粉煤灰特性及其改性方法

粉煤灰特性及其改性方法
粉煤灰特性及其改性方法

粉煤灰的主要特性

粉煤灰的主要特性 一、粉煤灰的主要性状和技术特征 粉煤灰的性状是指粉煤灰颗粒和混合粉料的物理、化学性质以及形态、结构等的统称。粉煤灰性状除包括上述化学成分、矿物组分和颗粒组分外,一般还包括表观色泽、粒径、细度、级配、比表面积、密度、堆积密度、含水率、烧失量、需水量比、火山灰活性以及其他各种物理力学性质和化学性质,特别还应包括均匀性这个重要的信息。粉煤灰一般的性状,因为粉煤灰在水泥和混凝土的应用要比其他用途具有更高的性状要求,仍须摘要说明。 粉煤灰技术特征,这里主要是指粉煤灰用作水泥和混凝土的原材料时,与用途和质量有关的粉煤灰成分、结构和性能的技术信息,也是与粉煤灰混凝土技术相关的重要技术参量。粉煤灰特征化研究,是粉煤灰水泥混凝土技术中的基础研究,直到20世纪80年代,粉煤灰特征化研究随着现代科学测试手段和研究方法的进步,取得了较多的成绩。 (一)、粉煤灰的性状 1.表观色泽 由于成分和组分不同,粉煤灰表观色泽变化很大。低钙粉煤灰随着碳分含量从低到高,从乳白色变至灰黑色。在一般情况下,粗略地可从色泽的变化观察粉煤灰性质的变化。高钙粉煤灰一般呈浅黄色,可反映氧化钙含量。目前,最新的研究认为,粉煤灰色泽不可以反映其结构。

2.粒径和细度 所收集的统灰粒径变化为0.5~300μm,这一范围与水泥接近,但其中大部分的颗粒要比水泥细得多。国内沿用标准筛测定,现在的我国粉煤灰新标准把用于水泥和混凝土的粉煤灰的试验方法和筛余量指标从用80μm标准筛人工筛分法改为用气流筛测定45μm的筛余量。如JGJ28-1986规定,以80μm标准筛测定细度,其筛余量:I 级灰不大于5%,II级灰不大于8%,III级不大于25%。因为45μm 以下粉煤灰颗料对混凝土性质的贡献较大,GB1596-2005粉煤灰新标准中,采用45μm筛余量(%)为细度指标,规定I级灰不大于12%,II级灰不大于20%,III级灰不大于45%。细度是粉煤灰最重要的参量,有的专家认为可以用来作为评估用于混凝土中粉煤灰质量的基本参量。至于代替细集料或用以改善工作性的粉煤灰细度则不受上述规定的限制。 3.比表面积 因为粉煤灰中密实颗粒和内部表面积很大的多孔颗粒混在一起,用比表面积方法不易准确测定颗粒的粗细。沿用测定水泥比表面积法测定粉煤灰比表面积的变化范围一般为1500~5000cm2/g,仍可用作反映粉煤灰组合颗粒内外表面积的综合情况。 4.颗粒级配 颗粒级配大致可分三种形式: (1)细灰。颗粒级配细于水泥,主要用于钢筋混凝土中取代水泥或水泥混合材料。

粉煤灰混凝土强度增长特性研究.

第36卷第3期山 2010年1月文章编号:100926825(2010)0320185203 SHANXI ARCHITECTURE 西建 Vol.36No.3筑 Jan.2010 ?185? 粉煤灰混凝土强度增长特性研究 丁义海 摘要:通过试验对不同粉煤灰掺量、不同强度等级混凝土与空白混凝土的强度增长特性进行了研究,并进行了对比分 析,得出了高强度混凝土和低强度混凝土的粉煤灰最优掺量,从而达到提高混凝土 强度的目的。关键词:粉煤灰,混凝土,强度特性,掺量中图分类号:TU528文献标识码:A 粉煤灰(简称FA)是在发电时燃烧已被磨得很细的煤粉所产 生的渣滓,是一种具有潜在火山灰活性的物质。在普通混凝土中添加适量的粉煤灰,能有效地改善混凝土的力学性能,降低温升、节约水泥、控制污染[1]。目前粉煤 灰混凝土在工程中的应用逐步广泛,但现有文献资料显示,这些应用的粉煤灰混凝 土不能合理地根据粉煤灰混凝土早期强度推算混凝土强度等级,从而不能判定混凝土质量,这是目前粉煤灰混凝土应用亟待解决的问题[2]。本文在采用陕西地产材 料的条件下,用高强度等级水泥、高效减水剂,加入以超细粉煤灰进行了粉煤灰混 凝土的配制试验研究,并测定了不同龄期粉煤灰混凝土强度,为粉煤灰混凝土在工 程中的应用进行了基础试验工作。 水泥:陕西秦岭水泥有限公司生产的秦岭牌P.O42.5R和P.O32.5R水泥;粉煤灰:陕西新型建筑材料有限公司生产的超细粉煤灰;外加剂:上海麦斯特产ST28CN型减水剂;粗集料:西安临潼区产花岗岩,粒径5mm~25mm连续级配碎石,表观密度为2695kg/m3,压碎指标为8.2%,含泥量0.2%;砂:西安沣河产中粗砂,细度模数2.9,表观密度为2665kg/m3,级配合格,含泥量0.8%;水:自来水。 1.2试验方案

