激光测距系统方案

激光测距系统方案
激光测距系统方案

远距离激光测距系统方案

一、激光的基本特点:

激光亮度高的一个原因是,激光束的面积比普通光源的发光面积小得多。激光的发散角是普通光源的几百万分之一,由于激光的能量在空间上高度集中,从而提高了亮度。激光亮度高的另一个原因是,采用了压缩发射时间的方法来提高瞬时发射功率。以一般脉冲工作的激光器,输出一个脉冲的持续时间可短至几十毫微秒。如果输出一个脉冲的能量为0.1焦耳,则激光功率可达到千万瓦。采用特殊的脉冲压缩技术,还可把脉冲时间压缩到数纳秒,使激光功率达到万亿瓦。所以说激光是在受激辐射过程中产生并被放大了的光。

这一现象最早是由著名科学家爱因斯坦在1916年首先发现的。光的受激辐射理论的提出,为激光的发明定了理论基础。1960年7月,美国休斯公司实验室从事红宝石材料研究的年轻科学家梅曼,发明了世界上第一台红宝石激光器。这之后不同类型的激光器便接二连三地发明出来。目前激光技术已经渗透到侦察、通信、武器制导和定向能武器等各个军事领域。

二、激光测距基本原理

激光测距就是利用激光的单色性和相干性好、方向性强等特点,以实现高精度的计量和检测,如测量长度、距离、速度、角度等等。地址:深圳市高新技术产业园中区深圳软件园4栋522室

激光测距在技术途径上可分为脉冲式激光测距和连续波相位式激光

测距。脉冲式激光测距原理与雷达测距相似,测距仪向目标发射激光信号,碰到目标就要被反射回来,由于光的传播速度是已知的,所以只要记录下光信号的往返时间,用光速(30万千米/秒)乘以往返时间的二分之一,就是所要测量的距离。现在广泛使用的手持式和便携式测距仪,作用距离为数百米至数十千米,测量精度为五米左右。我国研制的对卫星测距的高精度测距仪,测量精度可达到几厘米。连续波相位式激光测距是用连续调制的激光波束照射被测目标,从测量光束往返中造成的相位变化,可换算出被测目标的距离。为了确保测量精度,一般要在被测目标上安装激光反射器。它测量的相对误差为百万分之一。激光测距就是以连续波激光为载波的相位式精密测距方法。激光工作于脉冲状态的测距仪,亦称激光测距仪,属于脉冲测距法;红外测距仪中采用红外激光载波的称为红外激光测距仪。由于激光的单色性好、方向性强等特点,激光测距不仅可以日夜作业,而且能提高测程精度, 显著减少仪器重量和功耗。 激光测距仪与微波雷达结合,还可以发挥激光波速窄的特长,弥补微波雷达低仰角工作时受地面干扰的不足。激光测距与光学经纬仪、红外及电视跟踪系统相结合,组成光电跟踪测量系统,既可作为靶场试验的测量设备,又常用作武器的光电火力控制系统。这种激光测距仪已广泛用于地面火炮、坦克炮的火控系统,大大提高了命中率。在军事技术侦察中,激

光测距具有反应灵敏,分辨率高,适于夜间使用等特点。战略激光侦地址:深圳市高新技术产业园中区深圳软件园4栋522室

察技术中又分为高空激光侦察和空间激光监视。在高空激光侦察中用于机载的激光侦察设备有激光侧视雷达、激光行扫描传感器、激光帧扫描传感器等。在空间监视中,激光多用于预警卫星和侦察卫星等观察设备上。用这些设备可以监视敌方兵力的调动和大型兵器的部署,并可完成对交通要道、机场、仓库及其他军事设施的监视。

半导体激光测距望远镜民用半导体激光测距望远镜是国外20世纪90年代中期发展起来的产品,该产品具有体积小,重量轻,对人眼安全,使用方便等优点。主要用于城市道路建筑和电缆架设等工程测量,以及打高尔夫球等娱乐活动,还可用于汽车防撞系统测距等。该产品结合了普通望远镜和激光测距仪的功能;在观察远处目标的同时,可测量在一定距离范围内物体的距离,测距时间快,距离显示直观(液晶显示),具有码米转换、多种测距模式转换、省电,不使用时自动切断电源等特点。激光测距仪结合了普通望远镜和激光测距仪的功能,在观察镜内物体的同时,可测量在一定距离范围内物体的距离,并且测距时间快、距离显示直观、耗电省,不使用时自动断电。测距望远镜激光发射功率小,对人眼安全;不需合作目标,可对任意物体测距;体积小、重量轻,便于携带;机内使用一节3V电池,更换和新购均很方便。利用“RAIN”模式,即使雨天也不影响测距;利用“>150”模式,可消除近距离电线、树枝等小目标的影响。

三、激光测距望远镜基本结构与性能

3.1、主要单元

地址:深圳市高新技术产业园中区深圳软件园4栋522室

望远镜目镜(境内距离显示)

望远镜物镜(激光发射物镜)

激光接收物镜

模式选择

触发选择

电源部分

3.2、主要性能

测距范围:15-600m

测距方式:半导体激光测距(对人眼无害)

测距误差:±0.75m±0.1%

测距显示方式:视野内LCD显示

有效物镜口径:25mm

镀膜:多层镀膜

出瞳直径:3.8mm

出瞳距离:12mm

对焦方式:目镜调焦

望远镜倍率:6X

在1000m之视野:122m

测距模式:RAIN;RELF;>150;无显示为标准模式. 电源:3V(不含)

外形尺寸:40X99X68mm

地址:深圳市高新技术产业园中区深圳软件园4栋522室

重量:180g

防水性:不防水/防水

3.3、镜内符号及功能

符号示意如图

望远镜内测距符号示意图

瞄准标记:在视场中心,用“+”表示,测距时用中心圆瞄准目标。 距离显示:在视场正上方,三位数;无距离时显示:“---”。

距离单位:在视场右上方,用“METERS”(米)或“YARDS”(码)表示。

测距模式:视场左上方,有四种状态:

无字母显示-标准状态;

“RAIN”-适用于下雨天测距,且目标距离>60m;

