度传感器

图12角度传感器

角度传感器测得X、Y轴方向的重力加速度,通过IIC通信将信号输入单片机,单片机合成数据,得到X、Y轴方向加速度的值,从而计算得出角度值,然后利用屏幕将角度值实时显示出来。

3.2 程序结构与设计

N

程序结构如上图所示,本系统可完成摆杆从处于自然下垂状态(摆角 0°)开始,驱动电机带动旋转臂作往复旋转使摆杆摆动,并尽快使摆角达到或超过-60°~ +60°直至完成圆周运动。

四.测试方案与测试结果

测试方法:1.摆角的检测测试工具:秒表,量角器

在摆杆后1~2CM处固定一个轻质量角器,以方便观察摆杆的旋转角度。测试摆

测试结果分析:理想情况下,摆杆达到正负60度的时间很短,但由于电机转轴和和旋转臂的连接处有摩擦,电机加速控制需要时间,所以,实际测量与理论有差距。

测试方法:2开始到完成第一个圆周运动的时间测试工具:秒表

测试结果分析:当摆杆达到60度的时候,增大电机转速可使摆杆完成圆周运动。因此,从开始状态到完成圆周运动所需的时间很短。本装置完成此项要求的时间比较理想。

测试方法3:外力拉起至165度位置,外力撤出的同时,启动控制旋转臂使摆

测试结果分析:由于装置本身的不稳定性,使旋转臂转动时出现抖动,影响倒立时间的维持。此因素的影响难以消除。

五.总结

本旋转倒立摆能够实现题目的基本要求,并能完成发挥部分的部分功能。但装置稳定性方面还需要进一步改善。

六.参考文献

[1]《模拟电子电路及技术基础》,孙肖子著,西安:西安电子科技大学出版社,2008年;

[2]《自动控制原理》,杨友良著,北京:电子工业出版社,2000年;

[3]《模拟电子线路基础》,吴运昌著,广州:华南理工大学出版社,2004年;

[4]《数字电子技术基础》,阎石著,北京:高等教育出版社,1997年;

[5]《数据结构与算法》,张晓丽等著,北京:机械工业出版社,2002年;

[6]《ARM&Linux嵌入式系统教程》,马忠梅等著,北京:北京航空航天大学出版社,2004年;

[7]《单片机原理及应用》,李建忠著,西安:西安电子科技大学,2002年;附录

一.元器件及材料清单

二.主要程序

#include

#include //Keil library

#include //Keil library

#include

#define uchar unsigned char

#define uint unsigned int

sbit SCL=P2^0; //IIC时钟引脚定义

sbit SDA=P2^1; //IIC数据引脚定义

/*********************电机驱动管脚定义****************************/

sbit en=P1^0;

sbit s1=P1^1;

sbit s2=P1^2;

#define SlaveAddress 0xA6 //定义器件在IIC总线中的从地址,根据ALT ADDRESS地址引脚不同修改

//ALT ADDRESS引脚接地时地址为0xA6,接电源时地址为0x3A

typedef unsigned char BYTE;

typedef unsigned short WORD;

BYTE BUF[8]; //接收数据缓存区

uchar qf,bf,sf,ge,shi,bai,qian,wan; //显示变量

int dis_data,PN; //变量

int data_xyz[3];

uchar i;

***********全局变量*******************************/

uint t=0; /* 中断计数器*/

uchar m1=0; /* 电机1速度值*/

uchar tmp1;

uchar k,table_begin;

uint A,n,C;

void delay(unsigned int k);

void Init_ADXL345(void); //初始化ADXL345

void Single_Write_ADXL345(uchar REG_Address,uchar REG_data); //单个写入数据

uchar Single_Read_ADXL345(uchar REG_Address); //单个读取内部寄存器数据

void Multiple_Read_ADXL345(); //连续的读取内部寄存器数据

//------------------------------------

void Delay5us();

void Delay5ms();

void ADXL345_Start();

void ADXL345_Stop();

void ADXL345_SendACK(bit ack);

bit ADXL345_RecvACK();

void ADXL345_SendByte(BYTE dat);

BYTE ADXL345_RecvByte();

void ADXL345_ReadPage();

void ADXL345_WritePage();

/*******************************/

void delay(unsigned int k)

{

unsigned int i,j;

for(i=0;i

{

for(j=0;j<121;j++)

{;}}

}

/***************************************/

void Delay5us()

{

_nop_();_nop_();_nop_();_nop_();

_nop_();_nop_();_nop_();_nop_();

_nop_();_nop_();_nop_();_nop_();

}

/**************************************

void Delay5ms()

{

WORD n = 560;

while (n--);

}

*****电机处理函数*****************************/ void motor(uchar speed)

{

float read1,read2;

m1=speed;

if(fabs(read()-90.0)<10.0) {

s1=1;

s2=0; }

/* do

{

read1=fabs(read()-90.0);

delay(100);

read2=fabs(read()-90.0);

}while(read2>read1); */

else {

s1=0;

s2=1; }

// delay(180);

/* do

{

read1=fabs(read()-90.0);

delay(100);

read2=fabs(read()-90.0);

}while(read2>read1); */

}

******T0中断服务程序**************************/ void timer0() interrupt 1

{

if(m1==0)

t=0;

if(t==0)/* 1个PWM周期完成后才会接受新数值*/

{

tmp1=m1;

}

if(t

else en=0; /* 产生电机1的PWM信号*/

t++;

if(t>=300) t=0; /* 1个PWM信号由100次中断产生*/ }

//******主程序********

void main()

{

uchar devid;

delay(500); //上电延时

P0=0xFF; //置P0口

P1=0xFF; //置P1口

delay(10); //延时

Init_ADXL345(); //初始化ADXL345

devid=Single_Read_ADXL345(0X00);//读出的数据为0XE5,表示正确ini_timer0();

start();

while(1) //循环

{

motor(200);

