SDS-聚丙烯酰胺凝胶电泳法测定蛋白质的分子量(垂直板型电泳)

SDS-聚丙烯酰胺凝胶电泳法测定蛋白质的分子量(垂直板型电泳)
SDS-聚丙烯酰胺凝胶电泳法测定蛋白质的分子量(垂直板型电泳)

https://www.360docs.net/doc/70349331.html,/bio101/molecular/et/200609/6871.html

1.学习SDS—PAGE测定蛋白质分子量的基本原理。

2.掌握垂直板型电泳的基本操作技术。

二、原理:

由实验十五中已知,蛋白质在聚丙烯酰胺凝胶中电泳时,它的迁移率取决于它所带净电荷以及分子的大小和形状等因素。

1967年,Shapiro等人发现,如果在聚丙烯酰胺凝胶系统中加入阴离子去污剂十二烷基磺酸钠(sodium dodecyl sulfate,简称SDS),则蛋白质分子的电泳迁移率主要取决于它的分子量,而与所带电荷和形状无关。在一定条件下,蛋白质的分子量与电泳迁移率间的关系,可用下式表示:

因此,测定某个蛋白质的分子量,只需比较它和一系列已知分子量的蛋白质在SDS-凝胶电泳时的迁移率就可以了。后来,Weber等人基本按Shapiro的方法对约40种蛋白质进行了研究,进一步证实了这个方法地可行性(见图16-1)。用这种方法测定蛋白质的分子量,简便、快速,只需要廉价的设备和微克量的蛋白质样品;所得结果,在分子量为15,000—200,000的范围内,与用其他方法测得的分子量相比,误差一般在±10%以内。因此,近几年来,SDS-凝胶电泳测定分子量的方法,已得到非常广泛的应用和迅速的发展。

为了阐明SDS-凝胶电泳法测定蛋白质分子量的原理,许多人进行了深入的研究。实验证明,在蛋白质溶液中加入SDS和巯基乙醇后,巯基乙醇能使蛋白质分子中的二硫键还原;SDS 能使蛋白质的氢键、疏水键打开,并结合到蛋白质分子上,形成蛋白质-SDS复合物。在一定条件下,SDS与大多数蛋白质的结合比为1.4克SDS/1克蛋白质。由于十二烷基磺酸根带负电,使各种蛋白质的SDS-复合物都带上相同密度的负电荷,它的量大大超过了蛋白质分子原有的电荷量,因而掩盖了不同种类蛋白质间原有的电荷差别。

SDS与蛋白质结合后,还引起了蛋白质构象的改变。蛋白质-SDS复合物的流体力学和光学性质表明,它们在水溶液中的形状,近似于雪匣烟形的长椭圆棒,不同蛋白质的SDS复合物的短轴长度都一样,约为18A,而长轴则随蛋白质的分子量成正比地变化。

这样的蛋白质-SDS复合物,在凝胶电泳中的迁移率,不再受蛋白质原有电荷和形状的影响,而只是椭圆棒的长度也就是蛋白质分子量的函数。

将蛋白质-SDS复合物在不同浓度的SDS-凝胶中电泳,得到的结果按Ferguson公式作图,也证明了蛋白质-SDS复合物的上述性质。

Ferguson公式:1gm R=1gm0—K R C

该公式原来是Ferguson提出来描述蛋白质在淀粉凝胶中电泳行为的,后来证明它也同样适用于聚丙烯酰胺凝胶电泳,式中m R是蛋白质在一定浓度凝胶(C)中的迁移率;m0是当凝胶浓度外推到零时的迁移率即自由迁移率,它与蛋白质的净电荷量(q)成正比,与蛋白质在溶液中的摩擦系数(f)成反比(m0∝q/f,f由溶液的粘滞性、蛋白质分子的大小和形状决定);KR是阻滞系数(retardation coefficient),它与蛋白质分子量成线性关系。因此,不同的蛋白质分子有不同的mR,m0和KR值,几种蛋白质的Ferguson图见图16-2。

而蛋白质-SDS复合物的Ferguson图则不同(见图16-3)。

从图16-3可以清楚地看到,不同蛋白质的SDS复合物的m0值都很接近,分子量相差5倍的蛋白质之间,m0值只相差10%,如果忽略这个差别,就可以认为,各种蛋白质-SDS 复合物的m0基本上是一个定值。这表明,不同蛋白质的SDS复合物都带有相同密度的负电荷,并具有同样的构象,因此,它们的净电荷量与磨擦系数之比(q/f)都接近于一个定值而不受各种蛋白质原来的电荷、分子大小和形状的影响,因而,在溶液中,自由迁移率就表现出一致性;但在一定浓度的凝胶中,由于引入了凝胶的分子筛效应,电泳迁移率mR 就成为蛋白质分子量的函数。

根据以上事实,可以认为SDS-凝胶电泳测定蛋白质分子量方法的基础是可靠的。当然,还有许多问题有待于更深入地研究。

在用SDS-凝胶电泳法测定蛋白质分子量时,应注意以下几个问题:

1.如果蛋白质-SDS复合物不能达到1.4克SDS/1克蛋白质的比率并具有相同的构象,就不能得到准确的结果。影响蛋白质和SDS结合的因素主要有以下3个:(1)二硫键是否完全被还原:只有在蛋白质分子内的二硫键被彻底还原的情况下,SDS才能定量地结合到蛋白质分子上去,并使之具有相同的构象。一般以巯基乙醇作还原剂。在有些情况下,还需进一步将形成的巯基烷基化,以免在电泳过程中重新氧化而形成蛋白质聚合体。(2)溶液中SDS的浓度:溶液中的SDS的总量,至少要比蛋白质的量高3倍,一般需高达10倍以上。(3)溶液的离子强度:溶液的离子强度应较低,最高不能超过0.26,因为SDS在水溶液中是以单体和分子团的混合体而存在的,SDS结合到蛋白质分子上的量,仅决定于平衡时SDS单体的浓度而不是总浓度,在低离子强度的溶液中,SDS单体具有较高的平衡浓度。2.不同的凝胶浓度适用地不同的分子量范围,Weber的实验指出,在5%的凝胶中,分子量25,000—200,000的蛋白质,其分子量的对数与迁移率呈直线关系;在10%的凝胶中,

10.000—70,000分子量的蛋白质呈直线关系;在15%的凝胶中,10,000—50,000分子量的蛋白质呈直线关系;3.33%(以上各种浓度的凝胶,其交联度都是2.6%)的凝胶可用于分子量更高的蛋白质。

可根据所测分子量范围选择最适凝胶浓度,并尽量选择分子量范围和性质与待测样品相近的蛋白质作标准蛋白质。标准蛋白质的相对迁移率(蛋白质的电泳迁移距离除以染料迁移距离即为相对迁移率,详见后)最好在0.2—0.8之间均匀分布。

在凝胶电泳中,影响迁移率的因素较多,而在制胶和电泳过程中,很难每次都将各项条件控制得完全一致,因此,用SDS-凝胶电泳法测定分子量,每次测定样品必须同时做标准曲线,而不得利用另一次电泳的标准曲线。

3.有许多蛋白质,是由亚基(如血红蛋白)或两条以上肽链(如α-胰凝乳蛋白酶)组成的,它们在SDS和巯基乙醇的作用下,解离成亚基或单条肽链。因此,对于这一类蛋白质,SDS-凝胶电泳测定的只是它们的亚基或单条肽链的分子量,而不是完整分子的分子量。为了得到更全面的资料,还必须用其它方法测定其分子量及分子中肽链的数目等,与SDS-凝胶电泳的结果互相参照。

4.不是所有的蛋白质都能用SDS-凝胶电泳法测定其分子量,已发现有些蛋白质用这种方法测出的分子量是不可靠的。这些蛋白质有:电荷异常或构象异常的蛋白质,带有较大辅基的蛋白质(如某些糖蛋白)以及一些结构蛋白如胶原蛋白等。例如组蛋白F1,它本身带有大量正电荷,因此,尽管结合了正常比例的SDS,仍不能完全掩盖其原有正电荷的影响,它的分子量是21,000,但SDS-凝胶电泳测定的结果却是35,000。因此,在分析SDS-凝胶电泳所得的结果时,应该小心。一般至少用两种方法来测定未知样品的分子量,互相验证。为了判断待测样品是否可用SDS-凝胶电泳法来测定分子量,也可以使蛋白质-SDS复合物在不同浓度(交联度相同)的SDS-凝胶中电泳,得到Ferguson图。如果待测样品的自由迁移率m0与标准蛋白质的m0基本交于一点(如图16-3),而且在不同浓度的SDS-凝胶中测得的分子量都相同,则表明此蛋白质在SDS-凝胶电泳中的行为是正常的,可以用SDS-凝胶电泳法测定其分子量。

SDS-PAGE有连续体系及不连续体系两种,这两种体系有各自的样品溶解液及缓冲液,但加样方式,电泳过程及固定、染色与脱色方法完全相同。

三、器材与试剂:

1.器材:

