γ能谱实验

γ能谱实验
γ能谱实验

γ能谱实验

和原子的能级间跃迁产生原子光谱类似,原子核的能级间产生γ射线谱。测量γ射线强度按能量的分布即γ射线谱,简称γ能谱,研究γ能谱可确定原子核激发态的能级,研究核蜕变纲图等,对放射性分析,同位素应用及鉴定核素等方面都有重要的意义。在科研、生产、医疗和环境保护各方面,用γ射线的能谱测量技术,可以分析活化以后的物质各种微量元素的含量。测量γ射线的能谱最常用的仪器是闪烁谱仪,该谱仪在核物理、高能离子物理和空间辐射物理的控测中都占有重要地位,而且用量很大。

一实验目的

(1)学习用闪烁谱仪测量γ射线能谱的方法

(2)要求掌握闪烁谱仪的工作原理和实验方法,

(3)学会谱仪的能量标定方法,并测量γ射线的能谱

二实验原理

根据原子核结构理论,原子核的能量状态时不连续的,存在分立能级。处在

能量较高的激发态能级E

2上的核,当它跃迁到低能级E

1

上时,就发射γ射线(即

波长约在1nm-0.1nm间的电磁波)。放出的γ射线的光量子能量hγ= E

2 - E

1

此处h为普朗克常熟,γ为γ光子的频率。由此看出原子核放出的γ射线的能量反映了核激发态间的能级差。因此测量γ射线的能量就可以了解原子核的能级结构。测量γ射线能谱就是测量核素发射的γ射线按能量的分布。

闪烁谱仪是利用某些荧光物质,在带电粒子作用下被激发或电离后,能发射荧光(称为闪烁)的现象来测量能谱。这种荧光物质常称为闪烁体

1. 闪烁体的发光机制

闪烁体的种类很多,按其化学性质不同可分为无机晶体闪烁体和有机闪烁体。有机闪烁体包括有机晶体闪烁体,有机液体闪烁体和有机塑料闪烁体等。对于无机晶体NaI(Tl)而言,其发射光谱最强的波长是415nm的蓝紫光,其强度反映了进入闪烁体内的带电粒子能量的大小。应选择适当大小的闪烁体,可使这些光子一射出闪烁体就被探测到。

2. γ射线光子与物质原子相互作用的机制主要有以下三种方式:

1)光电效应

当能量为Eγ的入射γ光子与物质中原子的束缚电子相互作用时,光子可以把全部能连转移给某个束缚电子,使电子脱离原子束缚而发射出去,光子本身消失,发射出去的电子称为光电子,这种过程称为光电效应。发射出光电子的动能

E e=E r?B i

B i为束缚电子所在可层的结合能。原子内层电子脱离原子后留下空位形成激发原子,其外部壳层的电子会填补空位并放出特征X射线。例如L层电子跃迁到K层,放出该原子的K系特征X射线。

2)康普顿效应

γ光子与自由静止的电子发生碰撞,而将一部分能量转移给电子,使电子成为反冲电子,γ光子被散射改变了原来的能量和方向,计算给出反冲电子的动能为

式中m

c2为电子静止质量,角度θ是γ光子的散射角,见下图所示,由图看出0

反冲电子以角度φ出射,φ与θ间有以下关系

由式(2)给出,当θ=1800时,反冲电子的动能E e有最大值,此时

这说明康普顿效应的反冲电子的能量有一上限最大值,称为康普顿边界E

C 3)电子对效应

c2时,γ光子从原子核旁经过并受到核的库仑场作用,当γ光子能量大于2m

可能转化为一个正电子和一个负电子,称为电子对效应。此时光子能量可表示为两个电子的动能与静止能量之和,如

c2 = 1.02 MeV

其中2 m

综上所述,γ光子与物质相遇时,通过与物质原子发生光电效应,,康普顿效应或电子对效应而损失能量,其结果是产生次级带电粒子,如光电子,反冲电

子或正负电子对,次级带电粒子的能量与入射γ光子的能量直接相关。因此,克通过测量次级带电粒子的能量求得γ光子的能量。

闪烁γ能谱仪正是利用γ光子与闪烁体香菇作用时产生次级带电粒子,进而由次级带电粒子引起闪烁体发射荧光光子,通过这些荧光光子的数目来推出次级带电粒子的能量,再推出γ光子的能量,以达到测量γ射线能谱的目的。