活化粉煤灰填充聚氯乙烯板材的研究

活化粉煤灰填充聚氯乙烯板材的研究 3 吕瑶姣 刘跃龙 张季爽 (湖南大学环境科学与工程系,长沙410082) (湖南大学化学化工学院,长沙410082) 摘要 用不同的活化粉煤灰代替活性碳酸钙作聚氯乙烯板材中的填料,制取试样并测试其性能。结果表明,选用好的改性剂,采用合适的活化方法时,得到的活化粉煤灰应用于聚氯乙烯板材中,其各项指标均符合标准规定,特别是在酸碱介质中表现出很好的耐腐蚀特性。关键词 粉煤灰 化学改性 聚氯乙烯 3国家自然科学基金资助项目(29070326) 1 引言 作者曾对粉煤灰活化[1],活化粉煤灰在橡胶制品中作填料等作过研究报导 [2] ,为拓展活化粉煤灰的应 用范围,将活化粉煤灰送株洲塑料厂,用其作聚氯乙烯板材中的填料。实验中按厂家生产配方,只是用活化粉煤灰代替原配方中的活性碳酸钙,制作试样并测试其性能,本文报告其研究结果。2 实验原料 实验所用粉煤灰为湘潭电厂浮选粉煤灰和株洲电厂微珠,其化学成分和粒度分布列于表1和表2。 表1 粉煤灰中主要成分的含量(质量百分数) % 成分 S iO 2 Al 2O 3 Fe 2O 3 CaO M gO 烧失量 株电粉煤灰45~5922~313~5114~2161127~16湖电浮选灰42~5723~30 3~8 2~7 015~2 5~10 表2 粉煤灰的粒度分布 灰种类中位径Πμm 频率最大的粒径Πμm 75%灰的粒径Πμm 25%灰的 粒径Πμm 比表面积Πm 2?g -1 湘电浮选灰3711025153≤64181≤1919801197株电微珠 12158 12190 ≤15137 ≤9192 01432 3 粉煤灰的活化 粉煤灰活化[3],[4] 由于活化剂的性质不同,实验中 采用了湿法和干法两种工艺 311 湿法活化 用正交试验设计确定的活化条件为:常温下以水:粉煤灰=3∶1形成混合液,分批加入定量的活化剂,充分搅拌反应30min ,过滤后在选定温度下烘干。312 干法活化 选择合适的溶剂将活化剂配成稀溶液,再将该溶 液按比例均匀喷洒到已筛分的粉煤灰中,充分混合后 在选定温度下反应1~2h 。或将所需活化剂溶解在合适的溶剂中,再将其喷洒到灰中,在球磨机中研磨反应4~10h ,取出后在选定温度下烘干。313 实验用粉煤灰 本研究选用了4种活化粉煤灰作聚氯乙烯板材的填料,其活化方法和性能见表3。在配方中的填充量是:1# 、2# 、3# 3个样为3%,4# 样为6%,对照样中活性碳酸钙的填充量为3%。 表3 实验用活化粉煤灰性能表 灰种类 活化剂 活化剂用量% 活化方法灰粒径 1#株电微珠ND 242017干法(喷雾)-300目2#湘电浮选灰ND 242017干法(喷雾) -160目3#湘电酸洗浮选灰 HR 018湿法 -160目4#湘电浮选灰 HR 112 干法(研磨活化4h ) -300目9815% -400目90% 4 实验结果 活性碳酸钙和几种活化粉煤灰作填料的聚氯乙烯板材试样的性能按G B4454284标准方法测试,其结果列于表4。5 结果讨论 (1)从实验结果看出,用017%ND 242活化剂,采 用干法喷雾的活化方法对株电微珠和湘潭电厂浮选粉煤灰进行活化,用所得活化灰代替活性碳酸钙在聚氯乙烯板材中作填料,在填充量完全相同的情况下, 其试样性能(1#和2# )没有明鲜的差异。这说明,在用粉煤灰作聚氯乙烯板材的填料时,不必先进行微珠分选,可直接利用粉煤灰。因这样使用效果相当,但可简化工艺,降低成本。 7 4环 境 工 程 2001年6月第19卷第3期

粉煤灰在混凝土中的作用及对混凝土性能影响的机理分析

粉煤灰在混凝土中的作用及对混凝土性能 影响的机理分析 宁靖 (深圳市福盈混凝土实业有限公司,广东深圳20151027) 【摘要】本文对粉煤灰在混凝土中的作用及对混凝土性能影响的机理分析, 粉煤灰掺入混凝土后,不仅可以取代部分水泥,降低混凝土的成本,保护环境,而且能与水泥互补短长,均衡协合,改善混凝土的一系列性能,粉煤灰混凝土具有明显的技术经济效益。本人根据自己的实际经验,总结了一些方法,并且在施工中收到了良好的效果,供大家参考。 【关键词】粉煤灰;混凝土;作用;混凝土性能;机理分析 一、粉煤灰在混凝土中的机理分析 1、粉煤灰的形态效应粉煤灰的主要矿物组成是海绵状玻璃体,铝硅酸盐玻璃微珠,这些球状玻璃体表面光滑、粒度细,质地致密,内比表面积小,不仅使水泥浆需水量小,而且它们往往填充水泥浆体孔隙中,使混凝土密实性大大提高,或者在相同用水量的情况下,可增大流动性,改善和易性和可泵性。 2、粉煤灰的微集料效应。粉煤灰中的微细颗粒均匀分布在水泥颗粒之中,阻止了水泥 颗粒的相互粘聚,而处于分散状态有利于水化反应的进行,同时减少了用水量,硬化后混凝土孔隙率降低,使密实度得以提高。 3、粉煤灰的活性效应。粉煤灰的活性效应也称火山灰效应,粉煤灰中的活性成份SiO2(二氧化硅)和AI2O3(三氧化二铝)与水泥和石灰的水化产物在水溶液中发生反应,生成水化硅酸钙和水化铝酸钙,继而与石膏反应生成水化硫铝酸钙。上述这些反应几乎都是在水泥浆孔隙中进行的,大大降低了混凝土内部的孔隙率,改变了孔结构,提高了混凝土的密实度。 二、粉煤灰指标对混凝土性能的影响 粉煤灰对混凝土最直观的影响是新拌混凝土工作性能的需水量比,和对硬化混凝土的力学强度(强度活性指数)。 1.需水量对于粉煤灰的很多工程应用是非常重要的物理指标,它是指粉煤灰和水的混合物 达到某一流动度下所需要的水量,粉煤灰需水量越小工程利用价值就越大。有的学者采用下列函数表示粉煤灰需水量比Y与粉煤灰细度XM(45μm筛余%)、密度X2、烧失量X3的关系。 Y=104.3 X10.05 X2-0.261 X30.0054 (1.1) Thomas 根据比较多的实验给出需水量比Y与粉煤灰细度XM(45μm筛余%)之间的关系如下式。 当烧失量3~4%时 Y=88.76+ 0.25XM (1.2) 相关系数r=0.86 当烧失量5~11%时Y=89.32+ 0.38XM(1.3) 相关系数r=0.85 上述3个实验归纳式说明细粉煤灰可以降低粉煤灰的需水量比,其中的机理可能是磨细粉煤灰粉碎空心颗粒,释放内部的自由水分,另一方面也提高了粉煤灰的堆积密度所致,因此细磨粉煤灰是改善粉煤灰品质的一项技术措施。 从(1.1)式可以看出影响粉煤灰需水量比的另一因素是烧失量,烧失量越大粉煤灰的需水量比越大,对粉煤灰烧失量贡献最大的物质主要是有机成分的未燃尽的残碳和未变化或变化不