①夹心式垂直板电泳槽,凝胶模(135×100×1.5mm)(北京六一仪器厂)

②直流稳压电源(电压300—600V,电流50—100mA)

③吸量管(1,5,10 ml)④烧杯(25,50,100 ml)

⑤细长头的滴管⑥1ml注射器及6号长针头

⑦微量注射器(10μl或50μl)⑧水泵或油泵

⑨真空干燥器⑩培养皿(直径120mm)

2.试剂:

(1)标准蛋白质

目前国内外均有厂商生产低分子量及高分子量标准蛋白质成套试剂盒,用于SDS-PAGE测定未知蛋白质分子量。

①高分子量标准蛋白试剂盒(Pharmacia公司产品,表中16-1)。

表16-1 5种标准蛋白质

同时按说明书要求处理

②低分子量标准蛋白试剂盒,中国科学院上海生物化学研究所东风生化试剂厂生产(表

16-2)。

表16-2 5种标准蛋白质

每种蛋白含量为40μg。用时加入200μl样品溶解,经处理后,上样10μl(2μg)就能显示出清晰的条带。

③自己配制低分子量或高分子量标准蛋白质混合试剂。如买不到标准蛋白试剂盒时,可参考常用的标准蛋白质及其分子量表。从中选择3—5种蛋白质,如马心细胞色素C(Mr12 500)、牛胰胰凝乳蛋白原A(Mr25 000)、猪胃胃蛋白酶(Mr35 000)、鸡卵卵清蛋白(Mr43 000)、牛血清白蛋白(Mr67 000)等蛋白质,按照每种蛋白0.5—1mg·ml-1样品溶解液配制。可配制成单一蛋白质标准液,也可配成混合蛋白质标准液。

(2)连续体系SDS-PAGE有关试剂

①0.2mol·L-1pH7.2磷酸盐缓冲液:称取磷酸氢二钠(AR)Na2HPO4·2H2O25.63g或

Na2HPO4·12H2O51.58g,再称取磷酸二氢钠(AR)NaH2PO4·H2O7.73g或

NaH2PO4·2H2O8.74g,溶于重蒸水中并定容到1000ml。

②样品溶解液:0.01mol·L-1pH7.2磷酸盐缓冲液,内含1%SDS、1%巯基乙醇、10%甘油或40%蔗糖及0.02%溴酚蓝。用来溶解标准蛋白质及待测固体蛋白质样品。配制方法如表16-3。

表16-3 连续体系样品溶解液配制

如样品为液体,则应用浓一倍的样品溶解液,然后等体积混合。

③凝胶贮液:称Acr 30g,Bis 0.8g,加重蒸水至100ml,过滤后置棕色瓶,4℃贮存可用1—2个月。

④凝胶缓冲液:称SDS 0.2g,加0.2mol·L-1 pH7.2磷酸盐缓冲液至100ml。4℃贮存,用前,稍加温使SDS溶解。

⑤1%TEMED:取TEMED1ml,加重蒸水至100ml,置棕色瓶内4℃贮存。

⑥10%过硫酸铵(AP):称AP1g,加重蒸水至100ml,此液应每周新配,置棕色瓶内,4℃贮存。

⑦电极缓冲液(0.1%SDS,0.1mol·L-1 pH7.2磷酸盐缓冲液):称SDS1g,加500ml0.2mol·L-1 pH7.2磷酸盐缓冲液,再用蒸馏水定容至1000ml。

⑧1%琼脂(糖):称琼脂(糖)1g,加100ml上述电极缓冲液使其溶解,4℃贮存。(3)不连续体系SDS-PAGE有关试剂

①10%(W/V)SDS溶液:称5gSDS,加重蒸水至50ml,微热使其溶解,置试剂瓶中,4℃贮存。SDS在低温易析出结晶,用前微热,使其完全溶解。

②1%TEMED(V/V):取1mLTEMED,加重蒸水至100ml,置棕色瓶中,4℃贮存。

③10%AP(W/V):称AP1g,加重蒸水至10ml。最好临用前配制。

④样品溶解液:内含1%SDS,1%巯基乙醇,40%蔗糖或20%甘油,0.02%溴酚蓝,0.01mol·L-1 pH8.0 Tris-HCl缓冲液。

●先配制0.05mol·L-1 pH8.0 Tris-HCl缓冲液:称Tris 0.6g,加入50ml重蒸水,再中入约

3ml 1mol·L-1 HCl,调pH至8.0,最后用重蒸水定容至100ml。

●按表16-4配制样品溶解液。

表16-4 不连续体系样品溶解液配制

*如样品为液体,则应用浓一倍的样品溶解液,然后等体积混合。

⑤凝胶贮液

●30%分离胶贮液:配制方法与连续体系相同,称Acr 30g及Bis 0.8g,溶于重蒸水中,最后定容至100ml,过滤后置棕色试剂瓶中,4℃贮存。

●10%浓缩胶贮液:称Acr 10g及Bis 0.5g,溶于重蒸水中,最后定容至100mL,过滤后置棕色试剂瓶中,4℃贮存。

⑥凝胶缓冲液

●分离胶缓冲液(3.0mol·L-1 pH8.9 Tris-HCl缓冲液):称Tris 36.3g,加少许重蒸水使其溶解,再加1mol·L-1 HCl约48ml,调pH至8.9,最后加重蒸水定容至100ml,4℃贮存。

●浓缩胶缓冲液(0.5mol·L-1 pH6.7 Tris-HCl缓冲液):称Tris6.0g,加少许重蒸水使其溶解,再加1mol·L-1 HCl约48ml调pH至6.7。最后用重蒸水定容至100ml,4℃贮存。

⑦电极缓冲液(内含0.1%SDS,0.05mol·L-1 Tris—0.384 mol·L-1甘氨酸缓冲液pH8.3):称Tris6.0,甘氨酸28.8g,加入SDS 1g,加蒸馏水使其溶解后定容至1000ml。

⑧1%琼脂(糖)溶液:称琼脂(糖)1g,加电极缓冲液100ml,加热使其溶解,4℃贮存,备用。

(4)固定液

取50%甲醇454ml,冰乙酸46ml混匀。

(5)染色液

称考马斯亮蓝R250 0.125g,加上述固定液250ml,过滤后应用。

(6)脱色液

冰乙酸75ml,甲醇50ml,加蒸馏水定容至1000ml。

四、操作步骤:

(一)安装夹心式垂直板电泳槽

关心式垂直板电泳槽操作简单,不易渗漏,其装置如图16-4。这种电泳槽两侧为有机玻璃制成的电极槽,两个电极槽中间夹有一个凝胶模,该模由1个形硅胶框、长与短玻璃板及

样品槽模板(梳子)所组成(见图16-5)。电泳槽由上贮槽(白金电极在上或面对短玻璃板),下贮槽(白金电极在下或面对长玻璃板)和回纹状冷凝管组成。两个电极槽与凝胶模间靠贮液槽螺丝固定。各部间依下列顺序组装:

2、将长、短玻璃板分别插到形硅橡框的凹形槽中。注意勿用手接触灌胶面的玻璃。

3、将已插好玻璃板的凝胶模平放在上贮槽上,短玻璃板应面对上贮槽。

4、将下贮槽的销孔对准已装好螺丝销钉的上贮槽,双手以对角线的方式旋紧螺丝帽。

5、竖直电泳槽,在长玻璃板下端与硅胶模框交界的缝隙内加入已融化的1%琼脂(糖)。其目的是封住空隙,凝固后的琼脂(糖)中应避免有气泡。

(二)配胶及凝胶板的制备

1.配胶

根据所测蛋白质分子量范围,选择适宜的分离胶浓度。由于SDS-PAGE有连续系统及不连续系统两种,两者间有不同的缓冲系统,因而有不同的配制方法,见表16-5和表16-6。表16-5 SDS-不连续体系凝胶配制

电极缓冲液为pH8.3Tris-甘氨酸缓冲液,内含0.1%SDS。

电极缓冲液为0.1mol·L-1 pH7.2磷酸缓冲液,内含0.1%SDS。

2.凝胶板的制备

(1)SDS-不连续体系凝胶板的制备

●分离胶的制备:按表16-5配制20ml10%分离胶,混匀后用细长头滴管将凝胶液加至长、短玻璃板间的缝隙内,约8cm高,用1ml注射器取少许蒸馏水,沿长玻璃板板壁缓慢注入,约3—4mm高,以进行水封。约30min后,凝胶与水封层间出现折射率不同的界线,则表示凝胶完全聚合。倾去水封层的蒸馏水,再用滤纸条吸去多余水分。

●浓缩胶的制备:按表16-5配制10ml3%浓缩胶,混匀后用细长头滴管将浓缩胶加到已聚合的分离胶上方,直至距离短玻璃板上缘约0.5cm处,轻轻将样品槽模板插入浓缩胶内,约30min后凝胶聚合,再放置20—30min,使凝胶“老化”。小心拔去样品槽模板,用窄条滤纸吸去样品凹槽中多余的水分,将pH8.3 Tris-甘氨酸缓冲液倒入上、下贮槽中,应没过短板约0.5cm以上,即可准备加样。