闪烁谱仪的结构框图及各部分的功能如下图所示

其工作过程是当γ射线射入探头内的NaI(Tl)闪烁晶体时在晶体内部产生电离,把能量交给次级电子,在闪烁体内引起的荧光,照射支光电倍增管的光阴是,打出光电子,再经光电倍增管次阴级多次倍增所被阳极收集,在光电倍增管阴极负载上输出电压脉冲,此脉冲幅度大小与被测的γ射线能量成正比。脉冲信号通过放大器放大后进入单道或多道分析器,从而获得γ射线的能谱。本仿真实验用的是单道分析器。

铯137的γ射线能谱如下所示

E b为背散射峰,一般很小,E c为康普顿散射边界E e为光电峰,又称全能峰,对于137Cs此能量为0.661Mev。

能量分辨率是γ能谱仪的重要参数。其意义如下图

定义能量分辨率η为

△V为半高宽度,V为光电峰脉冲幅度。

三实验仪器

单道脉冲幅度分析器,闪烁探头,多道脉冲分析器和计算机数据处理系统,光电倍增管,闪烁谱仪。

四实验内容及步骤

实验内容

1.熟悉各仪器的使用方法,用多道分析器观察137Cs的γ能谱的形状,识别其光

电峰及康普顿边界等。改变线形放大器的放大倍数,观察光电峰位置变化的规律。

2.测量137Cs的γ能谱光电峰与线形放大器放大倍数间的关系。要求至少取10个

不同数据并作最小二乘法拟合给出相关结果。

3.测量137Cs的60Co放射源的γ射线能谱,用已知的光电峰能量值来标定谱仪的

能量刻度,然后计算未知光电峰的能量值。提示60Co的γ射线能量约为137Cs 的γ射线能量的两倍,要求在多道分析器的横轴道址范围内使二者均能显示出来,需选择合适的放大倍数,如果放大倍数太大会使60Co的光电峰逸出道址范围:如果放大倍数太小又不能充分利用多道分析器给定的道址而降低了能量分辨率,因此需要考虑怎样才是合适的放大倍数?

4.汇出137Cs和60Co源的γ能谱图,给出谱仪的能量标定并计算60Co源的γ

射线能量。

实验步骤

I仪器调节

(1) 打开高压电源开关。

(2) 按实验要求调节高压值。

(3) 打开线性率表开关,调节放大倍数。每改变一次放大倍数值,不断改变

阈值,同时从线性率表中观察Cs137的峰位,直至满足实验要求。

(4) 按实验要求调节定标器的工作选择、时间选择旋钮。

(5) 按实验要求调节道宽。

(6) 调节完成,双击仪器上方的黄色标题栏,关闭仪器,返回实验室台面。

II进行实验

在主菜单上选择“开始实验”,如果仪器调节正确,将弹出数据表格,请继续以下实验步骤,否则,系统将给出相应提示并弹出仪器,请继续调节。

实验步骤:

(1) 单击定标器上的计数按钮,开始计数。

(2) 计数完毕,定标器自动停止,在实验数据表格中单击“记录数据”按钮,

将此数据记录,单击“能谱图”,可观察描点。若对本次数据不满意,单击“清除数据”按钮,返回第1步。

(3) 适当调节阈值,返回第1步,直至所有数据测定完成。

(4) 单击“能谱图”,观察以描点作图法绘制出的能谱图,将鼠标指针移动

到记录点上,可读出此点所对应的阈值。

五实验数据及处理

能谱图

六思考题

1.用闪烁谱仪测量γ射线能谱时,要求在多道分析器的道址范围内能同时测量出137Cs和60Co光电峰,应如何选择合适的工作条件,在测量过程中该条件可否改变?