粉煤灰的性质

.2 粉煤灰的物理性质粉煤灰的比重在1.95~2.36之间,松干密度在450 kg/m3~700 kg/m3范围内,比表面积在220 kg/m3~588 kg/m3之间。由于粉煤灰的多孔结构、球形粒径的特性,在松散状态下具有良好的渗透性,其渗透系数比粘性土的渗透系数大数百倍。粉煤灰在外荷载作用下具有一定的压缩性,同比粘性土其压缩变形要小的多。粉煤灰的毛细现象十分强烈,其毛细水的上升高度与压实度有着密切关系。粉煤灰是一种高度分散的微细颗粒集合体,主要由氧化硅玻璃球组成,根据颗粒形状可分为球形颗粒与...... 粉煤灰的物理性质 粉煤灰的比重在1.95~2.36之间,松干密度在450 kg/m3~700kg/m3范围内,比表面积在220 kg/m3~588 kg/m3之间。由于粉煤灰的多孔结构、球形粒径的特性,在松散状态下具有良好的渗透性,其渗透系数比粘性土的渗透系数大数百倍。粉煤灰在外荷载作用下具有一定的压缩性,同比粘性土其压缩变形要小的多。粉煤灰的毛细现象十分强烈,其毛细水的上升高度与压实度有着密切关系。 粉煤灰是一种高度分散的微细颗粒集合体,主要由氧化硅玻璃球组成,根据颗粒形状可分为球形颗粒与不规则颗粒。球形颗粒又可分为低铁质玻璃微珠与高铁质玻璃微珠,若据其在水中沉降性能的差异,则可分出飘珠、轻珠和沉珠;不规则颗粒包括多孔状玻璃体、多孔碳粒以及其他碎屑和复合颗粒。 通常用扫描电镜来观察粉煤灰的颗粒形貌。扫描电镜可以观察到粉煤灰的绝大部分粒径范围,可以从1μm到400μm。通过电镜可以观察到,小颗粒粉煤灰表面为表面光滑的球形颗粒,较大颗粒的粉煤灰(>250μm)形状则不规则。图1是一组粉煤灰颗粒形貌的电镜照片,(a)为低钙粉煤灰,(b)为高钙粉煤灰,比较之下,高钙粉煤灰的颗粒表面粘附有很多微粒,而低钙粉煤灰的表面则显得比较光滑。 滑石粉的主要成分是滑石。 滑石主要成分是滑石含水的矽酸镁,分子式为Mg3[Si4O10]( OH)2。滑石属单斜晶系。晶体呈假六方或菱形的片状,偶见。通常成致密的块状、叶片状、放射状、纤维状集合体。无色透明或白色,但因含少量的杂质而呈现浅绿、浅黄、浅棕甚至浅红色;解理面上呈珍珠光泽。硬度1,比重2.7~2.8。滑石具有润滑性、耐火性、抗酸性、绝缘性、熔点高、化学性不活泼、遮盖力良好、柔软、光泽好、吸附力强等优良的物理、化学特性,由于滑石的结晶构造是呈层状的,所以具有易分裂成鳞片的趋向和特殊的滑润性,如果Fe2O3的含量很高则会减低它的绝缘性。滑石粉是一种硅酸镁矿物,以它特有的干滑性、硬度小且具有熔点高,对电和热都有良好的绝缘性,膨胀和收缩力低,其分散性高,遮盖力强,吸油和疏水性好。滑腻度大、磨擦系数小、化学性质稳定。抗酸、碱侵蚀。因其化学性能稳定,而被广泛的用于造纸、化工、油漆、陶瓷、电缆、橡胶等工业部门。 滑石粉应用于改良橡胶塑料树脂之压模、压延、押出、射出等加工性能,及可替换部份较昂贵之( 胶料) 10 ~15 %来降低原料成本并提供其物性在油漆、涂料方面,耐曝晒,抗高温,在紫外光照射下不变色,能长期保持原有的光泽与色彩,有较好的耐酸碱腐蚀的性能,且耐水性好,耐污染、耐老化性能 较强,耐磨、耐蒸汽及较强阻燃性能

粉煤灰简介

粉煤灰简介 1、粉煤灰是怎么产生的? 从煤燃烧后的烟气中收捕下来的细灰称为粉煤灰。粉煤灰是燃煤电厂排出的主要固体废物。 粉煤灰的燃烧过程:煤粉在炉膛中呈悬浮状态燃烧,燃煤中的绝大部分可燃物都能在炉内烧尽,而煤粉中的不燃物(主要为灰分)大量混杂在高温烟气中。这些不燃物因受到高温作用而部分熔融.同时由于其表面张力的作用,形成大量细小的球形颗粒。在锅炉尾部引风机的抽气作用下,含有大量灰分的烟气流向炉尾。随着烟气温度的降低,一部分熔融的细粒因受到一定程度的急冷呈玻璃体状态,从而具有较高的潜在活性。在引风机将烟气排入大气之前,上述这些细小的球形颗粒,经过除尘器,被分离、收集,即为粉煤灰。 粉煤灰是我国当前排量较大的工业废渣之一。现阶段我国年排渣量已达3000万t。随着电力工业的发展,燃煤电厂的粉煤灰排放量逐年增加。大量的粉煤灰不加处理,就会产生扬尘,污染大气;若排入水系会造成河流淤塞,而其中的有毒化学物质还会对人体和生物造成危害。因此粉煤灰的处理和利用问题引起人们广泛的注意。 2、粉煤灰的品种及主要用途 煤在锅炉中燃烧后有两种形状的固态残留物——灰和渣。随烟气从锅炉尾部排出的,主要是经除尘器收集下来的固体颗粒即为粉煤灰,简称灰或飞灰;颗粒较大或呈块状的,是从炉堂底部收集出来的称为炉底渣,简称渣。我们通常讲粉煤灰综合利用,也包括渣在内。 根据燃煤电厂燃烧的煤种不同,排放收集的粉煤灰就有低钙粉煤灰和高钙粉煤灰之分.按照上海市标准DBJ08—230—98<高钙粉煤灰混凝土应用技术规程>的规定,凡氧化钙含量大于8%或游离氧化钙含量大于1%的粉煤灰称为高钙粉煤灰.故一般情况下,高钙灰和低钙灰都是以测定粉煤灰中氧化钙含量或游离氧化钙含量的数值来区分的.通常高钙粉煤灰的颜色偏黄,低钙粉煤灰的颜色偏灰。 随着人们对煤灰研究开发利用的不断深入,粉煤灰综合利用途径趋广泛。目前粉煤灰可应用于墙体材料,水泥生产,混凝土和砂浆,筑路,回填等领域。 3 我国粉煤灰的主要应用途径及评价 目前我国粉煤灰的综合利用技术有近200项,其中得到实施应用的近70项,主要有以下几类: 1) 建材制品方面的应用 此类用灰量约占粉煤灰利用总量的35%左右,主要技术有:粉煤灰水泥(掺量30%以上),代粘土做水泥原料,普通水泥(掺量30%以下),硅酸盐承重砌块和小型空心砌块,加气混凝土砌块及板,烧结陶粒,烧结砖,蒸压砖,蒸养砖,高强度双免浸泡砖,双免砖,钙硅板等。 2) 建设工程方面 此项用灰量占利用总量的10%,主要技术有:粉煤灰用于大体积混凝士,泵送