(2)SDS-连续体系凝胶板的制备:按表16-6配制20ml所需浓度的分离胶,用细长头滴管将分离胶混合液加到两块玻璃板的缝隙内直至距离短玻璃板上缘0.5cm处,插入样品槽模板。为防止渗漏,可在上、下电极槽中加入蒸馏水,但不能超过短板,以防凝胶被稀释,约30min,凝胶聚合,继续放置20—30min后,倒去上、下电极槽中的蒸馏水,小心拔出梳形样品槽模板,用窄条滤纸吸去残余水分,注意不要弄破凹形加样槽的底面。倒入电极缓冲液即可进行预电泳或准备加样。

(三)样品的处理与加样

1.样品的处理

根据分子量标准蛋白试剂盒的要求加样品溶解液,如上海东风生化试剂厂生产的低分子量标准蛋白试剂盒,每一安瓿则需加入200μL样品溶解液,自己配制标准及未知样品,

按.5—1mg/1mL样品溶解液,溶解后,将其转移到带塞小离心管中,轻

轻盖上盖子(不要塞紧以免加热迸出),在100℃沸水浴中保温3min,

取出冷却后加样。如处理好的样品暂时不用,可入在—20℃冰箱保存较

长时间,使用前在100℃沸水中加热3min,以除去亚稳态聚合。

2、加样

一般每个凹形样品槽内,只加一个种样品或已知分子量的混合标准蛋白

质,加样体积要根据凝胶厚及样品浓度灵活掌握,一般加样体积为

10—15μL(即2—10μg蛋白)。如样品较稀,加样体积可达100μL。如

样品槽中有所泡,可用注射器针头挑除。加样时,将微量注射器的针头通过电极缓冲液伸入加样槽内,尽量接近底部,轻轻推动微量注射器,注意针头勿碰破凹形槽胶面。由于样品溶解液中含有比重较大的蔗糖或甘油,因此样品溶液会自动沉降在凝胶表面形成样品层。

(四)电泳

分离脉聚合后是否进行预电泳则应根据需要而定,SDS连续系统预电泳采用

30mA60—120min。

1.连续系统

在电极槽中倒入0.1%SDS pH7.2 0.1mol/L磷酸盐缓冲液,连接电泳仪与电泳槽,上槽接负极,下槽接正极。打开电源,将电流调至20mA,待样品进入分离胶后,将电流调至50mA,待染料前沿迁移至距硅橡胶框底边1—1.5cm处,停止电泳,一般需5—6h。

2.不连续系统

在电极槽中倒入pH8.3Tris-HCl电级缓冲液,内含0.1%SDS即可进行电泳。在制备浓缩胶后,不能进行预电泳,因预电泳会破坏pH环境,如需要电泳只能在分离胶聚合后,并用分离胶缓冲液进行。预电泳后将分离胶面冲洗干净,然后才能制备浓缩胶。电泳条件也不同于连续SDS-PAGE。开始时电流为10mA左右,待样品进入分离胶后,改为20—30mA,当染料前沿距硅橡胶框底边1.5cm时,停止电泳,关闭电源。

(五)凝胶板剥离与固定

电泳结束后,取下凝胶模,卸下硅橡胶框,用不锈钢药铲或镊子撬开短玻璃板,在凝胶板切下一角作为加样标志,在两侧溴酚蓝染料区带中心,插入细铜丝作为前沿标记。将凝胶板放在大培养皿内,加入固定液,固定守液。

(六)染色与脱色

将染色液倒入培养皿中,染色1h左右,用蒸馏水漂洗数次,再用脱色液脱色,直到蛋白质区带清晰,即可计算相对迁移率。

(七)结果与分析

1.绘制标准曲线

将大培养皿放在一张坐标纸上,量出加样端距细铜丝间的距离(cm)以及各蛋白质样品区带中心与加样端的距离(cm),如图18-6所示。按下式计算相对迁移率m R:

以标准蛋白质的相对迁移率为横坐标,标准蛋白质分子量为纵坐标在半对数坐标纸上作图,可得到一条标准曲线。

2.根据未知蛋白质样品相对迁移率直接在标准曲线上查出其分子量。

3.分析各蛋白质相对迁移率高氏主要是由什么决定的?

注意事项

(1)由于与凝胶聚合有关的硅橡胶称、玻璃板表面不光滑洁净,在电泳时会造成凝胶板与玻璃板或硅橡胶条剥离,产生气泡或滑胶;剥胶时凝胶板易断裂,为防止引现象,所用器材均应严格地清洗。硅橡胶条的凹槽、样品槽模板及电泳槽用泡沫海绵蘸取“洗洁净”仔细清洗。玻璃板浸泡在重铬酸钾洗液3—4h或0.2mol/L KOH的酒精溶液中20min以上,用清水洗净,再用泡沫海绵蘸取“洗洁净”反复刷洗,最后用蒸馏水冲洗,直接阴干或用乙醇冲洗后阴干。

(2)安装电泳槽和镶有长、短玻璃板的硅橡胶框时,位置要端正,均匀用力旋紧固定螺丝,以免缓冲液渗漏。样品槽板梳齿应平整光滑。

(3)在不连续电泳体系中,预电泳只能在分离胶乡合后进行。洗净胶面后才能制备浓缩胶。浓缩胶制备后,不能进行预电泳,以充分利用浓缩胶的浓缩效应。

(4)电泳时,电泳仪与电泳槽间正、负极不能接错,以免样品反方向泳动,电泳时应选用合适的电流、电压,过高或过低无可影响电泳效果。

(5)SDS纯度:在SDS-PAGE中,需高纯度的SDS,市售化学纯SDS需重结晶一次或两次方可使用。重结晶方法如下:称20g SDS放在圆底烧瓶中,加300mL无水乙醇及约半牛角匙活性碳,在烧瓶上接一冷凝管,在水浴中加热至乙醇微沸,回流约10min,用热布氏漏斗趁热过滤。滤液应透明,冷却至室温后,移至—20℃冰箱中过夜。次日用预冷的布

氏漏斗抽滤,再用少量—20℃预冷的无水乙醇洗涤白色沉淀3次,尽量抽干,将白色结晶置真空干燥器中干燥或置40℃以下的烘箱中烘干。

(6)用SDS处理蛋白质样品时,每次都会在沸水溶中保温3—5min,以免有亚稳聚合物存在。

(7)标准蛋白质的相对迁移率最好在0.2—0.8之间均匀分布。值得指出的是,每次测定未知物分子量时,都应同时用标准蛋白制备标准曲线,而不是利用过去的标准曲线。用此法测定的分子量只是它们的亚基或单条肽链的分子量,而不是完整的分子量。为测得精确的分子量范围,最好用其他测定蛋白分子量的方法加以校正。此法对球蛋白及纤维状蛋白的分子量测定较好,对糖蛋白,胶原蛋白等分子量测定差异较大。

(8)对样品的要求:应采纳低离子强度的样品。如样品中离子强度高,则应透析或经离子交换除盐。加样时,应保持凹形加样槽胶面平直。加样量以10—15μL为宜,如样品系较稀的液体状,为保证区带清晰,加样量可增加,同时应将样品溶解液浓度提高二倍或更高。(9)由于凝胶中含SDS,直接制备干板会产生龟裂现象。如需制干板,则用25%异丙醇内含7%乙酸浸泡,并经常换液,直到SDS脱尽(约需2—3天(,才可制备干板。为方便起见,常采用照像法,保存照片。

SDSPAGE电泳常见问题分析

SDS PAGE 电泳常见问题分析 1. 配胶缓冲液系统对电泳的影响? 在SDS-PAGE不连续电泳中,制胶缓冲液使用的是Tris-HCL缓冲系统,浓缩胶是pH6.7,分离胶pH8.9;而电泳缓冲液使用的 Tris-甘氨酸缓冲系统。在浓缩胶中,其pH环境呈弱酸性,因此甘氨酸解离很少,其在电场的作用下,泳动效率低;而CL离子却很高,两者之间形成导电性较低的区带,蛋白分子就介于二者之间泳动。由于导电性与电场强度成反比,这一区带便形成了较高的电压剃度,压着蛋白质分子聚集到一起,浓缩为一狭窄的区带。当样品进入分离胶后,由于胶中pH的增加,呈碱性,甘氨酸大量解离,泳动速率增加,直接紧随氯离子之后,同时由于分离胶孔径的缩小,在电场的作用下,蛋白分子根据其固有的带电性和分子大小进行分离。 所以,pH对整个反应体系的影响是至关重要的,实验中在排除其他因素之后仍不能很好解决问题的情况,应首要考虑该因素。 2. 样品如何处理? 根据样品分离目的不同,主要有三种处理方法:还原SDS处理、非还原SDS处理、带有烷基化作用的还原SDS处理。 1)还原SDS处理:在上样buffer中加入SDS和DTT(或Beta巯基乙醇)后,蛋白质构象被解离,电荷被中和,形成SDS与蛋白相结合的分子,在电泳中,只根据分子量来分离。一般电泳均按这种方式处理,样品稀释适当浓度,加入上样Buffer,离心,沸水煮5min,再离心加样。 2)带有烷基化作用的还原SDS处理:碘乙酸胺的烷基化作用可以很好的并经久牢固的保护SH基团,得到较窄的谱带;另碘乙酸胺可捕集过量的DTT,而防止银染时的纹理现象。100μl样品缓冲液中10μl 20%的碘乙酸胺,并在室温保温30min。 3)非还原SDS处理:生理体液、血清、尿素等样品,一般只用1%SDS沸水中煮3min,未加还原剂,因而蛋白折叠未被破坏,不可作为测定分子量来使用。 3. SDS-PAGE电泳凝胶中各主要成分的作用? 聚丙烯酰胺的作用:丙烯酰胺与为蛋白质电泳提供载体,其凝固的好坏直接关系到电泳成功与否,与促凝剂及环境密切相关; 制胶缓冲液:浓缩胶选择pH6.7,分离胶选择pH8.9,选择tris-HCL系统, TEMED与AP:AP提供自由基,TEMED是催化剂,催化自由基引起的聚合反应进行;

SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)实验原理和操作步骤

SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)实 验原理和操作步骤 实验原理: SDS-PAGE是对蛋白质进行量化,比较及特性鉴定的一种经济、快速、而且可重复的方法。该法是依据混合蛋白的分子量不同来进行分离的。 SDS是一种去垢剂,可与蛋白质的疏水部分相结合,破坏其折叠结构,并使其广泛存在于一个广泛均一的溶液中。SDS蛋白质复合物的长度与其分子量成正比。在样品介质和凝胶中加入强还原剂和去污剂后,电荷因素可被忽略。蛋白亚基的迁移率取决于亚基分子量。 试剂和器材: 试剂:1. 5x样品缓冲液(10ml):0.6ml 1mol/L的Tris-HCl(pH6.8),5ml 50%甘油,2ml 10%的SDS,0.5ml巯基乙醇,1ml 1%溴酚蓝,0.9ml蒸馏水。可在4℃保存数周,或在-20℃保存数月。 2. 凝胶贮液:在通风橱中,称取丙烯酰胺30g,甲叉双丙烯酰胺0.8g,加重蒸水溶解后,定容到100ml。过滤后置棕色瓶中,4℃保存,一般可放置1个月。 3. pH8.9分离胶缓冲液:Tris 36.3g ,加1mol/L HCl 48ml,

加重蒸水80ml使其溶解,调pH8.9,定容至100ml,4℃保存。 4. pH6.7浓缩胶缓冲液:Tris 5.98g ,加1mol/L HCl 48ml,加重蒸水80ml使其溶解,调pH 6.7,定容至100ml,4℃保存。 5. TEMED(四乙基乙二胺)原液 6.10%过硫酸铵(用重蒸水新鲜配制) 7. pH8.3 Tris-甘氨酸电极缓冲液:称取Tris 6.0g,甘氨酸28.8g,加蒸馏水约900ml,调pH8.3后,用蒸馏水定容至1000ml。置4℃保存,临用前稀释10倍。 8. 考马斯亮蓝G250染色液:称100mg考马斯亮蓝G250,溶于200ml蒸馏水中,慢慢加入7.5ml 70%的过氯酸,最后补足水到250ml,搅拌1小时,小孔滤纸过滤。 器材:电泳仪,电泳槽,水浴锅,摇床。 实验操作

SDS-PAGE测定蛋白质相对分子质量实验报告

SDS-PAGE测定蛋白质相对分子质量 一、前言 聚丙烯酰胺凝胶电泳 聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。催化聚合的常用方法有两种:化学聚合法和光聚合法。化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。 PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。不连续体系由电极缓冲液、浓缩胶及分离胶所组成。浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。

SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。而强还原剂如巯基乙醇,二硫糖醇能使半胱氨酸残基间的二硫键断裂。在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。 SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。 浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。当样品液和浓缩胶选TRIS/HCl缓冲液,电极液选TRIS/甘氨酸。电泳开始后,HCl解离成氯离子,甘氨酸解离出少量的甘氨酸根离子。蛋白质带负电荷,因此一起向正极移动,其中氯离子最快,甘氨酸根离子最慢,蛋白居中。电泳开始时氯离子泳动率最大,超过蛋白,因此在后面形成低电导区,而电场强度与低电导区成反比,因而产生较高的电场强度,使蛋白和甘氨酸根离子迅速移动,形成一稳定的界面,使蛋白聚集在移动界面附近,浓缩成一中间层。 此鉴定方法中,蛋白质的迁移率主要取决于它的相对分子质量,而与所带电荷和分子形状无关。 聚丙烯酰胺凝胶电泳作用原理 聚丙烯酰胺凝胶为网状结构,具有分子筛效应。它有两种形式:

SDS-PAGE电泳标准操作流程

SDS-PAG电泳标准操作规程(网上) 3. 程序: 端平齐。放于制胶架上夹紧,下端紧贴密封条。 3.1.2分离胶的配置 3.122 灌胶混匀后用移液枪将凝胶溶液沿玻棒小心注入到长、短玻璃板间的狭缝内(胶高度距样品模板 梳齿下缘约1cm)。 3.1 . 2.3液封在凝胶表面沿短玻板边缘轻轻加一层水以隔绝空气,使胶面平整。静置约30min观察胶面 变化,当看到水与凝固的胶面有折射率不同的界限时,表明胶已完全凝固,倒掉上层水,并用滤纸 吸干残留的水液。 3.1.3浓缩胶的配置 混匀后用移液枪将凝胶溶液注入到长、短玻璃板间的狭缝内(分离胶上方),轻轻加入样品模板梳,小心避免气泡的出现。约30分钟,聚合完全。 3.2.1安装电泳槽将制备好的凝胶板取下,小心拔下梳子。两块10%勺凝胶板分别插到U形橡胶框的两边凹 形槽中,可往上提起使凝胶板紧贴橡胶。将装好玻璃板的胶模框平放在仰放的贮槽框上,其下缘与 贮槽框下缘对齐,放入电泳槽内。倒入1X tris-gly 电泳缓冲液。 3.2.2 样品处理对于蛋白样品直接取80 pl的样品,依次加上20Q 5x buffer (加了B-巯基乙醇),混匀。 对于菌体或组织等固体样品,取少量样品加100ul 2x buffer (加了B-巯基乙醇)煮沸10分钟。 3.2.3 加样用移液枪取处理过的样品溶液10 p l,小心地依次加入到各凝胶凹形样品槽内,marker加 入到其中一个槽内,为区别两块板,marker可加在不同的孔槽中。 3.2.4电泳将电泳槽放置电泳仪上,接通电源,正负极对好。电压调至约150v保持恒压。待溴酚蓝标记移 动到凝胶底部时,关电源,把电泳缓冲液倒回瓶中。 3.2.5剥离胶把电泳槽取出,两块板拿下来,用刮片从长短玻片中间翘起,再把浓缩胶刮掉,取下。 3.3. 染色放于加有R250染色液的染色皿中,染液漫过胶即可,置于摇床上,转速约为45r/min,时间约1小时, 完成后染液倒掉并用水洗掉染液。 3.4. 脱色取出染色过的胶放于加有脱色液的染缸里,脱色液漫过胶即可,置于摇床上,转速约为45r/min,时间 约1小时,本底色脱净,条带清晰可见即可,完成后倒掉脱色液。 3.5. 拍照将脱色后的胶置于透明文件夹中,把胶上面的气泡赶出(用前也可用酒精棉球擦干净文件夹),放到 扫描仪上,拍照。 4. 注意事项 4.1 根据目的蛋白的大小选择合适的胶片浓度。一般为100KD-50KD选用10%交;50KD-30KD选用12%胶; 30KD-10KD选用15%交。4.2 要根据样品浓度来加样品溶解液。每加一个样品后换一支吸头或清洗吸头后再点另一个样品。4.3 制备聚丙烯酰胺凝胶时,倒胶后常漏出胶液,那是因为二块玻璃板与塑料条之间没封紧,留有空隙,所以这步要特别留心操作.4.4 电泳完毕撬板取凝胶时要小心细致不能把胶弄破。 4.5 电泳缓冲液可重复利用,如果胶上出现不正常痕迹,就要及时更换新液。 4.6 分离胶高度控制得当,确保 有大约1cm左右的浓缩胶空间。过长或过短均不能得到理想的电泳结果。 4.7 电泳染色液注意进行回收再利用, 一般可重复使用2-3次。4.8 AP和TEMED是催化剂,加入的量要合适,过少则凝胶聚合很慢甚至不聚合,过多则聚合过

蛋白质含量测定方法及其比较资料2

蛋白质含量测定法(一) 蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种古老的经典方法,即定氮法,双缩脲法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。 五种蛋白质测定方法比较