答:条件是放大倍数为8.8倍,放大电压足够大,道宽0.2V。

为便于比较,测量过程中条件不可改变

2. 为满足光电峰处计数率相对误差小于2%的要求,怎样从实验中确定计数所用的时间?

答:计数率相对误差小于2%,如果n为光电峰面积,由于统计误差为√n,只要计数时间使峰面积满足:√n/n<2%

也就是峰净面积至少2500个计数。

γ射线的能谱测量和吸收测定_实验报告

γ射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,γ射线产生的原因正是由于原子核的能级跃迁。我们通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用γ闪烁谱仪测定不同的放射源的γ射线能谱。同时学习和掌握γ射线与物质相互作用的特性,并且测定窄束γ射线在不同物质中的吸收系数μ。 【关键词】γ射线能谱γ闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

幼儿园测量教案

幼儿园测量教案 【篇一:幼儿园大班科学教案(精选10篇)】 幼儿园大班科学教案汇总 幼儿园大班数学活动:跳绳计数 设计思路:在运动会跳绳比赛的过程中,孩子们对跳绳计数的结果产生了分歧,原因在于跳绳计数方法不对,计数结果不准确,孩子们觉得不公平。《3—6岁儿童学习与发展指南》提出:5—6岁幼儿已能发现生活中的许多问题都可以用数学方法来解决,并从中体验解决问题的乐趣。为抓住幼儿生活中出现的“真”问题,并以此作为支持幼儿学习和发展的契机,我们设计了这次活动。 活动目的 1.初步感知生活中数学的有用和有趣。 2.尝试运用自己喜欢的方法进行跳绳计数,学习正确计数。 3.能与同伴分享合作,协商解决遇到的问题。 活动准备 1.材料准备:来自幼儿真实生活的录像片段——“跳绳比赛争执瞬间”,记录纸和笔。 2.经验准备:活动前请幼儿和家长一起搜集有关体育比赛的资料,观察了解各种比赛的过程和名次确定的方法;幼儿已有跳绳和跳绳计数的经验。 重、难点分析 1.重点:通过实践,尝试运用自己喜欢的方法进行跳绳计数,在不断增强计数兴趣的过程中学习正确计数。准备运用实践体验法、讨论法与游戏法突破这一重点。 2.难点:能够发现生活中有许多问题都可以用数学的方法来解决。准备运用启发提问法、活动延伸法突破。 活动过程 1.导入活动:观看录像,进行讨论。 师:小朋友们,今天老师给你们带来一段录像,请你们看一看,录像中发生了什么事情?看完录像后提问: (1)录像中的小朋友因为什么事情发生了争执? (2)为什么会出现跳绳计数不清的问题? 2.第二遍录像(慢速播放),便于幼儿观察跳绳速度与计数速度的对应关系,分析现场计数时出现的问题。