“REFL”-适用于薄雾天或水气严重天气。

“>150”-适用于150m内有干扰的目标(例如:电线、树枝等),

地址:深圳市高新技术产业园中区深圳软件园4栋522室

此时,被测目标必须大于150m。

测距质量:在视场正下方,用“QUALITY---- ”表示,“?--”个数多,表示回波强,一般显示6个,即可显示距离,若不足6个,表示回波弱,不能显示距离。

激光发射:在视场左下方,用“LASER”表示,发射激光时,“LASER”闪烁。

电池欠压:在视场右下方,当显示“BATT”时,表示电池电压不足,须更换。

3.4、测距操作

调节望远镜目镜视度,使视场内的物体清晰。

点动“触发”按扭,镜内显示“+”,将中心圆对准待测目标,“模式”一般置于标准状态,再次持续按下“触发”按扭3秒钟左右,目标距离显示,若不使用15秒后自动关机。

为了可靠地测回目标,第二次按下“触发”按扭时,可持续3秒以上,直至目标距离显示,按下时间也不能太长,否则会显示噪声产生的小数。若3秒以后仍无距离显示,说明目标回波质量差,此时显示“----”。

每按“模式”按扭一次,即可改变状态。各种模式的用途可按第3条的说明选择,接通电源时,处于上一次的使用模式。

要进行距离单位转换时,需按下“模式”按扭3秒以上。

测距望远镜的测距远近与被测目标的性质、发射光束与目标表面的角地址:深圳市高新技术产业园中区深圳软件园4栋522室

度及天气能见度有关,一般来说,目标表面光滑、亮色、面积大,光束与目标表面垂直,天气晴朗的情况下测的距离远;目标表面粗糙、暗色、面积小,光束与目标表面倾斜,雾天的情况下测的距离近。

四、激光测距的ASIC实现原理

4.1 功能框图

4.2 功能描述

如4.1功能框图所示,由MCU发控制指令给控制IC TM0610,TM0610发出触发控制信号,通过高压驱动器驱动半导体激光器发射激光,发射出的激光经过物体反射回来后,激光接收器接收到信号经过高速运放后送回控制IC,控制IC TM0610通过处理发射和接收到数据的时间差得到该时间差值送给MCU,MCU通过计算、校准后显示该测量得到的数值,并完成本次的测量,下次测量时重复该过程。

4.3 测距专利算法

4.3.1 ASIC 使用的测量办法

ASIC 通过使用计数器测量发射和返回信号之间的时间差值。

4.3.2 测量精度

地址:深圳市高新技术产业园中区深圳软件园4栋522室

ASIC为实现所规定的测量误差,以此来估算测量的最小时间精度,

假设要实现±0.75m的测量误差,最小的时间计量精度为5ns,所要求的计量频率为200MHz,因此,要达到要求的计量距离精度,需要达到相应的时间精度。

4.3.3 计数器的实现方法

通过ASIC内部的延迟锁相环(DLL)以及锁相倍频器(PLL),来生成延时差分高频信号来生成高频的计量频率,再通过N组同步计数器来计算时差,再通过ASIC的转换将数据输出出来。

4.4 ASIC实现

通过上述算法可见,通过ASIC实现的部分主要包括差分计数器、延迟锁相环(DLL)、锁相倍频器(PLL)、数据转换器,输入触发单元,接收高速检测单元等。通过专利的分频、倍频、差分算法实现在较低的频率下实现较高的测量精度。由于要在芯片上实现上述单元,需要采用0.25uM以上的加工工艺进行设计制造该ASIC。

五、激光测距的成本与市场价值体现

从4.1功能框图可见,ASIC TM0610和MCU共同构成该激光测距的核心计量部分,由于激光测距产品的成本由望远镜目镜、望远镜物镜、激光发射管和激光接收管和激光测距的核心计量部分共同决定,而核心计量部分是成本的主要部分,当该部分成为ASIC以后,激光测距产品的成本、测试将直线下降,并且产品的质量和产品的一致性得到

严格的保证,同时该模块的尺寸和功耗均较小适合于各种便携式产品地址:深圳市高新技术产业园中区深圳软件园4栋522室

应用。采用ASIC方式的激光测距产品较目前现有的激光测距产品具有以下优势:

5.1 模块的成本低,是目前同类产品的十分之一。

5.2 模块的体积小,便于集成在其他产品中作为辅助功能,如军/民用望远镜等。

5.3 产品一致性好,便于调试。

5.4 功耗低,有利于野外作业。

5.5 产品精度高,可以达到±0.5的精度,甚至更低。

5.6 抗干扰性强,可实现高干扰情况下测量。

基于上述特征的激光测距产品优势是很明显的,由于成本与性能的因素,该产品可以广泛推广用于军事、科研、工业以及民用等诸多领域,有良好的市场应用前景。

六、系统框图:

地址:深圳市高新技术产业园中区深圳软件园4栋522室

汽车拼焊板全自动激光焊接系统

汽车拼焊板全自动激光焊接系统 第43卷第2期啊E珲墩v。1.43N。.2 Feb.2013垫!!堡!月Electric驯dingMachine 汽车拼焊板全自动激光焊接系统 李斌1,郭涟1,郭平华1,王征1,钟如涛2 (1.武汉法利莱切割系统工程有限责任公司,湖北武汉430223;2.武钢设计研究院,湖北武汉430080) 摘要:激光拼焊板已广泛应用-I-95,-车--和1造业,采用激光拼焊板工-E不仅能够降低整车的制造成本、物 流成本、整车重量、装配公差、油耗和废品率,而且可以减少外围加强件数量,简化装配步骤,同时提高车辆的碰撞能力、冲压成型率和抗腐能力。系统研究了汽车拼焊板全自动激光拼焊系统,采用高精度、快速、柔性电磁吸附装置夹紧工件以及激光切割一焊接一体化加工工艺,建立了焊接质量专家数据库,集成了在线检质量检测与焊缝跟踪系统。实现全自动激光拼焊生产线集成与自动控制系统,实现在一条 生产线上高质、高效率地进行直线、折线、曲线以及不等厚板多种类型板材的拼焊。 关键词:激光焊接;汽车拼焊板;自动焊接系统;柔性电磁铁中图分类号:TG439.4 文献标识码:B 文章编号:1001—2303(2013)02—0063—05 DOI:10.75121j.issn.1001-2303.2013.02.1l Autospellsystemofweldingplateautomaticlaserwelding LIBinI,GUOLianl,GUOPing-huaI,WANGZhen91,ZHONGRu—ta02 f1.WuhanFarleylaserlabCuttingSystemEngineeringCo.,Ltd.,Wuhan430223,China;2.Design&ResearchInstitute