值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。 考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。 一、微量凯氏(Kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: NH2CH2COOH+3H2SO4——2CO2+3SO2+4H2O+NH3 (1) 2NH3+H2SO4——(NH4)2SO4 (2) (NH4)2SO4+2NaOH——2H2O+Na2SO4+2NH3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(Biuret法) (一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

尿蛋白电泳操作规程

尿蛋白电泳操作规程 一.项目名称 尿蛋白电泳(HYDRAGEL PROTEINURIE) 二.检验方法名称 SDS-琼脂糖凝胶区带电泳 三.方法学原理 在含有多量的阴离子去垢剂十二烷基磺酸钠(SDS)液体中,蛋白质可与其连接,形成SDS —蛋白质复合物。这种复合物蛋白本身的构造已经破坏,他们都表现出相同的构造和相同的负电荷。当这种SDS—蛋白质复合物在具有适当筛选功能的介质中电泳时,如在含高浓度琼脂糖的HYDRAGEL 5 PROTEINURIE凝胶上电泳时,蛋白质按它们的分子量大小进行分离。 在HYDRAGEL 5 PROTEINURIE凝胶上能清楚分离来源于肾小管(分子量<65-70Kda)还是来源于肾小球(分子量>65-70KDa)的蛋白质,因此尿蛋白不仅能被检测到,而且能对蛋白来源进行分类(肾小球,肾小管性和混合性)。 四.方法学溯源 自1930年由Tiselius发现了移界电泳(moving boundary eectrophoresis),而后,这种技术的各种局限性已逐渐被区带电泳(zone elecrrophoresis)所克服,区带电泳的条件和支持介质的选择是电泳成败的关键。 五.仪器 (一)型号:SEBIA HYDRASYS (PN1210) (二)分析和计算参数: 1.处理量:约14个样本/小时 2.所需样本量:5ul 3.检验时间:约50分钟 4.重复性:有良好的批内和批间重复性 5.电泳参数:电压0-300V(可选至3000V) 电流0-500mA 功率0-100W 六.试剂及配套品 (一)试剂 1.HYDRAGEL 5 PROTEINURIE试剂盒 (1)商标:SEBIA (2)包装规格:50测试 (3)货号:PN4115 2.脱色液 (1)商标:SEBIA (2)包装规格:Pack for 10×100ml

SDS-PAGE电泳问题总结

SDS-PAGE电泳问题总结(2012-04-19 20:07:12)转载▼ 标签:杂谈分类:々☆常用技术☆々 蛋白质条带为什么走到下面逐渐变宽发散? 回答:多数情况是因为小分子在胶里的运动不规律,这种情况常发生在高浓度胶或凝固不 一致的胶里,你可以加大阴极的缓冲液浓度,可能会有点改善 胶凝的快慢不在于TEMED多少,在于APS的量,APS提供自由基,TEMED帮助自由基作用,是催化剂,对凝固速度影响不是太大,可以试试加大APS的量 丙烯酰胺在凝胶中的百分比分离胶的分辨范围 15 %15~45 kDa 12.5%15~60 kDa 10 %18~75 kDa 7.5%30~120kDa 5 %60~212kDa 来源于《蛋白质技术手册》汪家政 每种浓度的变性胶的分离范围不是指能跑出哪个范围分子量的蛋白质,而是指在这个区 间内,蛋白质迁移率基本和分子量成正比,也就是线性关系,为了数据的可靠性,大家 尽量根据这个来选择自己配胶的浓度。 下层也就是阳极缓冲液的作用当然是导电,用普通TRIS缓冲液做阳极缓冲液,一样跑得好,阴极就不一样了,需要提供离子强度和SDS环境,而在电泳过程中,阴极缓冲液的一些离子损失,而且与样品接触,不适合再次使用
至于有些时候跑太大浓度的胶,因为药品,BUFFER配制过程的一些问题,导致会出现蛋白带无法电泳到分离胶的最下方,胶跑得难看情况比较多,一般来说,15%的胶已经能够跑出大约15KDa左右的蛋白,对于普通SDS-PAGE已经几乎到了极限,还跑不出来的MARK带,就不必去追究商品的问题了 SDS-PAGE胶的凝结速度受温度影响很大,随着温度的升高,凝结速度越来越快,温度降 低则反之。所以,夏天时胶凝结的比较快,而冬天脚的凝结速度则变慢,甚至不能凝结,解决此类问题较可行的方法是:冬天在原配方的基础上加倍过硫酸铵和TEMED的使用量,可很好的解决胶凝结速度过慢的问题。 做SDS-PAGE的时候,除了蛋白量上样一致,最好体积也一致,这样跑出来的胶各个泳道之间的band能做到一样宽,方便后面的比较,特别是WB。做法就是拿1X的上样缓冲补全要加的样做到体积一致,否则跑出来会有的宽有的窄,特别是上样体积相差较大的 加入染色液后,先放入微波炉里加热5-10秒,使染色液微热即可(千万不要加热太久, 否则冰醋酸就挥发了)。然后放水平摇床上摇20分钟,最多半小时就染好了。脱色也很 简单,不用脱色液,直接用去离子水,放微波炉里煮沸5分钟左右,然后将水倒掉,再换上新的去离子水煮,这样反复几次,就可以了。效果可能比正常的脱色稍差一点点,不 如那样清楚,只要电泳时比平时多上1/5的样品就可以了,关键是这样省时省材料(用不着含甲醇和冰醋酸的脱色液)。方便快捷!放心,反复煮胶不会把胶煮坏的。

如何正确认识蛋白尿

如何正确认识蛋白尿 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

对尿蛋白的认识 尿蛋白是尿液中的正常成分,正常人每天尿中排出的蛋白质一般为40-80毫克/天,上限为150毫克/天,在常规检测中显示的是阴性,在正常含量范围内的尿中的蛋白质即为尿蛋白。当尿中蛋白增加,尿常规检查可以测出即为蛋白尿。蛋白尿是肾脏病的常见表现,全身性疾病亦可出现蛋白尿。 病因 可以导致蛋白尿的原因很多,它们包括:功能性蛋白尿、体位性蛋白尿或病理性蛋白尿。常见有:剧烈运动后,发热的极期,进食高蛋白饮食;胡桃夹现象;各种肾脏病和肾血管病等。 临床表现 不同病因引起的腰疼临床表现也不相同,例如: 1.功能性蛋白尿 功能性蛋白尿是一种轻度(24小时尿蛋白定量一般不超过~1克)、暂时性蛋白尿,原因去除后蛋白尿迅速消失。常发生于青壮年,可见于精神紧张、严重受寒或受热、长途行军、强体力劳动、充血性心衰、进食高蛋白饮食后。 2.体位性蛋白尿 清晨尿液无尿蛋白,起床活动后逐渐出现蛋白尿,长时间站立、行走或加强脊柱前凸姿势时,尿蛋白含量增多,平卧休息1小时后尿蛋白含量减少或消失,多发生于瘦长体型的青年或成人。反复体位性蛋白尿,需注意除外肾病,如胡桃夹现象(又叫左肾静脉压迫综合征,是因主动脉和肠系膜上动脉挤压左肾静脉所致)。 3.病理性蛋白尿 蛋白尿持续存在,尿中蛋白含量较多,尿常规检查常合并有血尿、白细胞尿和管型尿。并可伴有其他肾脏病表现,如高血压、水肿等。病理性蛋白尿主要见于各种肾小球、肾小管间质疾病、遗传性肾病、肾血管疾病和其他肾脏病。常见的如: (1)原发性肾小球疾病①肾炎可为隐匿性、急性、急进性或慢性。常合并血尿、高血压和水肿等。②肾病综合征24小时尿蛋白定量大于或等于克,同时伴有血白蛋白减少,水肿、高血脂。③肾功能不全分为急性和慢性肾功能不全。蛋白尿为肾脏损害的表现。 (2)继发性肾小球疾病①狼疮性肾炎是系统性红斑狼疮累及肾脏的表现。育龄期女性多见。依据肾脏受累严重程度的不同,尿蛋白量可以表现为少量至大量。②紫癜性肾炎是过敏性紫癜肾脏受累的表现。主要表现为血尿、蛋白尿,儿童多见,成年人亦可发生。蛋白尿多数发生在紫癜出现后2~4周。③糖尿病肾病是糖尿病常见的并发症,早期肾脏受累,但是尿常规检查尿蛋白可为阴性,后逐渐出现微量白蛋白尿,再发展至大量蛋白尿,乃至终末期肾病,即肾功能衰竭需要透析等治疗。④痛风性肾病尿检异常出现较晚且轻微,仅见轻度蛋白尿及少量红细胞。晚期可进展至慢性肾衰竭。⑤高血压肾病原发性高血压病发生5~10年后常出现肾脏等损害。良性高血压导致的蛋白尿一般为轻至中度的尿蛋白(24小时尿蛋白定量一般不超过~2克),很少出现大量蛋白尿。有些合并镜下血尿,常有高血压左心室肥厚、脑动脉和视网膜动脉硬化等表现。另外一种恶性高血压导致的蛋白尿常为突发性,24小时尿蛋白定量可由少至大量,多数伴有血尿和白细胞尿,肾功能多急剧恶化。 (3)肾小管间质疾病如肾盂肾炎、间质性肾炎等,尿蛋白多为+至++,24小时尿蛋白定量多<2克。 (4)遗传性肾病如Alport综合征、Fabry病、薄基膜肾病、先天性肾病综合征等,由于基因异常,导致肾脏结构缺陷,导致不同程度的蛋白尿。