粉煤灰对混凝土性能有何影响

粉煤灰具有三大效应: (1)表面效应:粉煤灰表面可吸附浆体中的某些离子,有利于粉煤灰固化混凝土中的某些有害离子以及作为晶核形成水化产物。 (2)填充效应:粉煤灰与水泥颗粒粒径的差异可以填充水泥和骨料孔隙中,减小混凝土的孔隙率,增加混凝土密实性; (3)火山灰活性效应:粉煤灰中的活性SiO2与水泥水化产物CH发生二次反应,生成C-S-H凝胶填充骨料—水泥浆体界面层孔隙,改善混凝土界面结构,提高强度和耐久性。 劣质粉煤灰的主要特点是: 玻璃珠体少,需水量大,使用后易造成混凝土泌水或滞后泌水,降低混凝土的工作性能,易导致混凝土28d强度不足,后期强度增长低,造成混凝土工程质量不合格。 优质粉煤灰对混凝土的性能影响 (1)工作性能 粉煤灰可以改善胶凝材料体系的颗粒级配,降低空隙率,释放水泥颗粒间的“填充水”,改善混凝土工作性。 粉煤灰中含有大量球形玻璃体,起到“滚珠、轴承”润滑效应,减少颗粒间的摩擦力,改善混凝土的工作性。 粉煤灰活性大大低于水泥活性,可以降低混凝土坍落度损失。优质粉煤灰对外加剂的吸附低于水泥,使用优质粉煤灰相当于增加外加剂用量,混凝土初始坍落度及保持能力都有提高。 粉煤灰的密度小于水泥,等量取代水泥后,混凝土中的浆体量增加,改善混凝土的粘聚性,提高抗离析能力,减水泌水,改善混凝土工作性能,使混凝土具有更好的流动性、密实性、匀质性,便于混凝土的施工。 (2)力学性能 粉煤灰自身不能进行水化反应,只能与水泥水化产物进行二次水化,因此,用粉煤灰等量替代水泥后,早期强度将会降低,随着二次水化的进行,中后期会达到甚至超过不掺粉煤灰的混凝土。随着粉煤灰替代水泥量的增加,早期强度逐渐降低,但掺加粉煤灰的混凝土后期强度增长较快,而且在一定范围内(<50%)随粉煤灰掺量增加而增大。(3)

聚丙烯纤维表面改性研究

聚丙烯纤维表面改性研究 聚丙烯纤维的表面改性提高了玻化微珠复合保温材料力学强度和软化系数,但纤维表面处理方式的增强效果明显不同,下面是推荐的一篇探究聚丙烯纤维表面改性的论文范文,供大家阅读参考。 以玻化微珠为轻质骨料,水泥、石膏和粉煤灰等胶凝材料为主要原料,经模压成型制备的玻化微珠无机保温材料,其密度与力学强度要求往往不能兼顾.在此体系中引入增强纤维,可以使保温材料在较小密度下具有较高强度,且适宜掺量的增强纤维不会对保温材料的密度和导热系数有较大影响. 聚丙烯纤维是一种柔性纤维,在水泥砂浆和混凝土制品中有着出色的阻裂效果[1-2],但聚丙烯纤维表面能低,表面不含任何活性基团,往往影响其应用效果.对聚丙烯纤维表面进行适当改性,可增强其与水泥等无机胶凝材料的界面结合力,提高复合材料的力学强度. 1试验 1.1原材料 玻化微珠:山东创智新材料科技有限公司产Ⅱ类玻化微珠,其主要性能指标见表1;聚丙烯纤维(PP):四川华神化学建材有限责任 公司产,其基本性能指标见表2;水泥:中联水泥厂产42.5R快硬硫 铝酸盐水泥;粉煤灰:华电国际邹县发电厂Ⅰ级粉煤灰,符合GB/T 1596-xx《用于水泥和混凝土中的粉煤灰》的各项要求;醋酸乙烯-乙烯共聚乳液(简称VAE乳液):南京丹沛化工有限公司产,固含量(文中涉及的固含量、浓度和掺量等除特别注明外均为质量分数)55.5%;

聚乙烯醇缩甲醛胶,固含量3.38%;建筑石膏粉:0.2mm方孔筛筛余量8.7%,初凝时间5min,终凝时间26min;氢氧化钠:分析纯化学试剂,NaOH含量≥96%. 1.2聚丙烯纤维表面改性处理 碱处理:取适量聚丙烯纤维放入浓度为5%的NaOH溶液中浸泡 8h后取出,用蒸馏水洗净表面,晾干备用. 包覆改性处理:将碱处理后的聚丙烯纤维放入VAE乳液稀释液(m(VAE乳液)∶m(水)=1∶1)中搅拌浸泡20min,取出纤维并压挤出多 余液体,物理分散、烘干后待用. 1.3试验方法 按m(玻化微珠)∶m(聚乙烯醇缩甲醛胶)∶m(水泥)∶m(粉煤灰)∶m(石膏)=1.00∶1.00∶0.80∶0.20∶0.08,准确称量各物料. 聚丙烯纤维掺量与相应的试样编号见表3,其中P组为掺加未改性聚丙烯纤维的复合保温材料试样、A组为掺加碱处理聚丙烯纤维的试样、C组为掺加VAE乳液包覆改性聚丙烯纤维的试样. 先将玻化微珠、聚丙烯纤维、水泥、粉煤灰和石膏混合均匀, 聚乙烯醇缩甲醛胶通过喷射枪以雾化状态均匀喷射到混合料中,再将混合料倒入500mm×300mm×80mm的模具中整平,并在0.47MPa压力 下模压成型,1h后脱模,得到500mm×300mm×50mm的保温板材. 在20℃,相对湿度95%的条件下养护3d后,将保温板材放入60℃电热鼓风干燥箱中烘干备用.