γ射线能谱的测量

(一) γ射线能谱的测量 摘要: 本实验将了解闪烁探测器谱仪的工作原理及其使用;学习分析实验测量的137Cs 和60Co γ谱之谱形和γ射线能谱的刻度测定谱仪的能量分辨率,本实验的目的是了解NaI(Tl)闪烁谱仪的原理、特性与结构,掌握NaI(Tl)闪烁谱仪的使用方法和γ射线能谱的刻度。 关键词:γ 射线 Na(Tl)闪烁探测器 能谱图 单道脉冲幅度分析器 引言: 闪烁探测器是利用某些物质在射线作用下会发光的特性来探测射线的仪器。它的主要优点是:既能探测各种带电粒子,又能探测中性粒子;既能测量粒子强度,又能测量粒子能量;且探测效率高,分辨时间短。它在核物理研究和放射性同位素测量中得到广泛的应用。核物理的发展,不断地为核能装置的设计提供日益精确的数据,新的核技术,如核磁共振、穆斯堡尔谱学、晶体的沟道效应和阻塞效应,以及扰动角关联技术等都迅速得到应用。核技术的广泛应用已成为现代化科学技术的标志之 正 文: 实验原理 1.闪烁谱仪结构与工作原理 NaI(Tl)闪烁谱仪结构如图。整个仪器由探头(包括闪烁体、光电倍增管、射极跟随器),高压电源,线性放大器、多道脉冲幅度分析器几部分组成。射线通过闪烁体时,闪烁体的发光强度与射线在闪烁体内损失的能量成正比。带电粒子(如α、β粒子)通过闪烁体时,将引起大量的分子或原子的激发和电离,这些受激的分子或原子由激发态回到基态时就放出光子;不带电的γ射线先在闪烁体内产生光电子、康普顿电子及正、负电子对(当Eγ>1.02MeV时),然后这些电子使闪烁体内的分子或原子激发和电离而发光。闪烁体发出的光子被闪烁体外的光反射层反射,会聚到光电倍增管的光电阴极上,打出光电子。光阴极上打出的光电子在光电倍增管中倍增出大量电子,最后为阳极吸收形成电压脉冲。每产生一个电压脉冲就表示有一个粒子进入探测器。由于电压脉冲幅度与粒子在闪烁体内消耗的能量(产生的光强)成正比,所以根据脉冲幅度的大小可以确定入射粒子的能量。利用脉冲幅度分析器可以测定入射射线的能谱。 由原子物理学中可知γ射线与物质的相互作用主要是光电效应、康普顿效应和正、负电子对产生这三种过程分别如下: (1)光电效应。入射γ粒子把能量全部转移给原子中的束缚电子,而把束缚电子打出来形成光电子。由于束缚电子的电离能E1一般远小于入射γ射线能量Eγ,所以光电子的动能近似等于入射γ射线的能量E光电=Eγ-E1≈Eγ (2)康普顿效应。核外电子与入射γ射线发生康普顿散射,设入射γ光子能量为h,散射

α射线能谱测量

**************************************************************************** 西南科技大学 《α射线能谱测量》报告 设计名称α射线能谱测量 学院 班级 学生姓名 学号 设计日期 2014年12月 2014年10月制 目录 1实验目的 (1) 2实验内容 (1)

3实验原理 (1) α能谱 (1) α放射源 (2) α放谱仪 (3) 探测器测量α射线能谱相关原理 (4) α谱仪的能量刻度和能量分辨率 (4) 4实验仪器、器材 (5) 5实验步骤 (5) 6实验数据记录、处理 (6) 7实验结论 (8) 1实验目的 α衰变中发射的α粒子能量及辐射几率的测量,对于核结构研究具有重要意义。这些核数据的测量通常是用α磁谱仪或半导体α谱仪。而本实验主要从以下几个方面进行: 1、了解α谱仪工作原理与特性 2、掌握α能谱测量原理及测量方法