SDS-PAGE分离胶配方表-及其原理

SDS-PAGE电泳原理: 聚丙烯酰胺凝胶是由丙烯酰胺(简称Acr) 和交联剂N,N’—亚甲基双丙烯 酰胺(简称Bis)在催化剂作用下,聚合交联而成的具有网状立体结构的凝胶,并以此为支持物进行电泳。聚丙烯酰胺凝胶电泳可根据不同蛋白质分子所带电荷的差异及分子大小的不同所产生的不同迁移率将蛋白质分离成若干条区带,如果分离纯化的样品中只含有同一种蛋白质,蛋白质样品电泳后,就应只分离出一条区带。 SDS是一种阴离子表面活性剂能打断蛋白质的氢键和疏水键,并按一定的比例和蛋白质分子结合成复合物,使蛋白质带负电荷的量远远超过其本身原有的电荷,掩盖了各种蛋白分子间天然的电荷差异。因此,各种蛋白质-SDS 复合物在电泳时的迁移率,不再受原有电荷和分子形状的影响,而只是棒长的函数。这种电泳方法称为SDS-聚丙烯酰胺凝胶电泳(简称SDS—PAGE)。由于SDS-PAGE 可设法将电泳时蛋白质电荷差异这一因素除去或减小到可以略而不计的程度,因此常用来鉴定蛋白质分离样品的纯化程度,如果被鉴定的蛋白质样品很纯,只含有一种具三级结构的蛋白质或含有相同分子量亚基的具四级结构的蛋白质,那么SDS—PAGE 后,就只出现一条蛋白质区带。 TEMED:通过催化过硫酸铵形成自由基而加速丙烯酰胺与双丙烯酰胺的聚合。 过硫酸铵(AP):提供驱动丙烯酰胺与双丙烯酰胺所必须的自由基。 SDS—PAGE 可分为圆盘状和垂直板状、连续系统和不连续系统。本实验采用垂直板状不连续系统。所谓“不连续”是指电泳体系由两种或两种以上的缓冲液、pH 和凝胶孔径等所组成。 1.蛋白样品浓缩效应 在不连续电泳系统中,含有上、下槽缓冲液(Tris—Gly,pH8.3)、浓缩胶缓 冲液(Tris—HCl,pH6.8)、分离胶缓冲液(Tris—HCl,pH8.8),两种凝胶的浓度(即孔径)也不相同。在这种条件下,缓冲系统中的HCl 几乎全部解离成Cl-,两槽中的Gly (pI=6.0,pK a=9.7)只有很少部分解离成Gly 的负离子,而酸性蛋白质也可解离出负离子。这些离子在电泳时都向正极移动。C1—速度最快(先导离子),其次为蛋白质,Gly 负离子最慢(尾随离子)。由于C1—很快超过蛋白离子,因此在其后面形成一个电导较低、电位梯度较陡的区域,该区电位梯度最高,这是在电泳过程中形成的电位梯度的不连续性,导致蛋白质和Gly 离子加快移动,结 果使蛋白质在进入分离胶之前,快、慢离子之间浓缩成一薄层,有利于提高电泳的分辨率。 2.分子筛效应 蛋白质离子进入分离胶后,条件有很大变化。由于其pH 升高(电泳进行时 常超过9.0),使Gly 解 离成负离子的效应增加;同时因凝胶的浓度升高,蛋白质的泳动受到影响,迁移率急剧下降。此两项变化,使Gly 的移动超过蛋白质,上述的高电压梯度不复 存在,蛋白质便在一个较均一的pH 和电压梯度环境中,按其分子的大小移动。分离胶的孔径有一定的大小,对不同相对分子质量的蛋白质来说,通过时受到的阻滞程度不同,即使净电荷相等的颗粒,也会由于这种分子筛的效应,把不同大小的蛋白质相互分开。

(完整版)SDS-PAGE蛋白电泳方法

SDS-PAGE 一. 实验原理 SDS 是一种阴离子表面活性剂,在蛋白质溶液里加入 SDS 和巯基乙醇后,巯基乙醇能使蛋白质分子中的二硫键还原, SDS 能使蛋白质的氢键、疏水键打开并结合到蛋白质分子上,形成蛋白质-SDS 复合物。在一定条件下,SDS 与大多数蛋白质的结合比例为 1.4:1。由于十二烷基磺酸根带负电,使各种蛋白质的SDS-复合物都带上相同密度的负电荷,它的量大大超过了蛋白质原有的电荷量,因而掩盖了不同种类蛋白质间原有的电荷差别。SDS与蛋白质结合后,还引起了蛋白质构象的改变。蛋白质-SDS复合物的流体力学和光学性质表明,它们在水溶液中的形状,近似于雪茄烟形的长椭圆棒,不同蛋白质的 SDS 复合物的短轴长度都一样,约为 1.8nm ,而长轴则随蛋白质的 Mr 成正比的变化。基于上述原因,蛋白质-SDS 复合物在凝胶电泳中的迁移率,不再受蛋白质原有电荷和形状的影响,而只与椭圆棒的长度有关,也就是蛋白质 Mr 的函数。 二. 试剂器材 30%凝胶贮液(100mL):称取试剂Acr 29.2g和Bis 0.8g置于100mL烧杯中,向烧杯中加入约60mL双蒸水,充分搅拌溶解后加双蒸水定容至100mL,置于棕色瓶内4℃贮存,每过1-2个月应重新配制; 注意:丙稀酰胺具有很强的神经毒性,并可通过皮肤吸收,其作用有积累性,配制时应戴手套和口罩等。 分离胶缓冲液(1.5 mol/L Tris-HCl,pH 8.8,100mL):称取Tris 18.2g 溶于约80mL 双蒸水,用6mol/L的HCl 调整pH值至8.8,加双蒸水定容到100mL,4℃ 贮存;堆积胶缓冲液(0.5 M Tris-HCl,pH 6.8,100mL):称取Tris 6.0g溶于约80mL双蒸水,用1mol/L的HCl 调整pH值至6.8,加双蒸水定容到100mL,4℃ 贮存;

SDS-PAGE电泳实验步骤

垂直板聚丙烯酰胺凝胶电泳分离蛋白质 一、实验目的 学习SDS-聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋白质的分子量的原理和基本操作技术。 二、实验原理 蛋白质是两性电解质,在一定的pH条件下解离而带电荷。当溶液的pH大于蛋白质的等电点(pI)时,蛋白质本身带负电,在电场中将向正极移动;当溶液的pH小于蛋白质的等电点时,蛋白质带正电,在电场中将向负极移动;蛋白质在特定电场中移动的速度取决于其本身所带的净电荷的多少、蛋白质颗粒的大小和分子形状、电场强度等。 聚丙烯酰胺凝胶是由一定量的丙烯酰胺和双丙烯酰胺聚合而成的三维网状孔结构。本实验采用不连续凝胶系统,调整双丙烯酰胺用量的多少,可制成不同孔径的两层凝胶;这样,当含有不同分子量的蛋白质溶液通过这两层凝胶时,受阻滞的程度不同而表现出不同的迁移率。由于上层胶的孔径较大,不同大小的蛋白质分子在通过大孔胶时,受到的阻滞基本相同,因此以相同的速率移动;当进入小孔胶时,分子量大的蛋白质移动速度减慢,因而在两层凝胶的界面处,样品被压缩成很窄的区带。这就是常说的浓缩效应和分子筛效应。同时,在制备上层胶(浓缩胶)和下层胶(分离胶)时,采用两种缓冲体系;上层胶pH=6.7—6.8,下层胶pH=8.9;Tris —HCI缓冲液中的Tris用于维持溶液的电中性及pH,是缓冲配对离子;CI-是前导离子。在pH6.8时,缓冲液中的Gly-为尾随离子,而在pH=8.9时,Gly的解离度增加;这样浓缩胶和分离胶之间pH的不连续性,控制了慢离子的解离度,进而达到控制其有效迁移率之目的。不同蛋白质具有不同的等电点,在进入分离胶后,各种蛋白质由于所带的静电荷不同,而有不同的迁移率。由于在聚丙烯酰胺凝胶电泳中存在的浓缩效应,分子筛效应及电荷效应,使不同的蛋白质在同一电场中达到有效的分离。 如果在聚丙烯酰胺凝胶中加入一定浓度的十二烷基硫酸钠(SDS),由于SDS带有大量的负电荷,且这种阴离子表面活性剂能使蛋白质变性,特别是在强还原剂如巯基乙醇存在下,蛋白质分子内的二硫键被还原,肽链完全伸展,使蛋白质分子与SDS充分结合,形成带负电性的蛋白质—SDS复合物;此时,蛋白质分子上所带的负电荷量远远超过蛋白质分子原有的电荷量,掩盖了不同蛋白质间所带电荷上的差异。蛋白质分子量愈小,在电场中移动得愈快;反之,愈慢。蛋白质的分子量与电泳迁移率之间的关系是: M r =K(10-b·m) logM r =LogK—b·R m , 式中M r ——蛋白质的分子量; logK——截距; b——斜率; R m ——相对迁移率。 实验证明,蛋白质分子量在15,000—200,000的范围内,电泳迁移率与分子量