粉煤灰特性及应用

粉煤灰的特性及应用 摘要:中国是以煤炭为主要能源的国家,电力产量的76%是由煤炭产生的,每年用煤超过4亿吨,占全国原煤产量的三分之一。1997年全国排放的粉煤灰已达到1.6亿t,成为世界最大的排灰国。但是,目前我国的粉煤灰利用率仅为30%左右,主要用于筑路基和回填,每年仍有1亿t未能利用的粉煤灰,储存于灰场中。每年需征地3 333 hm2用于储灰,建灰场费用和运行费用都很高;另外,粉煤灰用于筑路或回填会受地区、时间的限制,存在使用不均衡、不连续的问题。因此,应该大力拓展粉煤灰在其他领域的应用。 关键词:粉煤灰特性综合利用 1.粉煤灰特性 1.1化学特性 燃料煤由有机物及无机物组成,有机物燃烧后生成碳、氢、氧,无机物燃烧后即生成粉煤灰。粉煤灰的化学成分与煤种、产地、燃烧炉型等有关。我国低钙灰的成分比较接近,其化学组成见表1。 由表1可见,粉煤灰的主要成分为氧化硅、氧化铝及氧化铁,其总量约占粉煤灰的85%左右。低钙煤中氧化钙含量较低,基本无自硬性;但是,目前我国高钙灰的排放量有明显增长的趋势,而高钙灰含有一定的自硬性矿物,有利于增进粉煤灰的强度贡献。另外,近年来随着锅炉容量的不断提高,炉内煤粉燃烧趋于完全,代表影响材料长期稳定性的烧失量也逐渐降低,因此可以说,经过高温燃烧后的粉煤灰是相当纯净的建材原料。 粉煤灰的化学组成Ⅲ 成分SiO2 A12O3 Fe2O3 CaO MgO SO3 Na2O K2O 烧失量 含量50.6 27.2 7.0 2.8 1.2 0.3 0.5 1.3 8.2 1.2物理特性 煤粉在锅炉中燃烧时,其无机物经历了分解、烧结、熔融及冷却等过程,冷却后的粉煤灰颗粒主要由硅铝玻璃体和少量碳粒组成,玻璃体又以单珠、连珠体和海绵状不规则多孔体组成。粉煤灰的品质主要取决于这些粒径、形貌不一的各种颗粒成分的组合比例。其中,粉煤灰的活化能力主要靠硅铝玻璃体,而在常温下硅铝玻璃体以多聚物组成为主,活化能力较低。因此,常温下粉煤灰是一种性质稳定的材料。 1.3粉煤灰的放射性和浸出物毒性 在人类日常的生活环境中,到处都存在着微量天然的放射性物质,主要为238 U、232 Th、226 Ra和40 K等4种放射性元素,只要其含量不超过一定的标准,对人类健康就不会带来负面影响。GB 6763—86中规定,建筑材料用工业废渣中放射性物质的含量应满足下列要求:ARa/330+An/260+AK/3800≤1 (1) ARa/200≤1 (2) 根据杨钦元[4]等测得的粉煤灰天然放射性元素的比活度,按上述两个公式[2][33计算的结果分别为o.93和o.73,均未超出国家标准,说明粉煤灰产品的放射性对人体是安全的。 粉煤灰中除了主要元素外,尚有一定量的镐、砷、铬、铅、汞、铜、锌、镍等对人体健康可能不利的微量元素。这些微量元素对环境的影响主要通过浸出作用体现。吴贤中[53等人

粉煤灰效应的作用原理及其对混凝土的性能影响

粉煤灰效应的作用原理及其对混凝土的性能影响 摘要:通过对粉煤灰形态效应、填充效应、微集料效应以及活性效应作用原理的分析,研究粉煤灰效应对混凝土性能的影响以及其掺入量的控制。 关键词:粉煤灰粉煤灰效应混凝土性能 1.粉煤灰形态效应与填充效应 1.1粉煤灰的形态效应、填充效应具体表现 首先,粉煤灰中的球形玻璃体,包括海绵状玻璃体和铝硅酸盐玻璃微珠,表面光滑,粒度细且质地致密,对水的吸附力较小,减小混凝土内部的摩擦阻力,在混凝土泵送和振捣过程中有润滑作用,且有减水作用。 减水作用主要体现在,水泥在水化初期易产生凝聚或絮凝作用,形成一种极不均匀的水化物结构,粉煤灰借助其颗粒细小的形态特点能够物理分散这些水泥絮凝体,使较多的絮凝吸附水游离出来,降低了砂浆的需水量。[8] 粉煤灰的填充作用表现在,较细的颗粒填充在水泥浆体中,可以细化孔隙和毛细孔。 1.2形态效应、填充效应对混凝土性能的影响 粉煤灰的形态效应主要表现在减水和润滑作用上,能有效的提高混凝土的流动性和和易性,对混凝土泵送、振捣都有益无害。但是,质量较差的粉煤灰含有大量较粗的,多孔的,非球状多渣状的颗粒,反而会降低混凝土的工作性,增大用水量。 另外,掺入的粉煤灰越细,则需水量就越低,水化反应的界面也随之增长,有利于混凝土强度的提高。但是,掺入量必须得到控制,因为,掺入的细灰过多时,其总表面积将大于浆体所能湿润的面积,细灰反而会聚成一团,不能分散到水泥浆体中,导致强度的降低。 粉煤灰的填充效应为单一的物理作用,不随龄期的增长而增长。粉煤灰在发挥其填充效应时的掺入量也应该控制,因为,粉煤灰填充过多时,混合料处于悬浮状态,而太少时,混合料处于骨架孔隙结构,只有在掺量合适时,混合料能达到骨架密实的状态[7],结构的强度最优。 2.微集料效应 2.1粉煤灰微集料效应的作用机理

粉煤灰和脱硫石膏的特性

粉煤灰和脱硫石膏的特性 1. 粉煤灰是燃煤锅炉排放的废渣,是煤燃烧后形成被烟气携带出炉膛的从烟气中收捕下来的细灰。粉煤灰也称飞灰,是燃煤电厂将煤磨细成 100μm 以下的细粉,用预热空气吹入炉膛悬浮燃烧,产生高温烟气,经由捕尘装置捕集得到的粉状残留物,是一种人工火山灰质材料。对于粉煤[16-20]。灰的综合利用,一般也包括炉底渣(1)颜色 粉煤灰的颜色一般在乳白色到灰黑色之间变化。粉煤灰的颜色是一项重要的质量指标,可以反映含碳量的多少和差异。在一定程度上也可以反映粉煤灰的细度,颜色越深,粉煤灰的粒度越细,含碳量越高。粉煤灰有低钙粉煤灰和高钙粉煤灰之分,通常高钙粉煤灰的颜色偏黄,低钙粉煤灰的颜色偏灰。 (2)粉煤灰的细度和比重 粉煤灰颗粒细度与磨制的煤粉细度有关,一般在0.4~320μm 之间,3。粉煤灰越细,细粉占的比重越大,其活 1.3~2.7g/cm相对密度一般为性也越大。粉煤灰的细度影响早期水化反应。(3)粉煤灰的物理性质 粉煤灰的物理性质包括密度、堆积密度、细度、比表面积、需水量,这些性质是化学成分及矿物组成的宏观反映。由于粉煤灰的组成波动范围很大,因此其物理性质的差异也很大。

表1 粉煤灰的物理性质 平均值单位数据范围性质 3密度2 3~4 g/cm3堆积密度0.71 g/cm0.32~1.9 3密实度36.5 22~45 t/m2700~17000 氮吸附法:3330 /g cm 比表面积1340~6980 透气法:3230 原灰标准稠度% 26~69 49 需水量77~180 100 % 天抗压强度2833~78 60 % 比 (3)粉煤灰的化学成分 粉煤灰的化学成分与煤所含有的各种物质成分有关,主要成分是二氧化硅(SiO)、三氧化二铝(AlO)、三氧化二铁(FeO)、氧化钙(CaO)、32232氧化镁(MgO)、未燃尽的炭(烧失量),还有少量微量元素等。其中SiO、2AlO、FeO三种成分占70%左右,CaO