3、测量获取表中各种放射源在不同探源距下α能谱的数据与图像记录并进行刻度 2实验内容 测定α谱仪在不同源距下α能谱的数据,并通过计算获得相关能量分辨率。同时,进行能量刻度。 3实验原理 α能谱 α粒子通过物质时,主要是与物质的原子的壳层电子相互作用发生电离损失,使物质产生正负离子对,对于一定物质,α在其内部产生一对离子所需的平均能量是一定的(即平均电能w),所以在物质中产生的正负离子对数与α粒子损失的能量成正比,即:E N= W 公式中N为α粒子在物质中产生的正负离子对数目,E是在物质中损失的α粒子能量。如果α粒子将其全部能量损失在物质内,E就是α粒子的能量。 由于α粒子在空气中的射程很短(在T=15℃,P=1大气压时,天然放射性核素衰变产生的α粒子,射程最大为Thc’(212Po) 为,能量最小232Th为),所以测量室应采用真空室,如上图1所示,采用真空泵将测量室抽成真空,这样与探测器接触的α粒子的能量才近似等于放射性核素经过α粒子放出的α粒子的初始能量(近似是因为不可能将测量室抽成绝对真空)。 α粒子在探测器中因电离、激发(由于α粒子的质量很大,所以与物质的散射作用很不明显。α粒子在空气中的径迹是一条直线,这种直线很容易在威尔逊云室中看到。)等效应而产生电流脉冲,其幅度与α粒子能量成正比。电流信号经前置放大器、主放大器放大,出来的电信号通过多道分析器进行数据采集,最后通过计算机采集并显示其仪器谱(实验用α谱仪硬件连接及内部结构框图如图1所示)。仪器谱以α粒子的能量(即脉冲幅度)为横坐标,某个能量段内α粒子数(或计数率)为纵坐标,即可计算样品中各单个核素发射的α粒子的能量与活度。理论上,单能α粒子谱是线状谱,应是位于相应能量点处垂直于横坐标轴的单一直线,但由于α粒子入射方向、空气吸收、样品源自吸收的差异和低能粒子的叠加等原因,实际测得的是具有一定宽度的单个峰,其峰顶位置相应于α粒子的能量,谱线以下的

营养缺陷型菌株的筛选

营养缺陷型菌株的筛选 采用辐射,化学试剂等因素处理细菌,以提高其变异几率,关键步骤是进行营养缺陷型微生物的筛选工作,营养缺陷型是指通过诱变产生的,由于发生了丧失某酶合成能力的突变,因而只能在加有该酶合成产物的培养基中才能生长的突变株。营养缺陷型的筛选与鉴定涉及下列几种培养基:基本培养基(MM,符号为[-])是指仅能满足某微生物的野生型菌株生长所需的最低成分的合成培养基。完全培养基(CM,符号为[+])是指可满足某种微生物的一切营养缺陷型菌株的营养需要的天然或半合成培养基。补充培养基(SM,符号为[A]或[B]等)是指在基本培养基中添加某种营养物质以满足该营养物质缺陷型菌株生长需求的合成或半合成培养基。 营养缺陷型菌株不仅在生产中可直接作发酵生产核苷酸、氨基酸等中间产物的生产菌,而且在科学实验中也是研究代谢途径的好材料和研究杂交、转化、转导、原生质融合等遗传规律必不可少的遗传标记菌种。 营养缺陷型的筛选一般要经过诱变、淘汰野生型、检出和鉴定营养缺陷型四个环节。现分述如下: 第一步,诱变剂处理:与上述一般诱变处理相同。

第二步,淘汰野生型:在诱变后的存活个体中,营养缺陷型的比例一般较低。通过以下的抗生素法或菌丝过滤法就可淘汰为数众多的野生型菌株即浓缩了营养缺陷型。 抗生素法有青霉素法和制霉菌素法等数种。青霉素法适用于细菌,青霉素能抑制细菌细胞壁的生物合成,杀死正在繁殖的野生型细菌,但无法杀死正处于休止状态的营养缺陷型细菌。制霉菌素法则适合于真菌,制霉菌素可与真菌细胞膜上的甾醇作用,从而引起膜的损伤,也是只能杀死生长繁殖着的酵母菌或霉菌。在基本培养基中加入抗生素,野生型生长被杀死,营养缺陷型不能在基本培养基中生长而被保留下来。 菌丝过滤法适用于进行丝状生长的真菌和放线菌。其原理是:在基本培养基中,野生型菌株的孢子能发芽成菌丝,而营养缺陷型的孢子则不能。通过过滤就可除去大部分野生型,保留下营养缺陷型。 第三步,检出缺陷型:具体方法很多。用一个培养皿即可检出的,有夹层培养法和限量补充培养法;在不同培养皿上分别进行对照和检出的,有逐个检出法和影印接种法。可根据实验要求和实验室具体条件加以选用。现分别介绍如下:

固体密度测量实验教案

固体密度测量实验 【教学目标】 一、知识与技能 1、掌握密度公式,并能进行简单的计算; 2、会用天平、量筒等常规方法测量物质密度; 3、会运用学过的浮力、阿基米德原理、浮沉条件等知识,测量物质的密度。 二、过程与方法 1、根据密度的公式,明确要想测出物质密度,需从质量和体积入手思考设计 实验; 2、明确测量密度的常规方法——排液法; 3、围绕“排液法”的器材选择和实验思路,逐步换设情境,提出问题,让学 生对产生的新问题展开讨论并提出解决方案。 三、情感、态度与价值观 通过揭示学生思维中的矛盾来创设问题情境,以探究性的专题逐步创 设成阶梯型的问题情境,激活学生的发散性思维、引发创造性思维,以产 生积极的作用。 【教学重、难点】 一、重点: 1、知道测量密度的常规方法——排液法 2、掌握密度的公式,并能结合阿基米德原理、浮沉条件等物理知识推导出密度的 表达式。 二、难点: 1、对于密度测量中的一些非常规方法的理解以及方法过程的先后。 【课时安排】 1课时 【教与学的互动设计】 (一)创设情境 导入新课 回顾一下:1、密度的公式:V m =ρ 2、常规的器材——天平用于测量质量、 量筒用于测量体积 3、方法——排液法 具体方法:浸没时 V 物= V 排液= V 2-V 1 变化一下:没有量筒,对于规则物体的体积——刻度尺 强调:排液法的适用性更加广泛 (二)合作交流 解读探究 提高一下:针对排液法的应用,提出两个可能遇到的问题: 1、 如果被测固体密度比液体的密度小,此时的 V 物≠V 排液 ,怎么办? 方法:悬沉法 针压法 2、 如果被测固体易于液体反应或易溶于液体,怎么办? 方法:排面(细沙)法 方法与排液法相似

微生物的生理学实验复习

实验一化学因素对微生物的影响 二、基本原理 常用化学消毒剂主要有重金属及其盐类、有机溶剂(酚、醇、醛等)、卤族元素及其化合物、染料和表面活性剂等。重金属离子可与菌体蛋白质结合而使之变性或与某些酶蛋白的巯基相结合而使酶失活,重金属盐则是蛋白质沉淀剂,或与代谢产物发生鳌合作用而使之变为无效化合物;有机溶剂可使蛋白质及核酸变性,也可破坏细胞膜透性使内含物外溢;碘可与蛋白质酪氨酸残基不可逆结合而使蛋白质失活,氯气与水发生反应产生的强氧化剂也具有杀菌作用;染料在低浓度条件下可抑制细菌生长,染料对细菌的作用具有选择性,革兰氏阳性菌普遍比革兰氏阴性菌对染料更加敏感;表面活性剂能降低溶液表面张力,这类物质作用于微生物细胞膜,改变其透性,同时也能使蛋白质发生变性。 四、操作步骤 l、将已灭菌并冷至50℃左右的牛肉膏蛋白胨琼脂培养基倒入无菌平血中,水平放置待凝固。 2、用无菌吸管吸取0.2ml培养18h的金黄色葡萄球菌菌液加入到上述平板中,用无菌三角涂棒涂布均匀。 3、将已涂布好的平板底皿划分成4~6等份,每一等份内标明一种消毒剂的名称。 4、用无菌镊子将已灭菌的小圆滤纸片(D5mm)分别浸入装有各种消毒剂溶液的试管中浸湿。 注意取出滤纸片时保证过滤纸片所含消毒剂溶液量基本一致,并在试管内壁沥去多余药液。 无菌操作将滤纸片贴在平板相应区域,平板中间贴上浸有无菌生理盐水的滤纸片作为对照。 5、将上述贴好滤纸片的含菌平板倒置放于37℃温室中,24h后取出观察抑(杀)菌圈的大小。 实验二生物因素对微生物的影响 二、基本原理