脉冲激光测距仪的设计-课程设计

目录 第一章绪论 (1) 1.1设计背景 (1) 第二章脉冲激光测距仪的工作原理 (2) 2.1测距仪的简要工作原理 (2) 第三章脉冲激光器的结构及工作过程 (3) 3.1激光脉冲测距仪光学原理结构 (3) 3.1.1测距仪的大致结构组成 (3) 3.2主要的工作过程 (4) 3.3主要部件分析: (4) 3.3.1激光器(一般采用激光二极管) (4) 3.3.2激光二极管的特性 (5) 3.3.3光电器件(采用雪崩光电二极管APD) (6) 第四章影响测距仪的各项因素 (7) 4.1光脉冲对测距仪的影响 (7) 4.2发散角对测距仪的影响 (8) 第五章测距仪的光电读数显示 (9) 5.1距离显示原理及过程 (9) 5.2测量精度分析 (10) 5.3总述 (11) 参考文献 (11)

第一章绪论 1.1设计背景 在当今这个科技发达的社会,激光测距的应用越来越普遍。在很多领域,如电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,军事,农业,林业,房地产,休闲、户外运动等都可以用到激光测距仪。 激光测距仪一般具有精确度和分辨率高、抗干扰能力强、体积小、重量轻等优点,因而应用领域广、行业需求众多,市场需求空间大。 当前激光测距仪的发展趋势是向测量更安全、测量精度高、系统能耗小、体积小型化方向发展。激光测距仪一般采用两种方法来测量距离:脉冲法和相位法。而其中脉冲激光测距的应用领域也是越来越宽广,比如,地形测量、战术前沿测距、导弹运行轨道跟踪以及人造卫星、地球到月亮距离的测量等。脉冲激光测距法是利用激光脉冲持续时间非常短,能量相对集中,瞬时功率很大(可达几兆瓦)的特点,在有合作目标的情况下,脉冲激光测距可以达到极远的测程;如果只是利用被测目标对脉冲激光的漫反射所取得的微弱反射信号,也是可以测距的。因而脉冲激光测距法应用较多。

基于激光视觉的焊缝跟踪系统方案

基于激光视觉的焊缝跟踪系统 一、焊缝自动跟踪系统构成 基于激光视觉传感,具有主动性、非接触、能获取物体的三维信息、灵敏度精度高、抗电磁场干扰能力强等优点,被认为是焊缝检测的主要发展方向。线激光法是一种直接获取深度图像的方法,它可以获取焊缝的二维半信息。基于激光视觉的焊缝跟踪系统如图1所示,主要有3个组成部分,分别是视觉传感、图像处理和跟踪控制。CCD摄像机垂直对准工件,激光器倾斜布置,激光器打出的激光,经柱透镜形成一光片照射到工件上形成一条宽度很窄的光带。当该光带被工件反射或折射后,经滤光片保留激光器发出的特定波长的光,而滤除其他波长的光,最后进入CCD摄像机成像。由于坡口各处与工件在垂直方向深度不同,故从垂直工件的方向看去,反射光成一折线,折线反映了光纹中心与焊缝坡口中心的三维位置关系。计算机对采集图像进行图像预处理,减少图像中的噪声污染,并加强焊缝特征信息信号,通过一定的算法提取焊缝特征点,得到焊缝与电弧偏差。此偏差作为跟踪控制系统的输入条件,依据控制算法进行处理,最后获得驱动信号控制焊炬运动,实现焊缝跟踪过程实时控制。 图像采集卡 图像预处理 焊缝识别 控制器 驱动系统 焊机控制 工件 激光器摄像机 滤光片 焊炬 焊缝 柱透镜 图1 系统构成 二、焊缝自动跟踪硬件设计 1.激光器 在本系统中决定采用半导体激光器。半导体激光器是以半导体为工作介质,具有超小形、高效率、结构简单、价格便宜、工作速度快、波长范围宽等一系列优点。本视觉系统中采用的激光器是红光一字线激光器,由点激光二极管发光通过一柱透镜变换成直线形的激光条纹。 有文献通过测量MIG焊弧光的光谱范围,提出弧光的范围为150~970nm。通过比较弧光波长与普通激光二极管波长,认为弧焊传感器中所用激光二极管的中心波长最好为467nm,594nm,610nm,632nm和950nm。从而可选择适当波长的激光感器以减少弧光对

激光焊接机五大组成模块讲解讲解

激光焊接机五大组成模块讲解 1、设备整体介绍: 激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。TY-LF-260型激光焊接实训机采用恒流脉冲式激光电源、灯泵浦Nd:YAG固体激光器、进口三菱PLC运控系统和高精度二维执行机构等核心模块组成。产品整机一体化机身结构,有功能集成度高、操作人性化设计、传动系统稳定、焊接加工效率高等特点,可完成电子、机械器件焊接加工,广泛应用于航天、通讯、电子、汽车制造等加工制造类行业。 2、激光焊接机五大组成模块的作用及介绍: (1)光学系统是激光焊接设备的核心部分,由灯泵浦Nd:YAG固体激光器、谐振腔模块、激光指示定位系统、扩束系统和聚焦系统组成。激光输出的好坏直接影响到激光焊接加工效果,因此激光器及整机激光光路的调试方法是学习阶段和实际应用当中必须掌握的技能。通过对此模块的仿真实训,可以使学员全方位了解激光焊接设备中光学系统的组成及工作原理,各光学器件的结构与调试方法。 ◆激光器:焊接设备激光器为灯泵浦Nd:YAG固体激光器,由激光金属腔、泵浦氙灯和 Nd:YAG激光晶体组成。其中激光金属腔为上下分体式全腔水冷式结构,全镀金面反射瓦块,光学反射率高,有助于激光反射集中,输出光束能量强;激光器泵浦源为强亮度高压氙灯,脉冲式出光激励激光晶体产生激光,使用寿命长;激光器工作物质为Nd:YAG 激光晶体。 ◆谐振腔:激光设备中光学谐振腔指的是全反膜片镜架和半反膜片镜架之间的组成区 域,当然其中包含激光腔体;谐振腔是产生激光不可或缺的重要部分,通常谐振腔的长度直接影响到激光输出的光束质量及功率能量的大小;对于激光设备而言,谐振腔的最佳长度一般在≥4倍的激光器腔长的距离(例:激光腔体有效腔长为130mm,则谐振腔的长度为≥520mm较为合适;具体效果以实际应用情况为准)。 ◆基准光定位系统:基准光是激光光路调试及加工应用当中的重要部分,激光设备当中 一般会采用波长为635nm-650nm的红光点状激光器作为光学基准定位,此激光器定位精准,且输出功率小,光束集中不易发散,作为激光设备整体光路调整及加工的指示定位光,实际应用效果极佳。 ◆扩束系统:激光焊接设备中的扩束系统采用的是2.5倍的光学扩束镜,扩束镜通过将 主光路输出的激光束进行准直、扩束后,可将原有的输出激光光斑扩大至原来的2.5倍,使之光束模式更好,能量更为集中;准直之后的激光束经过聚焦后可得到能量更为集中的精细光斑。 ◆聚焦系统:激光焊接设备中的聚焦系统是由45°导光反射镜、聚焦镜片、调焦输出筒 和吹气组件所组成;经过准直扩束后的激光光束先经过45°导光反射镜,被折射到加工平台,再由聚焦镜片将激光束聚焦到能量最为集中的状态进行焊接加工;调焦输出筒和吹气组件是在实际焊接应用中起到焦距调整和辅助气体保护的作用。 (2)控制系统是激光焊接设备的重要部分,由控制器模块、控制电路、功能控制面板、等组成。此系统完成激光设备的逻辑功能控制、电气控制及电器电压输出、执行程序编辑、自动加工应用等功能。通过对此模块的仿真实训,可以使学员全方位了解激光焊接设备中电气控制系统的组成及工作原理,各电子元器件的结构与调试方法。 ◆控制器模块:激光焊接设备中的控制器部分是整个电气控制电路中的核心器件,一般 采用三菱Fx2n-20GM型PLC微型电脑控制器、SMC-6480型运动控制器等型号的控制器; 此类控制器功能强大,能够完成整机执行程序的编辑及逻辑控制和整机自动加工,一般