}

}

全国电子设计大赛旋转倒立摆

全国电子设计大赛旋转倒 立摆 Prepared on 22 November 2020

目录 摘要 本设计综合考虑基础部分和发挥部分要点,采用mega128a为主控芯片,BTS7960驱动电机并在程序中涉及到pid算法对电机进行调控,在设计中,我们采用1000线编码器为角度传感器。在该简单控制装置中,我们实现了摆动,圆周运动和短时间的自动控制下的倒立。 关键字:倒立摆,mega128a,编码器 第一章系统方案比较与选择

总实现方案 方案一:用陀螺仪和加速度计通过卡尔曼数据融合得到角度,用此处的角度为载体用单片机进行数据处理,并调整电机。 方案二:用电位器做角度传感,通过单片机自带ADC来读取电位数值以此为依据来判断角度,并调整电机。 方案三:用编码器做角度传感器,通过读取编码器的输出脉冲来计算角度传感器的输出角度,用此角度做处理调整电机。 通过对两个方案的对比选择,方案一中的加速度计和陀螺仪算法实现复杂,我们在融入卡尔曼滤波后有明显滤波效果,但是由于圆周运动,会使得各个方向轴返回的数据出错,且波动大,会减弱卡尔曼的滤波效果,对于pid的精准调整还是远远达不到预期。在方案二中,考虑到电位器内部结构问题,虽然理论上电位器在转动过程中是线性的,但是考虑到每次停靠的电阻位可能会产生误差,最后考虑到我们最终选定的单片机ADC只有10位,在方案三中,由于实现编码器的功能实现方便简单,并能更多的趋近于精确值,因此最后我们采用了方案三。 主控制器方案比较与选择 为了完成在短时间快速采集并计算角度,主控器件必须有较高的CPU工作频率和存储空间。 方案一:采用51系列加强型STC12C5A60S2作为主控器件,用来实现题目所要求的各种功能。此方案最大的特点是系统规模可以做得很小,成本较低。操作控制简单。但是,我们在利用单片机处理高速信号快速扫描及电机控制时显得吃力, 51系列单片机很难实现这一要求。

本科毕业设计任务书:旋转单级倒立摆系统建模与实物控制

系 信控 系 主 任 批准日期 2015-3-6 毕 业 设 计(论 文)任 务 书 信息与控制工程 系 自动化 专业 ×× 班 学生 ×× 一、毕业设计(论文)课题 旋转单级倒立摆系统建模与实物控制 二、毕业设计(论文)工作自 2015 年 3 月 2 日起至 2015 年 6 月 28 日止 三、毕业设计(论文)进行地点 学科2号楼801实验室 四、毕业设计(论文)的内容要求 1、 设计目的 倒立摆系统自身是一个典型的绝对不稳定、高阶次、多变量、强耦合的非线性系统。许多抽象的控制理论概念如系统的可控性、稳定性、系统的抗干扰能力和系统的快速性等,都可以由倒立摆系统直观地展示出来。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。因此倒立摆系统是一个研究和验证先进控制算法性能的一个优秀平台。 目前国内外关于倒立摆的研究大都集中在直线型倒立摆系统,旋转倒立摆的研究较少。本次毕业设计以加拿大QUANSER 公司的旋转单级倒立摆为研究对象,采用机理建模法建立其动力学模型,在此基础上分析该倒立摆系统的性能,并设计控制器实现平衡控制且动态性能满足%16.3%,3s t s σ≤≤。 通过此次毕业设计使学生具备如下能力:①通过毕业设计,熟悉和掌握建立实际物理系统模型的能力;②利用经典控制理论和现代控制理论对控制系统进行系统性能分析和控制器设计的能力;③利用MATLAB /SIMULINK 实现控制系统

建模、仿真、实物控制并对实验结果进行分析的能力。④查阅相关中英文文献, 了解典型运动控制对象-旋转倒立摆控制技术的前沿发展动态; 2、设计要求 (1)建立所用的旋转单级倒立摆系统的数学模型并分析系统的性能。 (2)根据给定的性能指标,分别设计满足要求的LQR 控制器和变结构控制器,在MATLAB 环境下实现上述两种控制算法。 (3)以加拿大QUANSER 公司的旋转单级倒立摆为对象,采用上述两种控制算法实现对旋转单级倒立摆实物系统的平衡控制且动态性能满足 %16.3%,3s t s σ≤≤。 3、设计步骤 1)查阅文献,熟悉和了解倒立摆系统,尤其是旋转单级倒立摆系统平衡控制的研 究背景和意义,翻译3000~5000词英文文献,写出高质量开题报告; 2)学习机理建模的基本步骤并利用拉格朗日方法建立所用的旋转单级倒立摆的状 态空间模型和传递函数模型。 3)分析系统性能,包括稳定性、可控性和开环响应特性。 4)学习LQR 控制器的基本原理,根据给定的性能指标,设计满足要求的旋转单级倒立摆LQR 控制器并在MATLAB 环境下实现该控制算法; 5)学习滑模变结构控制原理,根据给定的性能指标,设计满足要求的旋转单级倒立比例切换控制率的滑模变结构控制器,并在MATLAB 环境下实现该控制算法; 6)分析控制器中参数的选取对控制性能的影响以及上述两种控制算法的优缺点; 7)熟悉QUANSER 公司的旋转单级倒立摆控制系统实时软件,采用上述两种控制算法实现对旋转单级倒立摆实物系统的平衡控制且满足%16.3%,3s t s σ≤≤。 8)分析实验结果并撰写毕业论文; 4、 毕业设计条件 1)信控系机房为每个学生提供150个上机机时。 2)指导老师尽量提供设计需要的参考资料,提供学生必要的资料打印和复印费用。 5、撰写合格或高质量的毕业设计论文,具体要求为