我国粉煤灰利用现状

我国粉煤灰综合利用现状与展望 郝小非1 饶先发2 李明周2 (1.中国地质科学院郑州矿产综合利用研究所,郑州,450006;2.江西理工大学,江西赣州,341000) 摘要:粉煤灰是我国固体废弃物污染的主要来源,它严重污染着环境,其资源优化利用一直都是我国政府和专家关注的对象,本文结合粉煤灰的基本性质和组成,重点介绍了粉煤灰在我国矿产资源综合利用方面的研究现状。 关键词:粉煤灰性质现状 粉煤灰是发电厂与各种燃煤锅炉排放的一种固体废弃物,据统计我国粉煤灰年排放量高达2亿吨,且每年都在递增,是工业废渣中产量最大的一种废渣。不仅污染了环境还占用大量土地,造成的环境问题已相当严重。因此对粉煤灰治理是刻不容缓的,其综合利用可以化害为利,变废为宝,从而实现经济和社会的协调发展,具有十分重要的现实意义和深远的历史意义。 1.粉煤灰的综合利用回顾 长期以来我国利用粉煤灰主要是回填低洼地、矿井、煤矿塌陷区、砖厂的土坑等,此方法不需任何技术,方法简单,但易造成二次污染,利用效益较低。二十世纪八十年代后,各科研院所加大了对粉煤灰的研究开发和综合利用,将其在建筑材料方面的应用列为重点研究对象,认为其具有较高的化学内能和火山活性,是一种性能优良的水泥、混凝土的掺合料和特优的辅助性胶凝材料;其在建材制品、筑路工程方面的应用也迅速扩大。但往往也存在着很多缺点;利用粉煤灰配制混凝土既节省材料且性能优良,但需要粉煤灰的技术经济指标较高,况且掺量较少;利用粉煤灰制粉煤灰水泥既节省材料且掺量可达75%,但往往增加水泥的需水量,影响水泥强度及其水泥制品的耐久性。利用粉煤灰生产烧结砖和蒸养砖,具有能耗低、工艺简单、不产生二次污染、导热系数小、重量轻等特点,但抗冻融能力差,应用有限。 近年来,国家加大了对粉煤灰综合利用的引导、鼓励和给与相应企业的优惠政策,特别是随着《粉煤灰综合利用政策》的颁布,粉煤灰已在建材、建工、农业、材料、环境保护等其它领域得到应用和扩展,至今,我国粉煤灰综合利用技术有近200项,得到实施应用的有近70项。用于建材制品方面约占粉煤灰利用总量的35%,道路施工约占20%,农业应用约占15%,填充材料约占15%,建筑工程约占10%,提取矿物和高值利用约占5%[1]。 2.粉煤灰的物理、化学性质 粉煤灰是以富铝玻璃体存在,是多种矿物高分散度单体颗粒的集合体,具有颗粒小、比表面积大、孔隙率高、活性高、吸附能力强等特点,物相组成主要有石英、磁铁矿、莫来石、玻璃体和少量碳等。在显微镜下观察粉煤灰,可以看到一些大小不等的圆球形和形状不规则的非球体颗粒,密度为2-2.3g/cm2,松散干容重550-800kg/cm3,比表面积270-350m2/g, 孔隙率60-75%,强度可达7000kg/m2;分析我国30家大型发电厂粉煤灰的组成见表1[2];由于其具有的独特的理化性质,使其具有颗粒小、比面积大、孔隙率高、活性高、吸附能力强等特点;及其较高的应用和研究价值。 粉煤灰的化学成分(%) 名称烧失量SiO2 Fe2O3 Al2O3 CaO MgO R2O SO3 含量3~20 43~56 4~10 20~35 0.5~1.5 0.6~2.0 1.0~2.5 0.3~1.5 3.粉煤灰综合利用现状 3.1粉煤灰制泡沫玻璃 泡沫玻璃是一种新型的环保建筑节能材料,它是以碎玻璃、粉煤灰为主要原料,在加入发泡剂、改性剂、促进剂、稳泡剂之后经过细碎粉磨,形成配合料,再经过低温预热、高温溶融、发泡、稳泡、退火等工序而制成的一种无机非金属特种玻璃材料。其内部充满了无数微小均匀的连通或封闭气孔,是一种性能良好的保温隔热和吸音材料。方荣利等人[3]以配合料配合比m(粉煤灰):m(碎玻璃):m(石灰石):(磷酸钠或硼 酸)=35:53.5:10:1.5,配合料细度控制在0.8mm方孔筛筛余小于5%,成型压力3~5MPa,以10~20℃/min 速率升温至850℃,发泡60min,再升温到950℃,烧结60min,精心退火,即得泡沫玻璃。生产的粉煤灰泡沫玻璃以其无机硅酸盐材质和独立的封闭微小气孔结构,集传统保温隔热材料优点于一身,具有容重低、强度

粉煤灰对商品砼表面强度影响的研究

粉煤灰对商品砼表面强度影响的研究 摘要:对某些混凝土表面硬度低的实例进行分析的基础上,进行了生产性试验验证,论述了粉煤灰对混凝土表面硬度的影响及某些混凝土表面硬度偏低的原因。关键词:粉煤灰;表面硬度;泌水;含碳量目前,由于粉煤灰质量及配比、施工养护等方面的原因,使许多人认为掺灰混凝土的表面硬度必然偏低。这种观念阻碍了粉煤灰在混凝土中的应用。例如一些商品混凝土搅拌站在路面混凝土中不敢掺用粉煤灰或者只掺很小比例的粉煤灰。他们担心掺加粉...... 摘要:对某些混凝土表面硬度低的实例进行分析的基础上,进行了生产性试验验证,论述了粉煤灰对混凝土表面硬度的影响及某些混凝土表面硬度偏低的原因。关键词: 粉煤灰;表面硬度;泌水;含碳量目前,由于粉煤灰质量及配比、施工养护等方面的原因,使许多人认为掺灰混凝土的表面硬度必然偏低。这种观念阻碍了粉煤灰在混凝土中的应用。例如一些商品混凝土搅拌站在路面混凝土中不敢掺用粉煤灰或者只掺很小比例的粉煤灰。他们担心掺加粉煤灰会影响混凝土的回弹强度,以致在某些可能会现场回弹检测的结构部位不掺或少掺粉煤灰。本文结合我们近年遇到的有关混凝土表面硬度问题的典型实例进行分析,并做了大量模拟试验,以探讨粉煤灰对混凝土表面硬度的影响和某些混凝土表面疏松的原因。 1 典型实例实例1 某工程C50 混凝土构造柱,在验收过程中发现,混凝土回弹推定值刚满足C40 强度等级混凝土的要求,但随后钻芯取样表明,其强度值均在50MPa 以上,完全满足工程设计要求。类似的情况在近几年的监督检测、验收过程中时有出现,且都集中在C40 及以上强度等级的混凝土中。于是有人认为这是掺用粉煤灰影响了混凝土的表面硬度,有些搅拌站为避免纠纷,在工程重点部位尤其是需要通过回弹验收质量的部位限制粉煤灰掺量,但效果也并不明显。实例2 某厂区道路工程,采用C25 非泵送商品混凝土。水泥为立窑产普硅水泥,在混凝土中掺用10 % Ⅱ级粉煤灰。使用一段时间后发现局部路面起砂,且面层疏松。有人认为这是掺用大量粉煤灰所致。在当年的济南市混凝土企业技术交流会上,几家预拌混凝土企业一致反映使用上述水泥也出现过类似的情况,于是认为这是粉煤灰富集于混凝土表面所致。后来这几家搅拌站找到该水泥生产厂家时却发现该水泥生产时并未过多掺入粉煤灰,且主要掺合料也不是粉煤灰。 实例3 济南市某集团公司院内路面工程,使用C20 商品混凝土800余m3。投入使用后不到一个月,部分混凝土路面有“起粉”、“起砂露石”现象,混凝土表面硬度较低,局部甚至在清扫过程就能扫出大量粉尘,汽车驶过则出现“扬尘”。建设及施工单位怀疑混凝土强度不合格,但质检部门对“起砂露石”较严重部位的混凝土钻芯取样检验表明,其强度完全符合设计施工要求。于是有人认为是混凝土中粉煤灰质量较轻,过振后富集于新拌混凝土表面,导致表面硬度下降,造成“起粉”。但混凝土生产厂家对此认为,他们所用水泥为大厂旋窑水泥,一部分掺粉煤灰10 % ,另一部分则未掺加粉煤灰。施工日志及混凝土厂家生产记录表明,未掺灰的混凝土也有起粉现象。至于该配比已多次用于路面混凝土工程,并未出现过类似现象。实例4 2001 年施工的某公司厂房地面工程,厚度10cm ,采用C20 商品混凝土。施工后一个月,发现局部混凝土表面疏松,干燥处也出现“起粉”现象,另外一部