汽车激光焊接常见缺陷及解决方案修订稿

汽车激光焊接常见缺陷 及解决方案 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

汽车激光焊接常见缺陷及解决方案 摘要:目前参照标准不统一,对于汽车行业自动化程度较高的加工,建立统一的工艺标准,有利于设备的推广。文章后部分析总结常出现的缺陷,并给出解决方案。 一、国外激光焊接汽车标准 关于大众汽车的激光焊接标准 1、板材要求参考DIN 18800 Part7,,或DVS Code of Practice 0705,。适用碳钢板板材厚度~3.0mm,板材结构承受静载。板材包括焊缝接头类型,材料种类(参考DIN EN ISO13919-1) 2、激光焊接焊缝按照要求进行一些强制性的检测,焊缝横截面外观尺寸参考DIN 32511进行,主要包括余高、熔深、熔宽、焊接深度、板材厚度等,参见图1。 图1 激光焊接横截面尺寸 3、激光焊接要求 参照DVS 3203 Part 3,材料分成冷轧钢板( DIN 1623 Part 1,即EN10027)、轧带钢(DIN 1624,即EN 10027),热轧带钢板(C<%,TL 1111)、冷轧窄带板(参见DIN 17100,即EN 10027),对于钢板中碳含量大于%,或锌层厚度大于,需要咨询工程师。 4、焊缝设计 焊缝可焊性主要考虑三个因素:设计,材料和生产。焊缝的主要设计特性包括负载特性、焊缝参数、装夹、工件的可容允度、焊后处理等,参见DIN 8528 Part 1。 设计布局(参见DVS 3203-4) 主要考虑接头类型(对接、角接、搭接、叠焊、卷边等)、焊缝类型(包括位置等信息)如果是镀锌板,平板对接间隙控制在 ~0.1mm,角焊缝单边角度大于10°。 工艺和质量保证 焊缝质量参见EN 729 Part 1 ,全面的质量要求参见EN 729 Part 2。 当没有明确说明时,可参见通用标准EN 25817 和En ISO 13919-1,一般情况下满足B级要求。 评价标准:外部缺陷或成型标准参见EN 970,用五倍放大镜观察焊缝成型即可。 破坏性试验:如图所示未熔合是焊接缺陷中的一种。 a 激光焊接缺陷 b 叠焊横截面尺寸 c 搭接横截面尺寸

激光相位测距仪设计

课程设计报告(2014—2015年度第一学期) 题目:激光相位测距仪设计 院系:物理与电子信息工程学院 姓名: 学号: 专业:光信息科学与技术 指导老师: 2015年01月03日

目录 1.设计目的与任务 (3) 2.相位式激光测距仪的实现原理 (4) 3.激光测距仪的原理方案 (6) 3.1 直接测尺频率 (6) 3.2 间接测尺频率 (6) 4.测距精度的分析 (9) 4.1 误差分析 (9) 4.2精度分析 (10) 5.总结 (12) 6.参考文献 (12)

1.设计目的与任务

课程设计是学生理论联系实际的重要实践教学环节,是对学生进行的一次专业训练。通过课程设计使学生获得以下几方面能力,为毕业设计打下基础。 1、进一步巩固和加深学生所学的专业理论知识,培养学生设计、计算、绘 图、计算机应用、文献查阅、报告撰写等基本技能; 2、培养学生独立分析和解决工程实际问题的能力; 3、培养学生的团队协作精神、创新意识、严肃认真的治学态度和严谨求实 的工作作风。 光电子技术基础课程设计是在学生已经完成光电子技术基础课程教学之后所进行的综合性设计过程。其意义在于进一步巩固、加强课程的教学效果,并将这些知识真正应用于实际的设计过程中。根据设计内容要求,完成方案论证,完成一类光电仪探测器特性实验测试开发;或利用光电探测器设计测试装置针对一物理量进行测量;或利用光电系统进行信息的传输;或能根据工程条件设计一光电技术的具体应用。写出完整的设计报告,设计报告(论文)字数要求不少于3000字,文字通顺,书写工整。 2.相位式激光测距仪的实现原理 相位测量一般采用差频测相技术。差频测相的原理如图2.1所示 2

激光测距仪使用教程

美国LaserCraft高精度激光测距仪-Contour XLRic型,这款激光测距仪是高精度和远量程的结合体,是目前市场性能最好的一款手持激光测量系统。它能成功地在保持良好精度的前提下测量以下目标到前所未有的距离:175米到电力线,400米到电线杆,800米到建筑物。同时,它是一款坚固防水的仪器,遇到下雨,下雪,大雾或沙尘暴天气时,您只把工作模式选择到“坏天气”模式,您的工作就不会受到任何影响。在坏天气下使用它,就如同在好天气下使用一样方便,好用。如果装配了三脚架,它就可以用来进行更远距离的精确测量和进行精密的倾斜测量。 Contour XLR采用最新激光技术,小巧、轻便、使用方便,可准确测量目标距离。有恶劣天气工作模式保证仪器在仪器在雨、雪、雾、沙尘暴天气条件下仍可可靠工作。仪器配备HUD显示器,可边瞄准边测量。是建筑结构规划等通用距离测量的得力仪器。最大测量距离1850米,精度0.1米。 Contour XLRi具有XLR系列的全部特点,同时增加360度倾角传感器。有六种工作模式,分别是距离、角度、水平距离、垂直距离、二点高度、三点高度。有串行口,可通过计算机或数据记录器记录数据。典型应用:矿山地形测量、森林资源调查、倾斜测量、高度测量、水平杆测量、塔高测量。 Contour XLRic将XLRi和GPS以及数据采集器结合起来,可测量不易达到目标的参数。内置软件可计算树高、倾斜、面积、周长、不见线的长度、水平距离等。XLRic内部有数字罗盘和倾角传感器,是测绘的得力仪器。