2013大学生电子设计大赛简易旋转倒立摆及控制装置(C题 )

2013年全国大学生电子设计竞赛试题 参赛注意事项 (1)9月4日8:00竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题;高职高 专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。 (2)参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。 (3)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份 的有效证件(如学生证)随时备查。 (4)每队严格限制3人,开赛后不得中途更换队员。 (5)竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设计制 作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。 (6)9月7日20:00竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。 简易旋转倒立摆及控制装置(C 题 ) 【本科组】 一、任务 设计并制作一套简易旋转倒立摆及其控制装置。旋转倒立摆的结构如图1所示。电动机A 固定在支架B 上,通过转轴F 驱动旋转臂C 旋转。摆杆E 通过转轴D 固定在旋转臂C 的一端,当旋转臂C 在电动机A 驱动下作往复旋转运动时,带动摆杆E 在垂直于旋转臂C 的平面作自由旋转。 二、要求 1.基本要求 (1)摆杆从处于自然下垂状态(摆角0°)开始,驱动电机带动旋转臂作 往复旋转使摆杆摆动,并尽快使摆角达到或超过-60°~ +60°; (2)从摆杆处于自然下垂状态开始,尽快增大摆杆的摆动幅度,直至完成 圆周运动; (3)在摆杆处于自然下垂状态下,外力拉起摆杆至接近165°位置,外力 撤除同时,启动控制旋转臂使摆杆保持倒立状态时间不少于5s ;期间旋转臂的转动角度不大于90°。 图1 旋转倒立摆结构示意图

单级旋转倒立摆系统

《现代控制理论》课程综合设计 单级旋转倒立摆系统 1 引言 单级旋转倒立摆系统一种广泛应用的物理模型,其物理模型如下:图示为单级旋转倒立摆系统原理图。其中摆的长度1l =1m ,质量1m =0.1kg ,横杆的长度2l =1 m ,质量2m =0.1kg ,重力加速度20.98/g m s =。以在水平方向对横杆施加的力矩M 为输入,横杆相对参考系产生的角位移1θ为输出。控制的目的是当横杆在水平方向上旋转时,将倒立摆保持在垂直位置上。 图1 单级旋转倒立摆系统模型 单级旋转倒立摆可以在平行于纸面3600的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的推动下,摆杆仍然保持竖直向上状态。在横杆静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆微小的扰动下,就会使倒立摆的平衡无法复位,这时必须使横杆在平行于纸面的方向通过位移产生相应的加速度。作用力与物体位移对时间的二阶导数存在线性关系,故单级倒立摆系统是一个非线性系统。 本文综合设计以以在水平方向对横杆施加的力矩M 为输入,横杆相对参考系产生的角位移1θ为输出,建立状态空间模型,在原有系统上中综合带状态观测器状态反馈系统,从而实现当横杆在旋转运动时,将倒立摆保持在垂直位置上。 2 模型建立 本文将横杆和摆杆分别进行受力分析,定义以下物理量:本文将横杆和摆杆

分别进行受力分析,定义以下物理量:M 为加在横杆上的力矩;1m 为摆杆质量; 1l 为摆杆长度;1I 为摆杆的转动惯量;2m 为横杆的质量;2l 为横杆的长度;2I 为横杆的转动惯量;1θ为横杆在力矩作用下转动的角度;2θ为摆杆与垂直方向的夹角;N 和H 分别为摆杆与横杆之间相互作用力的水平和垂直方向的分量。倒立摆模型受力分析如图2所示。 图2 倒立摆模型受力分析 摆杆水平方向受力平衡方程: 2 111222(0sin )2 l d N m l dt θθ=++ (1θ2l —横杆的转动弧长即位移) 摆杆垂直方向受力平衡方程: 211 1122(cos )22 l l d H m g m dt θ-=- 摆杆转矩平衡方程: 22111222sin cos 22 d l l J H N dt θθθ=- 横杆转矩平衡方程: 21 222 d M Nl J dt θ-= N

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

简易旋转倒立摆及控制装置

简易旋转倒立摆及控制装置(C 题) 参赛队员姓名: 指导教师姓名 参赛队编号: 参赛学校:

简易旋转倒立摆及控制装置(C 题) 摘要:简易旋转倒立摆及控制装置是复杂的高阶闭环控制系统,控制复杂度较高。系统以飞思卡尔MK10DN512ZVLL10单片机为核心,以Mini1024j编码器为角度传感器,配合直流电机组成旋转倒立摆系统,经过充分的系统建模,并考虑单片机运算速度,最终确定采用改进的“模糊PID”控制算法,通过软件控制,可以满足基本部分要求和发挥部分要求。 系统的突出特点在于充分的力学理论分析,通过力学建模和控制系统仿真,获得了大量的定性分析结果,为系统的建立提供了很好的理论依据。 关键字:倒立摆模糊PID 力学建模状态机