蛋白质相对分子质量的测定(SDS法)

蛋白质相对分子质量的测定 (SDS-聚丙烯酰胺凝胶电泳法) 一、实验原理 蛋白质在十二烷基硫酸钠(SDS)和巯基乙醇的作用下,分子中的二硫键还原,氢键等打开,形成按1.4gSDS/1g蛋白质比例的SDS-蛋白质多肽复合物,该复合物带负电,故可在聚丙烯酰胺凝胶电泳中向正极迁移,且主要由于凝胶的分子筛作用,迁移速率与蛋白质的分子量大小有关,因此可以浓缩和分离蛋白质多肽。 聚丙烯酰凝胶电泳分离蛋白质多数采用一种不连续的缓冲系统,主要分为较低浓度的成层胶和较高浓度的分离胶,配制凝胶的缓冲液,其pH值和离子强度也相应不同,故电泳时,样品中的SDS-多肽复合物沿移动的界面移动,在分离胶表面形成了一个极薄的层面,大大浓缩了样品的体积,即SDS-聚丙烯酰胺凝胶电泳的浓缩效应。 二、仪器及器材 垂直电泳槽及附件、直流稳压稳流电泳仪、移液器等。 三、试剂 1、凝胶贮备液:称取30g 丙烯酰胺(Acr)和0.8g 甲叉-双丙烯酰胺(Bis),蒸馏水溶解后定容至100mL,滤纸过滤贮存。 2、10% SDS:称取SDS 10g 加蒸馏水至100ml。 3、10%过硫酸胺(AP),用时现配。 4、N,N,N’,N’四甲基乙二胺(TEMED)。 5、电极缓冲液:3.03g Tris、14.14g甘氨酸、1.0g SDS溶于水,混匀后用HCL调节pH至8.3,加蒸馏水至1 000ml。 6、样品溶解(缓冲)液:0.6gTris、5mL甘油(丙三醇)1.0g SDS溶于水,混匀后用HCL调节pH至8.0,再加0.1g溴酚蓝、2.5mL巯基乙醇,定容至100mL。 7、下层胶(分离胶)缓冲液:18.17g Tris、0.4gSDS溶于水,混匀后用1mol/L HCL 调节pH至8.8,加蒸馏水至100ml。 8、上层胶(浓缩胶)缓冲液:6.06g Tris、0.4gSDS溶于水,混匀后用1mol/L HCL 调节pH至6.8,加蒸馏水至100ml。 9、固定液:25%异丙醇,10%乙酸。 10、染色液:0.125g考马斯亮蓝R-250加固定液250ml。 11、脱色液:冰乙酸75ml、甲醇50ml,加水定容至1000ml。

尿蛋白免疫电泳

尿蛋白电泳 1、所有病人均留取新鲜晨尿送检。 2、检测方法:尿蛋白电泳方法均同于血清蛋白醋酸纤维薄膜电泳法,尿蛋白定性采用磺基水杨酸法。 3、根据正常人血清醋纤膜电泳分离出来的区带来对照分析尿蛋白电泳区带。血清蛋白电泳可分为A(白蛋白)、α1(球蛋白)、α2(球蛋白)、β(球蛋白)、γ(球蛋白)5条区带,根据尿蛋白电泳所出现的蛋白区带的位置,也可分别给定为以上5条区带,电泳薄膜上仅出现A、α1、β带称选择性蛋白尿,电泳薄膜上除有A、α1、β带外,还出现α2带者或A、α1、α2、β、γ等5条带均显示的为非选择性蛋白尿,尿蛋白定性根据形成的浑浊度以“+”表示蛋白含量的多少。 结果:肾炎组以中量蛋白尿为主,呈选择性。定性多为“+~++”. 肾综组以大量蛋白尿为主,呈高选择性。定性多为“++~+++” 肾衰组:初期以中~大量蛋白尿主国,呈非选择性。终末期肾衰因肾小球大部分已毁坏,尿蛋白反而减少,甚至为阴性。为选择性蛋白尿,定性为“-~+” 讨论:正常健康人,每24h尿中只有80-150mg蛋白排除体外,用磺基水杨酸尿蛋白定性检查法不可检出,尿蛋白电泳无区带显示,30例健康人尿蛋白定性均为阴性,尿蛋白电泳无区带显示,由结果出可以看出,随着肾小球基底膜损害不断加重,尿中排汇的蛋白量不断增加。然而终末期肾衰患者肾小球绝大部分已毁坏,尿蛋白反而减少,说明尿蛋白含量的多少不一定能完全反映肾脏损害程度。在这三组病例中显示尿蛋白电泳的选择性,肾综组高于肾炎组高于肾衰组,尿蛋白由选择性变为非选择性,终末期肾衰尿蛋白减少或无尿蛋白,当肾小球受到免疫反应损害后,肾小球基底膜滤孔变大,使肾小球对血浆蛋白的通透性增加,在疾病早期只有20万以下的小分子蛋白透过而排泄于尿中,这种蛋白尿称为“选择性蛋白尿”,病变进一步加重时,基底膜滤孔进一步增大,致使大、中分子的蛋白质也能滤出,即血浆中的所有蛋白质均无选择性的滤到尿中,称“非选择性蛋白尿”。此尿蛋白的选择性变化可以反映病情的变化,我们认为利用尿蛋白电泳确定是否选择性蛋白尿有助于临床了解肾脏的损害程度,有助于对肾脏疾患的分类、治疗及判断预后。

SDS-PAGE电泳注意事项

SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。 强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。 在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS 结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。 浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。 聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,催化聚合的常用方法有两种:化学聚合法和光聚合法。化学聚合以过硫酸铵(AP)为催化剂,以四甲基乙二胺(TEMED)为加速剂。 不连续体系由电极缓冲液、浓缩胶及分离胶所组成。浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。 SDS-聚丙烯酰胺凝胶电泳经常应用于提纯过程中纯度的检测,纯化的蛋白质通常在SDS 电泳上应只有一条带,但如果蛋白质是由不同的亚基组成的,它在电泳中可能会形成分别对应于各个亚基的几条带。 注意问题 1.样品处理 上样缓冲液的作用:形成SDS-蛋白复合物,使其带负电;SDS和巯基乙醇使蛋白质解离,综上两点为了在电泳中,只根据分子量来分离。 SDS作用:去蛋白质电荷、解离蛋白质之间的氢键、取消蛋白分子内的疏水作用、去多肽折叠,还有助溶剂的作用。 2. SDS-PAGE电泳凝胶中各主要成分的作用 (1)浓缩与分离胶凝固的好坏直接关系到电泳成功与否,与促凝剂及环境密切相关。 3. 提高SDS-PAGE电泳分辨率的途径 待凝胶在室温凝固后,可在室温下放置一段时间使用。忌即配即用或4度冰箱放置,前者易导致凝固不充分,后者可导致SDS结晶。一般凝胶可在室温下保存4天,SDS可水解聚丙烯酰胺。 4. .“微笑”(两边翘起中间凹下)形带原因 主要是由于凝胶的中间部分凝固不均匀所致,多出现于较厚的凝胶中。 处理办法:待其充分凝固再作后续实验。 5. “皱眉”(两边向下中间鼓起)形带原因 主要出现在蛋白质垂直电泳槽中,一般是两板之间的底部间隙气泡未排除干净。 处理办法:可在两板间加入适量缓冲液,以排除气泡。 6. 带出现拖尾现象 主要是样品融解效果不佳或分离胶浓度过大引起的。 处理办法:加样前离心;选择适当的样品缓冲液,加适量样品促溶剂;电泳缓冲液时间过长,重新配制;降低凝胶浓度。 7. 带出现纹理现象 主要是样品不溶性颗粒引起的。