ContourMAX最大测量距离达到3000米,重仅1.6公斤,首/末目标可选,门控能力、恶劣天气模式、手持/平台安装可选。典型应用:火灾控制系统、遥测、GPS偏移测、航空测量等。和Contour 系列手持激光测量系统中的Contour XLRi比较起来,Contour XLR ic在内部又集成了一个高精度磁通量数字罗盘。配合高精度磁通量数字罗盘,XLR ic在功能就比XLR和XLRi多了不少。有了Contour XLRic,您就可以把它和您的GPS系统连接起来,去测量那些无法到达或不容易到达的地方的坐标信息,省时又省钱。或者您也可以使用它内置的软件计算:树高,倾斜度,面积,周长,空间线段的长度,水平距离,高差等等数据。由于Contour XLRic配置了数字罗盘和倾斜角度测量仪,所以它完全可以被看作是一个手持式全站仪,可以协助您进行测绘和测量工作。一级人眼安全的激光测距仪精确地向您报告以下测量数据:距离,方位,倾斜角。技术特点-测量距离到: 1850米;-测量精度达到:10厘米;-倾斜角度测量;-方位角测量;-周长测量;-面积测量;-电力线高度和垂度测量;- 3D空间尺寸测量;-连接GPS工作;-高度测量功能;-“点到点”斜距测量;-水平距离测量和垂直距离测量;-独特的坏天气模式:一般的测距仪在天气不好的情况下,测量的距离往往会大大缩短,甚至无法工作。Contour系列激光测距仪的“坏天气模式”消除了这种现象。当天气情况不好的时候,比如:多云,大雾,扬尘,潮湿等,启动该模式,测量起来就和好天气时测量一样轻松快速!工作模式(详细功能)模式一标准测量模式:该模式测量仪

激光测距系统设计

本科生毕业设计(论文) 开题报告 题目:激光测距系统设计 姓名:黄侠 学号:201006060118 指导教师:吕岑 班级:光信101 所在院系:电气与信息工程学院

课题名称激光测距系统设计 课题来源科研课题课题类型工程设计类指导教师吕岑 学生姓名黄侠学号201006060118 专业光信息科学与技术 一、课题的意义以及国内外发展状况: 课题的意义: 激光与普通光源有显著的差别,它利用受激发射原理和激光腔的滤波效应,使所发射的光束具有一系列新的特点:激光有小的发散角,即所说的方向性好或准直性好;激光的单色性好,即相干性好,激光的输出功率有限,但是功率密度很高,一般的激光亮度要比太阳表面的亮度大。在激光问世以前,人们没有什么办法来获得强相干光。激光技术出现后,很快被应用到各种测量(大地测量、地形测量、工程测量、航空摄影测量以及人造地球卫星的观测和月球的光学定位等航天测量)中。与此同时,现代电子技术的飞速发展和光电器件性能的不断提高,使激光测距仪成为距离测量的主要仪器之一。与其它测距技术相比,激光具有角分辨率高、抗干扰能力强,可以避免微波贴近地面的多路径效应和地物干扰问题,并且具有天线尺寸小、质量轻、结构小巧、和安装调整方便等优点,激光测距仪是目前高精度测距最理想的仪器之一。由于以上各方面的原因,使得激光测距在测量领域得到了青睐,并被迅速推广。 激光测距仪的研究应用在国民经济和国防建设中具有非常重要的意义。激光测距的精度与操作者的经验和被测距离无关,误差仅取决于仪器本身的精度。用激光测距对卫星进行精密测轨,精度已达l cm,日本用于预防地震的长距离监测系统,全程84 km,误差小于l mm。军事上装备的激光测距仪,重量一般为10 kg左右,最小的只有0.36 kg,体积只有香烟盒那么大,激光由于方向性好,所以可以不用巨大的天线就可以发射极窄的光束。激光测距不仅分辨率高,而且具有抗干扰能力强的窄光束和短的脉冲宽度,不仅使横向和纵向目标分辨率大大提高,而且不受电磁干扰和地波干扰。 由于激光与激光测距技术很多优点的存在,本课题意在研究出相位法激光测距的光学系统。 国内外发展现状: 国外发展现状 20世纪中期,激光测距机是激光器在军事上最早应用的项目。世界上第一台激光测距机于1961年诞生在美国休斯飞机公司,称为柯利达I型.经过30年的发展,军用激光测距机已更新了两代,研制发展了三代。第一代激光测距机采用发射0. 6943,cun红外红宝石激光器和光电倍增管探测器,是最早问世的激光测距机.20世纪70年代初期少量装备部队,如美国的AN/GVS-3、日本的70式,因其隐蔽性差、效率低、体积大、重量重、耗电多,很快便被第二代激光测距机取代。第二代激光测距机采用发射 1. 06,tnn近红外钦激光器(主要是Nd:YAG激光器,少数为钦玻璃激光器)和硅光电二极管或硅雪崩光电二极管探测器。第二代比第一代隐蔽性好、效率高、小巧、耗电少,因此第二代激光测距机的小型化研制进展迅速。第三代激光测距机,即人眼安全的激光测距机。目前已研制成工作波长为10. 6μm和1. 54μm 的三种不同类型的各种型号的人眼安全激光测距机,己进入生产和应用阶段。与此同时,激光测距技术也逐渐应用到民事领域。从20世纪70年代初至今的近30年,国外许多大学、研究机构和公司也开展了这方面的研究工作。

激光测距仪品牌大全

激光测距仪品牌 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一.激光测距仪的品牌 室内用的手持式短距离激光测距仪,其实主要就两个品牌,徕卡和博世,这两个品牌其实差不多,选择一款适合自己的型号和适合自己的价格就可以了。 长距离的望远镜测距仪,目前最为知名的品牌也是世界排名前四大品牌是图雅得,博士能,奥尔法和尼康这四个品牌,下面简单介绍一下这4个品牌: 1. 图雅得 全球长距离望远镜式激光测距仪第一品牌,已经连续多年蝉联销量第一的宝座。 图雅得激光测距仪主要特点是操作简单,测量精准,测距速度超快。 另外图雅得在多功能测距仪上面拥有巨大的优势,在技术上是另外品牌无法抗衡 了,在多功能激光测距仪方面拥有多达20项专利技术。 图雅得是目前唯一一个可以生产,测距+测高+测角+水平测距+两点测高+连续 测距+连续测高+连续测角+连续测水平距离机型的厂家。如果你需要选择多功能 测距仪,那图雅得有可能是您最好的选择。 图雅得在双筒测距仪上优势也非常明显,其BP系列双筒测距仪长期位居全球双