一、系统方案 1. 系统方案论证与选择 倒立摆系统是一个复杂的快速、非线性、多变量、强耦合、自然不稳定的系统。对于该控制系统而言,合适的控制算法、精确的反馈信号、适合的电机驱动等都对系统的稳定性、控制精度及抗干扰性起重要作用。针对上述问题,分别设计多种不同的解决方案,并进行选择论证。 (1)控制算法选择 方案一:采用传统PID控制算法。 传统PID控制算法是运用反馈求和后的误差信号的比例(0阶位置项)、积分(误差累积项)、微分(1阶速度项)进行系统校正的一种控制算法。可用于被控对象的结构和参数不能完全掌握,或得不到的精确数学模型的情况,控制器的结构和参数必须依靠经验和反复调试来确定。 方案二:采用模糊PID控制算法 模糊PID控制算法根据PID控制器的三个参数与偏差e和偏差的变化ec之间的模糊关系,在运行时不断检测e及ec,通过事先确定的关系,利用模糊推理的方法,在线修改PID控制器的三个参数,让PID参数可自整定。将模糊控制算法与传统PID控制算法巧妙结合,不但具有PID控制算法精度高等优点,又兼有模糊控制灵活、适应性强的优点。 综合考虑选择方案二的模糊PID控制算法。 (2)电动机选型 方案一:选择步进电动机 步进电动机是将电脉冲激励信号转换成相应的角位移或线位移的离散值控制电动机,这种电动机每当输入一个电脉冲就动一步。虽然控制时序和驱动电路相对复杂,但步进距离很小,保持力矩大,制动能力强。但步进电机速度只在一定范围可调,并且一般步进电机在不旋转时仍有若干相通电,功耗太大。 方案二:选择直流电动机 直流电动机控制简单,利用双极性PWM即可实现调速和正、反转,功率调节范围广、适应性好。直流电机的起动、制动转矩大,易于快速起动、停车,易于控制,且直流电机的调速性能好,调速范围广,易于平滑调节。 综上考虑选择方案二的直流电动机。 (3)传感器的选择 方案一:使用角位移传感器 角位移传感器是一个高精度的电位器,它输出为模拟量。但是在使用角位移传感器时,为得到其与竖直方向(即重力方向)的夹角,要使用重摆,且在角度变化小时,由于传感器自身扭矩,将不会发生角位移,从而得不到采样数据。 方案二:使用主轴编码器 主轴编码器采用与主轴同步的光电脉冲发生器,通过中间轴上的齿轮1:1地同步传动。一般是发光二极管发出红外光束,通过动、静两片光栅后,到达光电二极管,接收到脉冲信号,变换成数字量输出。按编码方式不同,分为增量式编码器和绝对编码器。前者输出脉冲,后者输出8421码。绝对值编码器减轻了电子接收设备的计算任务,从而省去了复杂的和昂贵的输入装置,而且,当机器合上电源或电源故障后再接通电源,不需要回到位置参考点,就可利用当前的位置

旋转倒立摆设计报告

旋转倒立摆 摘要: 倒立摆的控制是控制理论研究中的一个经典问题,通过旋转式倒立摆控制系统的总体结构和工作原理,硬件系统和软件系统的设计与实现等方面,对系统模型进行动力学分析,建立合适的状态空间方程,通过反馈方法实现倒立控制,通过反复的实验,记录,分析数据,总结出比较稳定可行的控制方法。 本系统采用STC89C52作为主控制芯片,WDJ36-1高精度角位移传感器作为系统状态测试装置,通过ADC0832将采集的模拟电压量转化为数字量,传送给STC89C52进行分析处理,并依此为依据控制电机的运转状态,间接地控制摆杆的运动状态。 通过不断地测量、分析,并调整系统控制的参数,基本达到了题目的要求,并通过此次的练习,进一步熟悉掌握了单片机的应用,对控制系统的了解和兴趣。 关键词:单片机最小系统; WDJ36-1角位移传感器; 旋转倒立摆;状态反馈;稳定性;

目录 1.系统方案 (4) 1.1 微控制器模块 (4) 1.2电机模块 (4) 1.3电机驱动模块 (4) 1.4角度传感器模块 (5) 1.5电源模块 (5) 1.6显示模块 (5) 1.7最终方案 (6) 2.主要硬件电路设计 (6) 2.1电机驱动电路的设计 (6) 2.2角度检测电路的设计: (7) 3.软件实现 (7) 3.1理论分析 (7) 3.2总体流程图 (7) 3.3平衡调节流程图 (9) 4 .系统理论分析及计算.................. . (10) 4.1系统分析 (10)

4.2 摆臂摆角的计算.................. . (10) 5.系统功能测试: (10) 5.1测试方案 (10) 5.2测试结果 (10) 5.3测试分析及结论 (10) 6.结束语 (11)

单级倒立摆

2011级自动化1班 杨辉云 P111813841 一级倒立摆的模糊控制 一.倒立摆的模型搭建 1. 单级倒立摆系统的数学模型 对于单级倒立摆,如果忽略了空气阻力和各种摩擦阻力之后,可将直线一级倒立摆系统抽象成沿着光滑导轨运动的小车和通过轴承链接的均质摆杆组成,如图所示,其中小车的质量M=1.40kg ,摆杆质量m=0.08kg ,摆杆质心到转动轴心距离L=0,.2m ,摆杆与垂直向下方向的夹角为,小车华东摩擦系数 f c =0.1。 摆杆 θ 传送带 导轨 直线单级倒立摆 2. 倒立摆控制系统数学模型的建立方法利用PID 控制和拉格朗日方程两种建模。 一级倒立摆系统的拉格朗日方程应为 L (q ,。 .q )=V (q ,。 q )—G (q ,。 q ) (1) 式中:L 是拉格朗日算子,V 是系统功能;G 系统势能。 dt d x ??L — x ??L + x ??D = fi (2)

式中:D 是系统耗散能, f c 为系统的第i 个广义坐标上的外力。 一级倒立摆系统的总动能为: V=θθcos x ml ml 3 2)(212 22。。。+++x m M (3) 一级倒立摆系统的势能为: G=θcos mgl θ (4) 一级倒立摆系统的耗散能为: D= 2 2 1 。x f c (5) 一级倒立摆系统的拉格朗日方程为: 0=??+??-??θ θθD L L dt d (6) F X D X L X L dt d =??+??-?? (7) 将(1)到(5)式带入(6)式得到如下: 0sin sin sin cos m 3 422=-+。。。。。。 ——θθθθθθθθmgl x ml x ml x l ml (8) (M+m )F x ml ml x f c =+ +θθθθsin cos 2。 。 — (9) 一级倒立摆系统有四个变量:。 。,,, θθx x 根据(7)式中的方程写出系统的状态方程,并在平衡点进行线性化处理,得 到系统的状态空间模型如下: =。X ? ?????0 000 0189.000748 .01-- 579.20 386.00 ??????0100+x ? ???? ? ??? ???-8173.007467 .00