SDS-PAGE凝胶电泳

蛋白质亚基分子量测定SDS-PAGE凝胶电泳 一目的 掌握SDS-PAGE凝胶电泳测定蛋白质亚基分子量的基本原理和操作方法 二原理 SDS是一种阴离子去污剂,作为变性剂和助溶性试剂,能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白质分子的二级、三级结构;而强还原剂,如二硫苏糖醇、β-巯基乙醇能使半胱氨酸残基之间的二硫键断裂。 因此,在样品和凝胶中加入SDS和还原剂后,蛋白质分子被解聚为组成它们的多肽链,解聚后的氨基酸侧链与SDS结合后,形成带负电的蛋白质-SDS胶束,所带电荷远远超过了蛋白质原有的电荷量,消除了不同分子间的电荷差异;同时,蛋白质-SDS聚合体的形状也基本相同,这就消除了在电泳过程中分子形状对迁移率的影响。 基于上述SDS-PAGE的原理介绍,我们可以利用SDS-PAGE电泳进行未知蛋白质的分子量测定;以不同分子量的标准蛋白进行SDS-PAGE电泳得到不同标准蛋白的电泳迁移率,制作标准校正曲线,然后对未知蛋白在相同条件下进行SDS-PAGE电泳,测定迁移率,从标准曲线得到相应的分子量 三试剂和器材 试剂:1低分子量标准蛋白质 2 待测蛋白质样品(用上次测定的可溶性蛋白样液) 3 凝胶贮液:30g丙烯酰胺,0.8g甲叉双丙烯酰胺,溶于100ml蒸馏水中,过滤,于4°暗处贮存,一个月内使用 4 1mol/l,PH8.8 Tris-HCl 缓冲液,Tris121g溶于蒸馏水,用浓盐酸调至PH8.8,以蒸馏水定容至1000ml 5 10%(w/v)SDS 6 10%(w/v)过硫酸铵溶液(当天配) 7 四甲基乙二胺(TEMED) 8 电极缓冲液PH8.3:Tris30.3g,甘氨酸144.2g,SDS 10g,溶于蒸馏水并定容至1000ml,使用时稀释10倍。 9 2×样品稀释液:SDS 500mg,巯基乙醇1ml ,甘油3ml, 溴酚蓝4mg,1mol/L Tris-HCL (pH6.8),用蒸馏水溶解并定容至10ml,按每份1ml分装,可在4℃存放数周,或在-20℃保存数月。以此液制备样品时,样品若为液体,则加入与阳平等体积的原液混合即可。 10 固定液:500ml 乙醇,100ml冰醋酸,用蒸馏水定容至1000ml 11 脱色液:250ml乙醇,80ml冰醋酸,用蒸馏水定容至1000ml 12 染色液:0.29g考马斯亮蓝R-250溶解在250ml脱色液中 器材:微量进样针,电泳仪,电泳槽 四操作步骤 1分离胶制备: 凝胶浓度5% 7.5% 10% 12.5% 15% 凝胶贮液ml 5 7.5 10 12.5 15 1mol/LPH8.8 Tris-HClml 11.2 11.2 11.2 11.2 11.2 水ml 13.7 11.2 1.2 8.7 3.7 10% SDS ml 0.3 10% 过硫酸铵ml 0.1 TEMED (μL) 20 将上述胶液配好,混匀后,迅速加入两块玻璃板间隙中,使胶液面与矮玻璃和高玻璃之间形

SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量

实验六报告: SDS- 聚丙烯酰胺凝胶电泳法测定蛋白质分子量 1.研究背景及目的 根据自然界中普遍存在的电泳现象,以及实践应用的需求,科学家不断完善了电泳技术,从移界电泳法、垂直管型盘状电泳、垂直板型电泳、垂直柱型盘状电泳到水平板型电泳。电泳技术广泛地应用于样品的分析鉴定。蛋白质分子量的测定在理论和实践中具有很重要的意义,比如临床中对于尿液中蛋白质分子量的测定可以监测人体内的某些疾病(肾小管损坏、多发性骨髓瘤等)。这种需要促进了相关技术的发明。具体过程见原理。蛋白质在聚丙烯酰胺凝胶中电泳时,它的迁移率取决于它所带净电荷以及分子的大小和形状等因素。从活性电泳到变性电泳经过了很多思考。从活性如果加入一种试剂使电荷因素及分子的形状消除,那电泳迁移率就取决于分子的大小,就可以用电泳技术测定蛋白质的分子量。 1967年,Shapiro等发现阴离子去污剂十二烷基硫酸钠(SDS)具有这种作用[1] 。 通过向样品中添加入巯基乙醇和过量SDS,使蛋白质变性解聚,并让SDS与蛋白质结合成 带强负电荷的复合物,掩盖了蛋白质之间原有电荷的差异。SDS与蛋白质分子结合,不仅 使蛋白质分子带上大量的负电荷,而且使蛋白质分子的形状都变成短棒状,从而消除了蛋白质分子之间原有的电荷差异和分子形状的差异。因此蛋白质在SDS-PAGE中的时迁移率 主要取于其分子大小。由于SDS与蛋白质的结合,电泳迁移率在外界条件固定的情况下,只取决于蛋白质分子量大小这一因素,使得SDS-聚丙烯酰胺凝胶电泳具有分辨率高、重复性好等特性,因此广泛应用于未知蛋白质分子量测定。通过本次实验,学习和掌握垂直板型聚丙烯酰胺凝胶电泳的原理和方法,进一步学习和应用SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量。 2.原理 由于技术的发展,理论上可以通过测序测出蛋白质分子量的真值,但是实际操作过于繁琐,且生物大分子的数量级是KDa,实际中往往不需要特别精确。所以转向寻求其它方法,如果两种性质具有相关性,就会有相关理论基础和技术,发现分子量与迁移速率有关,于是寻找相关方面的技术。通过沉降平衡法测定分子量,但是需要很大的转速,且要考虑安全性和造价,于是舍弃;分子筛层析主要以分子量差异进行分离,可以用来测定分子量,但是需要很长的分离柱,分离速度较慢,还要测定OD值,操作麻烦,浪费时间,而且带 来的经济效益也不是很大;与此同时,电泳技术也发展起来,电泳相对时间较短,造价低,可操作性强。电泳与分子量、分子形状以及所带电荷量有关,其中含有分子量,理论上就可行了,于是用电泳测定分子量。首要矛盾是消除电荷差异和分子形状差异,从数学上彻底消除电荷效应是不可能的,使带电量相同也不可能实现,只有使分子带上非常大的电荷量从而使分子间的电荷差异可以忽略。想到通过引入外来物形成复合物,定量引入,定量结合,且结合后分子间差异并未发生改变。关于引入负电还是引入正电的问题,蛋白大多为球状,若结合后仍未球状,静电结合不稳定;双亲性物质彻底结合后破坏空间结构,所以引入负电,结合稳定。于是开始筛选阴离子去污剂,在众多的物质试验中,发现十二烷基硫酸钠(SDS)具有很好的效果。SDS通常与蛋白质以1.4:1的重量比结合,所引入净电 荷量约为蛋白质本身静电荷 10倍的静电荷,从而形成具有均一电荷密度和相同荷质比的SDS-蛋白质复合物,该复合物所带的电荷远远超过蛋白质原有的净电荷,从而消除或大大降低不同蛋白质之间所带净电荷

SDS-PAGE电泳的基本原理及浓缩胶浓缩样品的原理

SDS-PAGE电泳的基本原理及浓缩胶浓缩样品的原理 SDS-PAGE(十二烷基硫酸钠-聚丙烯酰胺凝胶电泳)是目前最常用的分离蛋白质的电泳技术 SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS,SDS能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的SDS溶液中,与SDS分子按比例结合,形成带负电荷的SDS-蛋白质复合物,这种复合物由于结合大量的SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于SDS与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。当分子量在15KD到200KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=K-bX,式中:MW为分子量,X为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。 SDS-PAGE电泳成功的关键是什么? ①溶液中SDS单体的浓度 SDS在水溶液中是以单体和SDS-多肽胶束的混合形式存在,能与蛋白质分子结合的是单体。为了保证蛋白质

与SDS的充分结合,它们的重量比应该为1∶4或1∶3。②样品缓冲液的离子强度因为SDS结合到蛋白质上的量仅仅取决于平衡时SDS单体的浓度,不是总浓度,而只有在低离子强度的溶液中,SDS 单体才具有较高的平衡浓度。所以,SDS电泳的样品缓冲液离子强度较低,常为10-100 mM。③二硫键是否完全被还原只有二硫键被完全还原以后,蛋白质分子才能被解聚,SDS才能定量地结合到亚基上从而给出相对迁移率和分子质量对数的线性关系。Sample buffer 中的β-巯基乙醇的浓度常为4-5%,二硫苏糖醇的浓度常为2-3%。前者有挥发性,最好使用前加入。 SDS-PAGE缓冲液系统的选择,Tris-Glycine、Tris-Tricine、Tris-硼酸盐或者其他? 一般来说,在被分析的蛋白质稳定的pH范围,凡是不与SDS发生相互作用的缓冲液都可以使用,但缓冲液的选择对蛋白带的分离和电泳的速度是非常关键的。Tris-甘氨酸系统是目前使用最多的缓冲系统。Tris-甘氨酸系统是目前使用最多的缓冲系统。如果要测定糖蛋白的分子量,最好采用Tris-硼酸盐缓冲系统,对于分子质量小于15 kDa的蛋白样品,可以使用SDS-尿素系统,也可以采用Tris-tricine缓冲系统。 积层胶(或称浓缩胶)的作用原理?

相关文档
最新文档