筒测距仪销量冠军。 2. 博士能 历史最为悠久的望远镜式激光测距仪品牌,在2006年前一直是全球望远镜式激光测距仪第一品牌,虽然近几年被图雅得所取代,退居第二。但是2012年,博士能在全球发布了其最新的激光测距仪产品:博士能201965和博士能205107,加上其全球单品总销量第一的ELITE 1500(205100),大有在2013年赶超图雅得的趋势。 博士能在2013年前,主要销售其测距仪产品205106销量表现一般,虽然205100的销量突出,但是仅仅依靠一款ELITE 1500的销量,很难维持其品牌总销量第一的位置,以前几年销量一路下滑成为全球第二品牌。 博士能新产品201965采用了最新的ESP技术,大大提高的测距仪的测量距离,测量精度,以及抗干扰能力,在全球销售中取得突出表现。而其优势产品ELITE 1500(205100)依然保持出强劲的销售势头。使得其2013年有能力和图雅得相抗衡。 博士能测距仪一直以做工精美著称,另外博士能测距仪在高尔夫领域拥有非常高的美誉度,其独特的高尔夫功能,成为高尔夫爱好者的首选品牌。 3. 奥尔法 全球红外夜视仪领导品牌,进入激光测距仪领域时间不到15年,但是增长速度非常迅猛,已经连续三年荣登全球激光测距仪季军的位置。 奥尔法激光测距仪,以超高性价比成为很多客户的首选,奥尔法测距仪采用非常

激光三角测距实验第八组报告

激光三角测距实验 ——第八组 一、实验目的 学习激光三角测距基本原理;了解激光三角测距的应用;搭建激光三角测距系统,实现测量距离的显示,掌握激光三角测距技术。 二、实验原理 三角位移测量系统是从光源发射一束光到被测物体表面,在另一方向通过成像观察反射光点的位置,从而计算出物点的位移。由于入射光和反射光构成一个三角形,所以这种方法被称为三角测量法,又可按入射光线与被测工件表面法线的关系分为直射式和斜射式。 三、摆放方式 直射式直射式三角法测量等效光路如图 1 所示。激光器发出的光线,经会聚透镜聚焦后垂直入射到被测物体表面上,物体移动或表面变化导致入射光点沿入射光轴移动。接收透镜接收来自入射光点处的散射光,并将其成像在光点位置探测器(如PSD、CCD)敏感面上。 若光点在成像面上的位移为x′,利用相似三角形各边之间的比例关系,有 化简后可求出被测面的位移

式中,a 为激光束光轴和接收光轴的交点到接收透镜前主面的距离;b 为接收透镜后主面到成像面中心点的距离;α 为激光束光轴与接收透镜光轴之间的夹角;β 为探测器与接收透镜光轴之间的夹角。 斜射式 图3.2 为斜射式三角测量原理图,激光器发出的光与被测面的法线方向成一定角度入射到被测面上,同样用接收透镜接收光点在被测面的散射光或反射光。 若光点的像在探测器敏感面上移动x′,则物体表面沿法线方向的移动距离为x,利用相似三角形的比例关系,参照前一个公式,用x/cosγ 替换x,α+γ 替换α,有 式中,α 为激光束光轴与被测面法线之间的夹角;γ 为成像透镜光轴与被测面法线之间的夹角;β 为探测器光轴与成像透镜光轴之间的夹角。当γ 为零时,属于斜入射直接收式。 直射式和斜射式特点比较 斜射式可接收来自被测物体的正反射光,比较适合测量表面接近镜面的物体。λ直射式接收散射光,适合于测量散射性能好的表面,如果表面较为平滑,则可能由于耦λ合到光电探测器的散射光强过弱,使测量无法进行,也就是说可能存在测量盲区。斜射式入射光光点照射在物体不同的点上,因此无法直接知道被测物体某点的位移情况,λ而直射式可以。当然,斜射式也可以通过标定的方法得出位移。直射式光斑较小,光强集中,不会因被测面不垂直而扩大光斑,而且一般体积较小。斜λ射式传感器分辨率高于直射式,但它的测量范围较小,体积较大。斜入射直接收式传感器的体积和直入射式相当,并且分辨率高于直射式,因此较为常用。

激光测距仪系统设计毕业设计论文

毕业设计(论文) 题目:激光测距仪系统设计(英文):System Design of a Laser Range Finder 院别:机电学院 专业:机械电子工程 姓名: 学号: 指导教师: 日期:

激光测距仪系统设计 摘要 本次激光测距仪系统设计采用的是相位式测距法,相位激光测距又称调幅连续波激光测距通常是基于对目标回波相位的探测,在诸如军事、航空、工业和体育等领域已经取得广泛的应用。相位激光测距仪的发展趋势是小型化、高可靠性、便于与其他仪器集成。 本文介绍了相位式激光测距仪的测距原理,提出了测距系统的具体设计方案。设计围绕接收和发射系统的性能开展,主要包括了锁相环、分频器、信号整形与放大电路、弱信号检测滤波与放大电路、混频器、鉴相测相器、信号处理与显示电路、单片机89C51 的软硬件设计和C语言软件编程等问题。利用Proteus软件对系统电路进行绘制以及利用CAD设计了系统机械的结构。 关键词:激光测距;相位;锁相环;混频器;分频器;单片机

System Design of a Laser Range Finder ABSTRACT The phase-ranging method is adopted in the system design of the laser range finder. It is also known as amplitude modulation of continuous wave laser ranging and is usually based on the detection of the phase of the target echo, has been widely used in many fields such as military, aerospace, industrial and sports etc. This thesis first introduces ranging principle of phase-shift laser range finder and proposes the concrete design scheme. Design is carried out around the performance of the receive and transmit systems, which includes the designs of phase-locked loop, frequency divider, signal shaping && amplifying circuit, weak signal detection filter && amplifier, frequency mixer, phase discriminator && detector, signal processing and display circuit and the hardware && software of the 89C51 microcontroller, and C language software programming. Proteus software is used to draw the circuits in the system drawing and CAD is applied to design the mechanical structure of the system. Keywords:Laser ranging; Phase; Phase locked loop; Frequency mixer; Frequency divider; Single chip microcomputer