一文了解粉煤灰超细粉碎设备及工艺

一文了解粉煤灰超细粉碎设备及工艺 超细粉碎是提高粉煤灰的活性和附加值的重要手段,其粒度越细,水化活性就越高,应用价值也就越高,实践表明: o15~10μm的超细粉煤灰可广泛用于高性能绿色混凝土; o10μm左右的超细粉煤灰可广泛替代无机或矿物填料; o5μm左右的超细粉煤灰经表面改性后可以替代部分炭黑。 1、粉煤灰超细粉碎设备 球磨机是工业中普遍应用的一种粉磨设备,具有很大的灵活性和市场适应能力。粉煤灰的超细粉碎可采用球磨机加高细度分级系统实现。 振动磨是一种高效率的粉磨设备,粉磨后颗粒球形度较好,颗粒分布较为连续,但能耗偏高。 冲击式粉碎机加分级系统也可用于粉煤灰的超细粉碎加工,但处理量较小。 蒸汽动力磨是采用电厂过热蒸汽作为粉碎动能介质,通过拉瓦尔喷嘴形成超音速气流,带动物料高速碰撞、剪切,整个过程在140℃左右下完成。

2、粉煤灰超细粉碎工艺 粉煤灰的粒度及颗粒形貌决定其应用性能,根据粉煤灰的理化特性及其成品细度要求选择合适的磨细工艺,是决定磨细灰的经济价值和加工成本的重要环节。 粉煤灰磨细加工工艺流程可分为开路和闭路两种系统,目前国内多采用开路系统。 典型的粉煤灰超细粉碎工艺 (1)粉煤灰开流高细磨粉磨工艺 采用开流高细磨磨细粉煤灰,通常可利用水泥磨改造形成高细磨的结构特征,并配用小规格研磨体进行粉磨。粉煤灰经电子秤计入磨,出磨即为成品。 该工艺虽然简单,有利厂操作和节省生产投资,但由于粉煤灰比重轻,入磨粒度小且含有大量细粉,往往容易异致过粉磨,使得大部分微珠的原始形貌

破坏严重,需水量增加,或者使产品研磨时间不足而容易跑粗,细度难以控制,质量不稳定,产品电耗也较大。 (2)粉煤灰闭路管磨机粉磨工艺 闭路粉磨工艺对管磨机的要求主要是从仓位、隔仓板结构参数及分选系统进行适当改进。粉煤灰经电子秤入磨,出磨半成品经提升机送入选粉机分选细粉即为成品;粗灰返回磨机与新给料混合再次进行粉磨-分选循环。 该工艺较好地解决了开流工艺的一些不足,但仍存在颗粒形貌破坏严重导致产,产品需水量增力的问题,生产工艺也较之复杂,综合电耗偏高。 (3)粉煤灰半终粉磨工艺 半终粉磨是将粉煤灰原灰首光进入选粉机分选,选出的细灰由收尘器收集为成品,粗灰则返回磨机与新给料混合再次进行粉磨-分选循环。

粉煤灰相关知识

粉煤灰相关知识 一、粉煤灰是怎么产生的? 二、1、什么是粉煤灰: 三、粉煤灰是火力发电厂煤粉锅炉排除的一种工业废渣,从煤燃烧后的烟气中收捕下来的粉末称为粉煤灰。粉煤灰是燃煤电厂排出的主要固体废物。(粉煤灰也叫飞灰, 是由热电站烟囱收集的灰尘, 属于火山灰性质的混合材料, 其主要成分是硅、铝、铁、钙、镁的氧化物, 具有潜在的化学活性, 即粉煤灰单独与水拌合不具有水硬活性, 但在一定条件下, 能够与水反应生成类似于水泥凝胶体的胶凝物质, 并具有一定的强度 . 由于煤粉微细, 且在高温过程中形成玻璃珠, 因此粉煤灰颗粒多成球形。) 四、 五、2、粉煤灰的产生过程(燃烧过程): 六、煤粉在炉膛中呈悬浮状态燃烧,燃煤中的绝大部分可燃物都能在炉内烧尽,而煤粉中的不燃物(主要为灰粉)大量混杂在高温烟气中。这些不燃物因受到高温作用而部分熔融.同时由于其表面张力的作用,形成大量细小的球形颗粒。在锅炉尾部引风机的抽气作用下,含有大量灰粉的烟气流向炉尾。随着烟气温度的降低,一部分熔融的细粒因受到一定程度的急冷呈玻璃体状态,从而具有较高的潜在活性。在引风机将烟气排入大气之前,上述这些细小的球形颗粒,经过除尘器,被分离、收集,即

为粉煤灰。 七、由煤粉中蒸发出来的水蒸汽及气体,一部分排放道大气中,一部分凝聚在飞灰的表面。为了控制SO x 的污染,在烟道气排出之前,通入石灰石浆或石灰石粉,捕获烟道气中的SO x ,特别是含硫高的煤作为燃料时。总的煤灰中的75 %~ 85 %变成飞灰,剩余部分则为底部灰及炉灰。) 八、中国以煤为主要能源,电力的76%是由煤炭产生的,每年用煤达4亿多吨,占全国原煤产量的1/3,粉煤灰是我国当前排量较大的工业废渣之一。1997年全国排放粉煤灰已超过1亿吨,到2005年,年排灰量达到1.6亿吨,成为世界最大的排灰国,大量的粉煤灰不加处理,就会产生扬尘,污染大气;若排入水系会造成河流淤塞,而其中的有毒化学物质还会对人体和生物造成危害,并占用了大量的土地。因此粉煤灰的处理和利用问题引起人们广泛的注意。 九、 十、二、粉煤灰的化学组成 十一、 十二、粉煤灰中硅含量最高,其次是铝,以复杂的复盐形式存在,酸溶性较差。铁含量相对较低,以氧化物形式存在,酸溶性好。此外还有未燃尽的炭粒、CaO和少量的MgO、Na2O、K2O、SO3等。粉煤灰中的有害成分是未燃尽炭粒,其吸水性大,强度低,易风化,不利于粉煤灰的资源化。粉煤灰中的SiO2、