单级旋转倒立摆系统之令狐文艳创作

《现代控制理论》课程综合设计 令狐文艳 单级旋转倒立摆系统 1 引言 单级旋转倒立摆系统一种广泛应用的物理模型,其物理模型如下:图示为单级旋转倒立摆系统原理图。其中摆的长度l=1m,质量1m=0.1kg ,横杆的长度2l =1 m,质量2m=0.1kg,1 重力加速度2 =。以在水平方向对横杆施加的力矩M为 g m s 0.98/ 输入,横杆相对参考系产生的角位移 θ为输出。控制的目的是 1 当横杆在水平方向上旋转时,将倒立摆保持在垂直位置上。 图1 单级旋转倒立摆系统模型 单级旋转倒立摆可以在平行于纸面3600的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的推动下,摆杆仍然保持竖直向上状态。在横杆静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆微小的扰动下,就会使倒立摆的平衡无法复位,这时必须使横杆在平行于纸面的方向通过位移产生相应的加速度。作用力与物体位移对时间的二阶导数存在线性关系,故单级倒立摆系统是一个非线性系统。 本文综合设计以以在水平方向对横杆施加的力矩M为输入,横杆相对参考系产生的角位移 θ为输出,建立状态空间模 1 型,在原有系统上中综合带状态观测器状态反馈系统,从而实现当横杆在旋转运动时,将倒立摆保持在垂直位置上。 2 模型建立 本文将横杆和摆杆分别进行受力分析,定义以下物理量:本文将横杆和摆杆分别进行受力分析,定义以下物理量:M为加在横杆上的力矩; m为摆杆质量;1l为摆杆长度;1I为摆杆 1 的转动惯量; m为横杆的质量;2l为横杆的长度;2I为横杆的 2 转动惯量; θ为横杆在力矩作用下转动的角度;2θ为摆杆与垂 1 直方向的夹角;N和H分别为摆杆与横杆之间相互作用力的水

简易旋转倒立摆及控制装置

2013年全国大学生电子设计竞赛简易旋转倒立摆及控制装置(C题) 【本科组】 2013年9月7日

摘要 本题要求设计一个简易旋转倒立摆及控制系统,其中角度传感器、步进电机和单片机890C521是系统核心部件。系统接收角度传感器反馈的信号,通过PCF8591将接收的信号转换成数字信号,将数值送入单片机中进行计算,可得出摆杆的位置,进而单片机控制步进电机,对摆杆进行控制,达到所要的旋转或者倒立的控制目标。 关键词:简易旋转倒立摆步进电机单片机角度传感器 目录 1 设计任务及要求..................................................... 1.1 设计任务.................................................... 1.2 基本要求................................................... 2主控制器件的论证与选择............................................. 2.1控制器选用 .................................................. 2.2控制系统方案选择 ............................................ 2.3角度的获取模块论证与选择 .................................... 2.4步进电机及其驱动模块的选择 .................................. 2.5 AD/DA的选择 ................................................ 3 系统的硬件设计..................................................... 3.1总体电路框图 ................................................ 图3-1 系统框图..................................... 错误!未定义书签。 3.2系统电路与程序设计 .......................................... 3.2.1 STC89C52单片机最小系统............................... 3.2.2 PCF8591模块图如图3-2。............. 错误!未定义书签。 3.3.3 模块芯片TB6560AHQ原理图如图3-3。.................... 3.3.4 供电电源............................................. 4系统软件总体设计框图.............................. 错误!未定义书签。 5 测试方案与测试结果................................................. 6 总结............................................................... 参考文献............................................................. 附录.................................................................

基于stm32的旋转倒立摆

基于stm32的旋转倒立摆

所在院系:工程训练中心 作者:岳伟杨博古元芮2017.7.21

基于stm32的单级旋转倒立摆控制系统的设计与实现 摘要 本文对单级旋转倒立摆的控制系统进行了研究,提出了以STM32F103为核心的控制器设计,在控制策略上采用经典控制理论PID的控制算法,实现对单级旋转倒立摆旋转臂及摆杆的同时闭环控制,通过传感器采集摆杆的状态数据,实时调整直流电机的转向和转速,以调整摆臂的角度,使摆杆恢复到动态平衡状态。在非平衡状态下,通过传感器的实时检测,能够通过功能键设计,使摆杆能稳定到一定的角度。最终测试结果表明系统控制策略有效。 关键词:STM32F103;直流减速电机;增量式PID 1引言 倒立摆控制系统是自动控制理论的重要研究平台,可对应于火箭垂直发射控制技术,因此对它的研究具有重大的实践意义和价值。目前对倒立摆的研究主要分为系统力学分析及建模,控制算法及仿真,而对实现手段少有研究。文章讨论了以STM32为核心的倒立摆控制器的设计与实现,它实现了经典双回路PID控制算法对旋转单级倒立摆的控制策略。 2方案设计与论证 2.1总体方案描述 整个系统分为系统模块、编码器模块、电机驱动模块、电机模块、电源模块、键盘模块、显示模块。各模块的系统框图如图1.1所示。