激光焊接注意事项及接操作方法

一.安全注意事项 该设备属于四类激光产品,能产生漫反射,能引起人身伤害或火灾,在使用本机器之前,请仔细阅读以下安全注意事项,以确保能安全、正确的操作本机器。 1.本机供市电380V,箱内有高压,开机状态下不可触摸机器内部。 2.不准私自拆卸、安装、改造焊接机。 3.把焊接机放在水平和安全的地方。 4.接地,如果不接地,发生异常的时候你可能会触电。 5.不要窥视或触摸激光。 6.在操作过程中请佩戴好防护眼镜、防护手套、长袖夹克、皮革围裙等保护眼 睛和皮肤免受飞溅物的伤害。 7.避免激光直射皮肤。 8.不要触摸正在焊接或者钢焊接完成的工件。 9.只能使用给定的电缆。 10.不可损坏电源线和各种连接线。 11.若机器出现非正常情况,请立即按下急停按钮关机停止使用。 12.戴心脏起搏器的人严禁靠近焊接机,焊接机工作时会产生磁场,可能影响到 起搏器的正常工作而危害患者生命。 13.不要把水泼在焊接机上,水洒在焊接机上可能引起焊接机短路或者起火。 14.焊接机上不可放盛水的容器,水洒在焊接机上可能引起触电或火灾。 15.焊溅物可能点燃易燃品,所以焊接时远离易燃品。 16.为避免火灾,禁止让激光照射易燃材料。 17.除了焊接指定工件,焊接机不能移作他用。 18.为了以防万一,焊接机旁要放置灭火器。 19.焊接机要定期维护和保养,以防止任何潜在的危险。

二.使用注意事项 1.配备具有激光和焊接机的相关知识与经验的担当人员,担当人员不仅要掌握 焊接机的安全锁钥匙和密码,而且要指导操作者如何使用焊接机。 2.建立专用的激光焊接区,同时在焊接区设立“闲杂人员禁止靠近”等相关标 示。 3.把焊接机安装在水平、牢固的地方,不准放在倾斜的地方。 4.请在环境温度为5℃~3 0℃,湿度不大于35%的环境中使用本焊接机,周围 环境温度不应波动过大。禁止在下列环境中使用本焊接机: 有油污的环境;有震动的环境;有腐蚀的环境;高频噪声的环境; 潮湿的环境;含有高浓度碳、氮、硫的氧化物(CO2、NO X、SO X)的环境。 5.在冬天,如果环境温度降到0℃以下,水箱里的水就会结冰,水箱可能冻破。 所以特别小心在冬天要保证焊接机的环境温度不要低于0℃。如果环境温度降到0℃以下,请先排干水箱里的水,同时可以参考相关章节的介绍。 6.如果环境温度变化剧烈,在YAG激光棒和镜片上会形成水蒸气,这会影响焊 接机的使用。所以,尽可能阻止环境的剧烈变化。如果已经形成水蒸气,那么开机后先预热一会儿再使用机器。 7.如果焊接机的机壳有污点或水,请用干布或潮湿的布擦干。如果污点擦不干 净,可用中性的清洁剂或酒精擦拭干净。不可用汽油或油漆稀释剂擦拭机器。 8.禁止把螺丝或硬币等放在焊接机的内部或外部,这样可能引起短路而损害机 器。 9.请用手轻轻操作按钮,不要用螺丝刀等工具接触按钮。尤其不要用尖锐的东 西接触触摸屏,这样会造成触摸屏的永久性损害。应该用手指或专用的触摸笔操作触摸屏。 10.按钮和开关不要连续操作,保证每次只按一次。反复的开关对机器的寿命有 影响。 11.控制盒和焊接机之间是用连接线连接起来的。拆下来之后,下次使用之前, 确保所有的连接线已经复原。同时,不要让连接线当着光纤。 12.严禁无效的激光防护罩联锁开关。 13.必须安装符合欧盟安全指令的工作台才能启动本机。

激光测距系统设计

目录 摘要 引言 (3) 1.1国内外研究现状 (3) 1.1.1国外研究现状 (4) 1.1.2国内研究现状 (5) 2.1课题主要研究内容 (5) 2.2相位法测距原理 (7) 3.1ΔΦ的测定 (11) 3.1.1 差频法测多普勒频移 (11) 4.1影响测量精度的因素及处理办法 (15) 5.1大气折射率误差 (18) 优点 (19) 参考文献

激光测距系统设计 摘要 本文主要介绍相位法激光测距基本原理, 详细论述了相位差的自动数字测量方法及其引起的误差.对单次检相的精度、频率漂移、大气折射率等对测距误差的影响进行了分析并提出了具体解决方法. 实现结果表明, 采用相位法测距精度可以达到±(5mm+5×10-6D)。 关键词: 激光测距; 相位; 精度 Abstract The authors introduce the basic principle of laser range finding technology based on phase, propound in detail the automatic digital measurement technique of phase difference and its errors, analyze the effect of single phase-picking precision frequency drift and atmosphere refractive index,etc. on laser ranging errors and put forward some special improvement methods The result of laser ranging realization show that 1

光电子课程设计_基于三角测量法的激光测距(DOC)

光电子课程设计: 基于三角测量法的激光测距 摘要:本文先对激光测距的种类及原理进行介绍,其次分析不同种类的优缺点。确定制作测距仪器的制作方向。分析测量当中不同元器件存在的问题,寻找有效的解决方案,重点研究摄像头成像时存在误差的形成原因。根据研究得到的数据,对PC客户端的程序设计进行调整。利用程序尽可能减少由于硬件产生的误差。重点是设计出能确定光点的定位算法,通过对摄像头的定标、激光定位,达到实验数据与实际测量误差在10%以内。最后,提出对作品进行优化和系统功能提升计划 关键词:短距离、低成本、三角测量法 ABSTRACT: In this paper, the principle of laser ranging species and introduced first, followed by analysis of the advantages and disadvantages of different types. Production rangefinder to determine the direction of the production. Analytical measurements among different components of the problems, to find effective solutions to the causes errors in the presence of the camera focused on imaging. According to data obtained from studies on the client PC programming adjustments. The use of procedures to minimize errors due to hardware-generated. Focuses the light spot can be determined to design the location algorithm, through the camera calibration, laser positioning, to the experimental data and the actual measurement error is within 10%. Finally, the work in optimizing system functionality and Enhancement Programme KEY WORDS: Short distance、Low cost 、Triangle measurement