矿渣粉与粉煤灰的特点与区别

一、辅助性胶凝材料 现代混凝土的组分中通常都掺有辅助性胶凝材料(SCM)。这些材料通常都是其它工业生产过程中产生的副产品或者天然材料。其中,有一部分材料需要进行深加工处理才能适合用于混凝土。这些材料中有些本身就具有胶凝特性;另外,还有部分材料本身不具有胶凝特性,我们称之为火山灰材料。 二、矿渣粉与粉煤灰的化学组分以及成分稳定性 矿渣粉和粉煤灰是混凝土行业应用最广泛的两种辅助性胶凝材料。现如今,大多数混凝土的生产过程中都掺加了其中一种或两种材料。正因如此,它们的性能也被混凝土技术人员频繁进行相互比较,以此寻求最佳的混凝土配比。 虽然,这些材料在化学组分上存在相似性,但它们对混凝土性能的影响仍然存在较大差异。这种差异主要是基于每种材料组分中氧化物的比例不同(表1)。 表1不同胶凝材料中的主要氧化物组成 图1 不同胶凝材料中的氧化物三元相图 如图1三元相图所示,矿渣粉的化学成分相比于粉煤灰更接近硅酸盐水泥。这也是矿渣粉之所以能大掺量应用于混凝土中的原因之一。矿渣粉和粉煤灰都可

以部分取代硅酸盐水泥应用于混凝土中。在普通混凝土中,矿渣粉的掺量可以高达50%(在一些特殊应用中,比如大体积混凝土,矿渣粉的掺量可以达到80%)。而粉煤灰的掺量通常控制在20%~30%之间。 矿渣粉是炼铁过程中产生的一种副产品,整个工艺受到严格控制,所以即使原材料来源有所波动,其化学组分仍能保持相对稳定。而粉煤灰是燃煤电厂煤粉燃烧后产生的副产品,原材料的差异则会直接导致粉煤灰化学成分的波动。三、矿渣粉与粉煤灰对混凝土性能影响的异同 与粉煤灰相比,矿渣粉的化学组分波动更小。因此,掺矿渣粉混凝土的质量稳定性要比掺粉煤灰混凝土的质量稳定性更优。 1、两者对塑性混凝土性能的影响 1)减水性:使用这两种材料均会减少混凝土达到指定流动性能所需的用水量。矿渣粉之所以具有减水作用是因为它可以影响到浆体特性及其吸附性能。(微神新材:矿渣粉的颗粒级配合理,掺量合适的情况具有一定的减水作用。这是因为矿渣粉的微观形状为不规则的玻璃体,对水的吸附性相比硅酸盐水泥更小,表现出一定的减水性。)而对于粉煤灰来说,则主要是因为其具有较好的形态效应及尺寸效应(微神新材:粉煤灰的形态为球状玻璃微珠,起到滚珠轴承的作用,从而表现出一定的减水性)。因此,这就使得这两种材料对于混凝土拌合物具有一定程度的减水作用。 2)含气量:有多种不同因素会影响到混凝土的含气量。粉煤灰中碳含量的差异是导致混凝土含气量波动的一个主要因素。矿渣粉中不含碳,所以不会影响混凝土含气量的稳定性。 3)凝结时间:混凝土中的掺入矿渣粉和粉煤灰均会影响到混凝土的初凝时间。掺矿渣粉混凝土的凝结时间比掺粉煤灰混凝土的凝结时间更短(图2)。

粉煤灰区别

F类和C类粉煤灰的定义与区别 F类:是指由无烟煤或烟煤煅烧收集的粉煤灰。 C类:是指由褐煤或次烟煤煅烧收集的粉煤灰。 粉煤灰的分类是根据它含游离氧化钙的含量来分的,可分为F类(低钙灰)和C 类(高钙灰)和复合灰。高钙粉煤灰通常是指火力发电厂采用褐煤、次烟煤作为燃料而排放出的一种氧化钙成分较高的粉煤灰,是一种既含有一定数量水硬性晶体矿物又含有潜在活性物质的材料。与普通粉煤灰相比,高钙粉煤灰粒径更小,用作水泥混合材或混凝土掺合料具有减水效果好、早期强度发展快等优点,但它含有一定量的游离氧化钙,如果使用不当,用作水泥混合材及混凝土、砂浆掺合料可能会造成体积安定性不良等一系列后果。 2005年,国家首次将高钙粉煤灰的应用标准纳入2005版标准。为使高钙粉煤灰得到充分利用,在2005版新标准中,规定了C类粉煤灰即氧化钙含量一般大于10%的高钙粉煤灰用于拌制砂浆混凝土以及水泥活性混合材料的技术要求,在新标准中,除对细度、烧失量、含水量都有了明确的指标外,还规定高钙粉煤灰的游离氧化钙的限量及沸煮安定性必须合格。 可参考的结论 1、通过对粉煤灰中火山灰作用的试验研究表明,粉煤灰硅酸盐制品6个月后,大于7μm的颗粒未受到石灰的侵蚀,这说明大于7μm的颗粒大多是起填料作用,而小于该粒径的颗粒主要起火山灰作用。(粉煤灰混凝土中粉煤灰的火山灰效应综述) 试验方向 一、普通粉煤灰 缺点:水化速度慢,掺入混凝土后会引起早期强度明显降低。 1、密度:比重瓶法测定。 2、物质组成:主要以玻璃质结构为主,内含小部分晶体矿物,主要为: ①莫来石(AI6Si2O13)----(由煤灰冷却过程中直接结晶形成,由煤中的高岭土、 伊利石以及其他黏土矿物分解而成) ②石英(SiO2)---(来源于未来得及与其它无机物化合的石英颗粒) ③赤铁矿(α-Fe2O3)、磁铁矿(Fe3O4)-------(高温下煤炭中的FeS与熔融的硅 酸盐反应而成) ④微量石灰(CaO)等 3、粒径组成:用粒度仪测定。 粒径分布如图所示:以粗粉粒(50~10μm) 为主,占63%~72%,中粉粒(10~5μm)次 之,占13%~23%,细粉粒(5~2)μm含量 在1%~2%,黏粒(<2μm)含量5%~15%。 一般分析各有差异,这与粉煤灰的排放方式、 煤炭类型等因素有关。粗颗粒会导致水分渗 透困难。

相关文档
最新文档