图 1.1 系统框图 2.2方案比较与选择 2.2.1芯片控制模块 方案一:采用传统的51系列单片机。 传统的51单片机为8位机,价格便宜,控制简单,但是运算速度慢,片内资源少,存储容量小,难以存储大体积的程序和实现快速精准的反应控制。并且受时钟限制,计时精度不高,外围电路也增加了系统的不可靠性。 方案二: 采用stm32f103单片机 stm32f103单片机,具有功能强大、效率高的指令系统,以及高性能模拟技术及丰富的外围模块。方便高效的开发环境使操作更加简便,低功耗是其它类单片机难以比拟的,集成度较高,编程相对简单。 综上,选择了性能跟好的stm32f103单片机。 2.2.2电机选择 方案一:普通直流伺服电机 普通直流伺服电机有价格低使用简单等优点,但其扭矩较小,可控性差,此系统要求控制精度高速度快,直流电机则不能满足要求。

简易旋转倒立摆及控制装置

简易旋转倒立摆及控制装置设计报告及总结 摘要 倒立摆系统机理的研究不仅具有重要的理论价值,而且具有重要的现实意义,是控制类中经久不衰的经典题型。本题中,简易旋转倒立摆,在C8051F040单片机的基础上,使用ZGB42FM直流减速电机,BTN7971B电机驱动,可变电阻(角度传感器),机械摆杆等模块。通过编写、烧入程序,调控硬件协调工作,使摆杆首先实现一定角度的转动,再完成圆周运动,以及保持竖直向上的倒立状态。用以满足题目的基本要求,进而深一步探究倒立摆在保持运动姿态方面的发展与应用。 关键字:单片机,倒立摆,摆杆,可变电阻。

引言:本题整体上只由一个电机A 提供动力,电机直接控制旋转臂C 做往复旋 转运动,而通过转轴D 连接在旋臂C 上的摆杆E 是非常灵活的。旋臂C 转动一定角度时,摆杆E 由于向心力会使摆杆E 继续向上旋转,以达到E 杆转动一个角度的效果。相似,当C 的转动速度比较快,停下后,E 下端处的速度和向心力都比较大,能够使E 杆完成圆周运动。 为了使摆杆能够倒立,就要求摆杆转动到上半圆周面时,要通过单片机控制电机A 不断的调整使旋转臂C 转动多个角度,尽量的使摆杆E 与竖直面的角度变小,并能够受力平衡,这样就可以保持一段时间的倒立状态。为达到角度的调整,就要测量出E 杆与竖直面间的角度差,经过单片机的控制,使电机A 做出相应的旋转动作,减小这个角度差。 1、方案设计与讨论: 1.1结构框图 1.2方案论证: 1.21控制器模块 本题,单片机只要接收来自传感器的信号,向电机驱动输入信号处理后计算出的高低电平即可。 方案一:用ATMEL 公司生产的AT89S52单片机,低功耗,高性能CMOS 8位处理器,使用广泛,算法较为简单,但是在执行复杂动作时,处理速度不够高。 方案二:用宏晶公司生产的STC89C52RC 单片机,STC 的单片机性能与ATMEL 的单片机相似,但是价格相对便宜。缺点是易受潮湿影响,在调用子程序是频繁出错。 方案三:使用C8051F 单片机该芯片与标准的8051芯片兼容,拥有高速指令处理能力,增加了中断源,复位源,内部有两个12位的ADC 子系统,有JTAG 调试和边界扫描,片内集成的SPI 接口,方便系统外设扩展。 单片机 电机驱动 执行电机 摆杆 角度传感器

基于LabVIEW的旋转倒立摆系统设计

龙源期刊网 https://www.360docs.net/doc/7013844428.html, 基于LabVIEW的旋转倒立摆系统设计 作者:白富斌董君浩侯丽鹏 来源:《现代商贸工业》2016年第09期 摘要:以LabVIEW为平台,结合PID算法,对旋转倒立摆系统设计进行设计研究。 在倒立摆旋转过程中,通过编码器将判断位置与角度的相应电信号反馈给上位机,上位机通过运行程序计算并输出信号进而来控制摆杆的的角度、位置,使倒立摆的摆杆不会下垂。 关键词:旋转倒立摆;PID算法;LabVIEW;反馈调节 中图分类号:TB 文献标识码:A doi:10.19311/https://www.360docs.net/doc/7013844428.html,ki.1672-3198.2016.09.096 0 引言 倒立摆系统是非线性、强耦合、多变量和自然不稳定的系统。在控制过程中,能有效地反映诸如鲁棒性、随动性等许多控制中的关键问题,是检验各种控制理论的理想模型。因此对倒立摆系统的研究在理论和方法上均有着深远的意义。 本文中,用增量式旋转编码器、伺服电机、伺服驱动器、数据采集卡、液晶显示模块等制作了一个一级旋转倒立摆系统,用PID算法,在LabVIEW中编程,进行控制测试及调整,最后实现对倒立摆的精准控制。 1 倒立摆系统的电路设计 旋臂一端与伺服电机连接并由伺服电机驱动,可绕转轴在旋转水平面内旋转,旋转臂另一端固定有一个旋转编码器,旋转编码器连接着摆杆,当旋转臂转动时会带动摆杆在与编码器转轴旋转方向内旋转。如图1所示。 2 系统工作原理 编码器将角位移电压信号送到控制器,根据状态反馈控制器将此电压信号输入LabVIEW 前面板中,通过程序计算出相对应的输出信号,再给PID模块输出相应的脉冲信号,发送给伺服驱动器,再由伺服驱动器使电机转动,进而实现对摆杆的控制 3 旋转倒立摆的PID控制算法