电池顶盖侧焊激光焊接系统方案

电池顶盖侧焊激光焊接系统方案 供应商: 签字代表: 日期: 电池顶盖侧焊激光焊接系统方案

一、客户要求 1、设备要求 要求做一条生产线,用于方形动力电池入壳后的自动传输,自动焊接封口、电池自动传输、自动绝缘电阻测试、自动气密性检测、自动打条码。焊接后产品表面要求平整、焊接牢固、无虚焊。 焊接电池如下图所示。 2、来料状态 (1)电芯入壳,保持架与盖板下端面贴紧重合; (2)盖板四周与壳体周边吻合; 3、 来料材质 AL 4、来料尺寸 二、来料要求: 1、宽度尺寸精度<±0.1mm ; 2、厚度尺寸精度<±0.1mm ; 3、盖子和壳体配合良好 三、技术方案 3.1、方案采用两台焊接机进行焊接,两台检测机进行检测,一条流水线进行电池的传输,流水线分为若干流道,设备总体外形图如图1所示,机器外形尺寸11000mmX2500mmX2000mm(长X 深X 高);

图 1 设备总体外形图 3.2 、焊接方案简介 针对动力电池盒体及端盖的焊接要求,本方案由激光焊接机,电池检测机,在线打标机,自动流水线等单元构成。其功能是依次完成电池的焊接,短路测试,气密性测试,电池打标,NG 品自动剔除等相关工序。 激光焊接机由激光器,激光焊接头,XYZ 三轴数控轴,旋转夹具,二工位驱动轴,随动机构,四关节机械手上下料等各两套构成,其主要作用是:采用双工位上料方式上料,一次性完成方形电池的四面焊接。 电池检测机由短路测试组件,气密性测试组件,转盘组件,四关节机械手上下料,在线激光打标等机构组成,其主要作用是:将流水线上焊接完成后的电池夹持到转盘 自动流水线

激光测距仪

两种激光测距原理传感器介绍 激光飞行时间(Time of flight)距离感测系统 ELD P 和HD P系列激光传感器是一种光电式距离感测器,无需接触即可在物体表面或者在反射目标(比如:反射膜)表面进行测距。 ELD P 和HD P系列构造小巧紧凑,使用更面向于应用的测量技术,因此特别适合于工业运用。 ?可对自然物体和反射目标进行距离测量 ?毫米级的分辨率;高测量速率 ?集成用户指南的终端功能使设置更为简易 ?可自行配置的RS232/RS422接口 ?可选择ASCII文本或二进制数据格式输出,输出可以是单个值或者是连续值,也可选择更平滑的中间值输出 ?可配置的模拟接口4-20mA ?两个可配置的输出口E1和E2 ?集成红色激光指示器 ?自启动功能 这两个系列的激光距离感测器是专门为工业运用而设计,尤其适合于高精度,非直接接触的运用环境,比如测量、定位、填充高度测量等。 传感器由激光二极管发射激光脉冲,光脉冲由物体表面返回。这个反射脉冲被光电测距传感器内的光电二极管感应到。由于光速恒定,根据激光脉冲发出到返回所需要的这个时间间隔便可确定物体距离。这个测量方法被称为TOF(Time of Flight飞行时间)测量法。 返回脉冲可能受到距离和物体表面的较大影响。这个影响可以通过机械或者是电子光圈得到矫正。 机械光圈通过一个灰色滤镜将返回脉冲减弱,在测量前滤镜位置将由电动马达设置好。整个过程最多只需一秒。在测量过程中,机械光圈对快速变动的信号作有一定延迟。

电子光圈则是对返回脉冲进行估算,而不是主动去减弱信号。这里没有机械元件运动,所以测量前无需等待时间。测量过程中信号可以被即时控制。但是因为估算并不精确,所以测量结果的误差也相对大。 三角分割测量距离感测系统 ODS传感器是非接触式的激光距离和测厚感测器。 该传感器是集发射器、接受器和电子信号处理器一起的单个器件。物体的距离将通过三角剖分过程确定下来。激光束在被测物体上形成一个光斑,这个光斑的影像将被一个条形CCD摄像机所捕获,由被照亮的CCD像素点来确定物体距离。 物体距离将通过如下3种接口输出: 1. 数字信号通过RS-232(RS422可选)接口输出数字信号。测量值将以500或1000Hz(2000Hz可选) 的频率输出。 2. 模拟信号1-9伏特 3. 模拟信号4-20毫安 对于厚度测量,将同时使用两个相互连接的相同型号的ODS传感器。两个传感器组成一个测量单位并只输出一个

激光焊接机

焊接机培训大纲 课程目标: 本课程帮助学员学习焊接的工艺特点,结合焊接的工艺讲解激光焊接使用的焊接参数,讲解设备结构特点。使学员能够对公司的焊机设备有一个全面的了解。 课程对象 初级合格销售工程师 课程讲师 刘勇\何放 课程时间 2小时 课程大纲: 第一章 焊接原理 1.1 激光器原理 1.2 激光焊接原理 1.2.1 不同材料吸收特性的比较 1.2.2 激光焊接工艺参数介绍 第二章 焊接机结构以及组成 2.1 焊接机光路结构 2.1.1 激光器光路组成 2.1.2 外光路系统组成 2.2 焊接机电源组成 2.2.1 激光电源结构以及组成 2.2.2 焊接机控制组成 第三章 技术参数 各种机型技术参数对比图 第四章 产品特点 4.1与竞争对手相比优势 4.1.1光路结构优势 4.1.2电源性能优势 4.2与竞争对手相比劣势

4.2.1 系统集成能力 第五章 目标市场及主要应用 5.1目标市场 5.1.1 使用主要行业 5.1.2 潜在行业 5.2主要应用 结合样品介绍焊接机的应用 第一章焊接原理 1.1 激光器的原理 激光器的基本结构示意图 谐振结构图

Nd3+-YAG激光器 (Nd3+- Y3Al5O12)钇铝石榴石晶体 可连续/高重频率 1.2激光焊接的原理 在我们实际生活中,各种部件是由材料组成。 不同的材料,其本身的反射激光的特性决定了激光对其起作用的大小。 反射率越高,吸收的光能越少。反之,则吸收的光能越多。 熔池的形成:金属在激光作用下表面将发生一系列的变化,在其表面被激光加热并迅速象深处传导,在激光功率密度一定的情况下表面将溶化,部分在激光功率密度高时被瞬间汽化,在工件表面形成熔池。 焊缝的形成:在焊接过程中,通过工件相对激光移动,使得熔化金属沿某一个角度加速,液体金属传热作用温度迅速降低,液体金属形成焊缝。

激光测距仪原理

激光测距仪激光测距基本原理 激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离;c——光在大气中传播的速度;t——光往返A、B 一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪 相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间。 相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。 若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为: t=φ/ω 将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω

在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具。

相关文档
最新文档