2013全国电子设计大赛旋转倒立摆

目录 第一章系统方案比较与选择 (3) 1.1总实现方案 (3) 1.2主控制器方案比较与选择 (3) 第二章理论分析与计算 (5) 2.1编码器脉冲转换角度设计 (5) 2.2摇摆及圆周算法设计 (5) 2.3机械结构设计及电机选型 (6) 2.4 PID算法设计 (7) 第三章系统电路设计 (9) 3.1 系统主板工作原理 (9) 第四章系统程序设计 (10) 4.1 系统总体模块图 (10) 4.2 系统总流程图 (11) 第五章系统测试与结果 (12) 5.1 传感器角度测试 (12) 5.2 摇摆及圆周运动测试 (12) 5.3 倒立摆测试 (13) 第六章误差分析 (14) 6.1 整体的误差分析 (14) 6.2 软件引起的算法误差分析 (14) 第七章参赛感悟 (15)

摘要 本设计综合考虑基础部分和发挥部分要点,采用mega128a为主控芯片,BTS7960驱动电机并在程序中涉及到pid算法对电机进行调控,在设计中,我们采用1000线编码器为角度传感器。在该简单控制装置中,我们实现了摆动,圆周运动和短时间的自动控制下的倒立。 关键字:倒立摆,mega128a,编码器

第一章系统方案比较与选择 1.1总实现方案 方案一:用陀螺仪和加速度计通过卡尔曼数据融合得到角度,用此处的角度为载体用单片机进行数据处理,并调整电机。 方案二:用电位器做角度传感,通过单片机自带ADC来读取电位数值以此为依据来判断角度,并调整电机。 方案三:用编码器做角度传感器,通过读取编码器的输出脉冲来计算角度传感器的输出角度,用此角度做处理调整电机。 通过对两个方案的对比选择,方案一中的加速度计和陀螺仪算法实现复杂,我们在融入卡尔曼滤波后有明显滤波效果,但是由于圆周运动,会使得各个方向轴返回的数据出错,且波动大,会减弱卡尔曼的滤波效果,对于pid的精准调整还是远远达不到预期。在方案二中,考虑到电位器内部结构问题,虽然理论上电位器在转动过程中是线性的,但是考虑到每次停靠的电阻位可能会产生误差,最后考虑到我们最终选定的单片机ADC只有10位,在方案三中,由于实现编码器的功能实现方便简单,并能更多的趋近于精确值,因此最后我们采用了方案三。 1.2主控制器方案比较与选择 为了完成在短时间快速采集并计算角度,主控器件必须有较高的CPU工作频率和存储空间。 方案一:采用51系列加强型STC12C5A60S2作为主控器件,用来实现题目所要求的各种功能。此方案最大的特点是系统规模可以做得很小,成本较低。操作控制简单。但是,我们在利用单片机处理高速信号快速扫描及电机控制时显得吃力, 51系列单片机很难实现这一要求。 方案二:采用ATMEL公司的AVR系列ATMEGA128A单片机为核心控制器件,MEGA128A有8个外部中断,中断系统丰富,并且有128K 字节的系统内可编程Flash,我们对它的性能和指标相对也较为熟悉,如此能够实现快速扫描和数据处理!

基于STM32的单级旋转倒立摆控制系统的设计与实现

基于STM32的单级旋转倒立摆控制系统的设计与实现 对单级旋转倒立摆的控制系统进行了研究,提出了以STM32为核心的控制器设计,在控制策略上采用经典控制理论PID的控制算法,实现对单级旋转倒立摆旋转臂及摆杆的同时闭环控制,最终测试结果表明系统控制策略有效。 标签:STM32;倒立摆;闭环控制 引言 倒立摆控制系统是自动控制理论的重要研究平台,可对应于火箭垂直发射控制技术,因此对它的研究具有重大的实践意义和价值。目前对倒立摆的研究主要分为系统力学分析及建模,控制算法及仿真,而对实现手段少有研究。文章讨论了以STM32为核心的倒立摆控制器的设计与实现,它实现了经典双回路PID控制算法对旋转单级倒立摆的控制策略。 1 控制系统硬件设计 倒立摆的系统主要由四部分构成:控制器,驱动系统,检测装置及机械部分。其中由于控制器需要完成复杂的PID运算,要求系统反馈控制速度快,因此以具有ARM核的32位STM单片机为核心完成控制算法;检测装置由光电码盘构成,主要用于检测电机转动速度及摆杆的角加速度,本系统中采用200P/R的欧姆龙光电编码器。驱动部分采用飞思卡尔公司生产的电机驱动芯片mc33886,其输出电流可以达到5A,可以实现电机PWM 调速,正反转,制动等实时控制功能。红外遥控及键盘为系统调试辅助装置,可以在系统运动过程中对程序中的P,I,D参数进行微调。控制系统部分硬件电路结构如图1所示。 图1 控制系统结构框图 系统中以STM32为核心的控制器控制电机正反转带动旋转臂来回摆动从而带动摆杆做圆周运动至直立状态,直立后迅速切换电机运行模式使摆臂稳摆。系统中由检测装置测得的摆臂位置,摆臂加速度及电机当前转速等参数反馈回STM32进行综合PID计算,输出PWM波进行电机调速从而使系统能处于稳态。控制系统的核心为STM32中对控制算法的实现。 2 控制算法及程序设计 倒立摆系统的控制过程是:通过电机带动旋转臂转动产生合适的力u使得旋转臂和摆杆在某一给定的初始条件下能够快速到达新的动态平衡。本系统是单输入双输出系统,在控制方案上采用采用经典控制理论的双闭环PID控制,系统控制原理方框图如图2所示: 图2 系统控制原理路

2013年全国电子设计大赛题目简易旋转倒立摆及控制装置(C题)

参赛注意事项 9月4日8:00竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题;高 职高 专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。 参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。 参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份 的有效证件(如学生证)随时备查。 每队严格限制3人,开赛后不得中途更换队员。 竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设计制 作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须回避,对违纪参赛队 取消评审资格。 9月7日20:00竞赛结束,上交设计报告、制作实物及《登记表》 ,由专人封存。 易旋转倒立摆及控制装置(C 题) 简【本科组】 、任务 D 固定在旋转臂C 的一端,当旋转臂C 在电动机A 驱动下作往复旋转运动时, 带动摆杆 E 在垂直于 旋转臂C 的平面作自由旋转。 二、要求 图1旋转倒立摆结构示意图 1.基本要求 (1)摆杆从处于自然下垂状态(摆角 0°开始,驱动电机带动旋转臂作往复 旋转使摆杆 摆动,并尽快使摆角达到或超过-60° +60° (2)从摆杆处于自然下垂状态开始,尽快增大摆杆的摆动幅度,直至完成圆 周运动; 2013年全国大学生电子设计竞赛试题 (6) 设计并制作一套简易旋转倒 立摆及其控制装置。旋转倒立摆 的结构如图1所示。电动机A 定在支架B 上,通过转轴F 驱动 旋转臂C 旋转。摆杆E 通过转轴 D 转轴 (1 6

1.旋转倒立摆机械部分必须自制,结构要求如下:硬质摆杆 E 通过转轴 D 连 接在旋转臂C 边 缘,且距旋转臂C 轴心距离为20cn ± 5cm ;摆杆的横截面 为圆形或正方形,直径或边长不超过 1cm ,长度在15cn ± 5cm 范围内;允 许使用传感器检测摆杆的状态,但不得影响摆杆的转动灵活性;图 1 中支 架 B 的形状仅作参考,其余未作规定的可自行设计结构;电动机自行选型。 2.摆杆要能够在垂直平面灵活旋转,检验方法如下:将摆杆拉起至水平位置后 松开,摆杆至少 能够自由摆动 3 个来回。 3.除电动机 A 之外,装置中不得有其他动力部件。 4.摆杆自然下垂状态是指摆角为 0°位置,见图 2。 5.摆杆倒立状态是指摆杆在 -165°至 165°范围内。 6.基本要求( 1)、(2)中,超过 30s 视为失败;发挥部分( 1)超过 90s 视为失 败;发挥 部分( 3)超过 3 分钟即视为失败;以上各项,完 3)在摆杆处于自然下垂状态下,外力拉起摆杆至接近 除同时,启动控制旋转臂使摆杆保持倒立状态时间不少于 转臂的转动角度不大于 90°。 165°位置,外力撤 5s ;期间旋 2.发挥部分 1) 从摆杆处于自然下垂状态开始,控制旋转臂作往复旋转运动, 杆摆起倒立,保持倒立状态时间不少于 10s ; 尽快使摆 2) 在摆杆保持倒立状态下,施加干扰后摆杆能继续保持倒立或 立状 态; 2s 内恢复倒 3) 在摆杆保持倒立状态的前提下,旋转臂作圆周运动,并尽快使单方向转 过角度达到或超过 360°; 4) 其他。三、说明

简易旋转倒立摆及控制装置

2013年全国大学生电子设计竞赛 简易旋转倒立摆及控制装置(C题) 【本科组】 2013年9月7日

摘要 本题要求设计一个简易旋转倒立摆及控制系统,其中角度传感器、步进电机和单片机890C521是系统核心部件。系统接收角度传感器反馈的信号,通过PCF8591将接收的信号转换成数字信号,将数值送入单片机中进行计算,可得出摆杆的位置,进而单片机控制步进电机,对摆杆进行控制,达到所要的旋转或者倒立的控制目标。 关键词:简易旋转倒立摆步进电机单片机角度传感器

目录 1 设计任务及要求 (5) 1.1 设计任务 (5) 1.2 基本要求 (5) 2主控制器件的论证与选择 (6) 2.1控制器选用 (6) 2.2控制系统方案选择 (6) 2.3角度的获取模块论证与选择 (6) 2.4步进电机及其驱动模块的选择 (7) 2.5 AD/DA的选择 (7) 3 系统的硬件设计 (7) 3.1总体电路框图 (7) 图3-1 系统框图 (8) 3.2系统电路与程序设计 (9) 3.2.1 STC89C52单片机最小系统 (9) 3.2.2 PCF8591模块图如图3-2。 (10) 3.3.3 模块芯片TB6560AHQ原理图如图3-3。 (10) 3.3.4 供电电源 (11) 4系统软件总体设计框图 (13) 5 测试方案与测试结果 (13) 6 总结 (15) 参考文献 (16) 附录 (17)

简易旋转倒立摆及控制装置(C题) 【本科组】 1 设计任务及要求 1.1 设计任务 设计并制作一套简易旋转倒立摆及其控制装置。旋转倒立摆的结构如图1-1 所示。电动机 A 固定在支架 B 上,通过转轴 F 驱动旋转臂 C 旋转。摆杆 E 通过转轴 D 固定在旋转臂 C 的一端,当旋转臂 C 在电动机 A 驱动下作往复旋转运动时,带动摆杆 E 在垂直于旋转臂 C 的平面作自由旋转。 图1-1 旋转倒立摆结构示意图 1.2 基本要求 (1)摆杆从处于自然下垂状态(摆角 0°)开始,驱动电机带动旋转臂作往复旋转使摆杆摆动,并尽快使摆角达到或超过-60°~ +60°; (2)从摆杆处于自然下垂状态开始,尽快增大摆杆的摆动幅度,直至完成圆周运动; (3)在摆杆处于自然下垂状态下,外力拉起摆杆至接近 165°位置,外力撤除同时,启动控制旋转臂使摆杆保持倒立状态时间不少于 5s;期间旋转臂的转动角度不大于 90°。

相关文档
最新文档