生物之间的关系从总体上可分为互生、共生、寄生、拮抗等,微生物之间的拮抗现象是普遍存在于自然界的,许多微生物在其生命活动过程中能产生某种特殊代谢产物如抗生素,具有选择性地抑制或杀死其他微生物的作用,不同抗生素的抗菌谱是不同的,某些抗生素只对少数细菌有抗菌作用,例如青霉素一般只对革兰氏阳性菌具有抗菌作用,多粘菌素只对革兰氏阴性菌有作用,这类抗生素称为窄谱抗生素;另一些抗生素对多种细菌有作用,例如四环素、土霉素对许多革兰氏阳性菌和革兰氏阴性菌都有作用,称为广谱抗生素。 本实验利用滤纸条法测定青霉素的抗菌谱,将浸润有青霉素溶液的滤纸条贴在豆芽汁葡萄糖琼脂培养基平板上,再与此滤纸条垂直划线接种试验菌,经培养后,根据抑菌带的长短,即可判断青霉素对不同类型微生物的影响,初步判断其抗菌谱。实验中所用试验菌通常以各种具有代表性的非致病菌来代替人体或动物致病菌,常用的试验菌株参见表2-1,而植物致病菌由于对人畜一般无直接危害,可直接用作试验菌。 四、操作步骤 1、将豆芽汁葡萄糖琼脂培养基溶化后,冷至45℃左右倒平板。 2、无菌操作,用镊子将无菌滤纸条分别浸入过滤除菌的青霉素溶液和氨苄青霉素溶液中润湿,并在容器内壁沥去多余溶液,再将滤纸条按图2-1所示分别贴在两个已凝固的上述平板上。 注意滤纸条形状要规则,滤纸条上含有的溶液量不要太多,而且在贴滤纸条时不要在培养基上拖动滤纸条避免抗生素溶

《实验一长度的测量》教学设计

《实验一:长度的测量》教学设计 岑溪市第二中学秦连红(旧人教版高一物理) 一、教材分析 本节安排在人教版教材高一《学生实验》讲述“为什么要做学生实验”、“怎样做好学生实验”、“误差和在有效数字”的内容之后,做为第一个实验,简单回顾初中的使用刻度尺测量之后,就进入游标卡尺的使用和读数部分。而该部分知识要到平抛、单摆测小球直径及电学实验《测定金属的电阻率》测量导线长度时才切实用到,时隔较远。新课标教材则安排在选修3-1的《附录》部分,与螺旋测微器一起介绍,这两种仪器有相似之处,一起介绍,方便比较与理解。而且,在新教材中,结合了教师对难点的突破方法,对游标卡尺的原理:利用主尺的最小分度与游标尺的最小分度差制成,讲解较为详细,有利学生自学。二、学情分析 对于用人教版课本的刚进入高一的学生,在实验部分一开始就接触到一大难题——《实验一:长度的测量》中的游标卡尺的读数问题。其难一方面表现在游标卡尺的设计原理学生难以理解,另一方面表现在即使明白了读数原理,真正读数时又很容易出错。待要切实用于读数时,对该部分知识又有所遗忘。 三、设计思想 教材虽还未改,但在教学上我们要紧跟课改的步伐。针对以上情况,笔者对该节内容采用了针对传统的结果启发式教学而提出的过程启发式教学法。通过引发学生思考问题——如何能测量得更精确;用学生用尺与游标卡尺作观察对比,引出测量原理;尝试读数,练习情景由易到难、逐步推进,之后学生掌握总结游标卡尺的读数方法,并通过练习进行巩固,最后小结出读数过程中需要注意的问题再进行实际操作。通过学生观察、发现、尝试读数,强化学生对测量原理的理解,加上练习巩固,加强对读数方法及注意事项的把握,从而突破游标卡尺读数这一难点,缩短学生对该知识的遗忘进程。 四、教学目标 1、知识与技能 ①知道测量有误差,了解误差的种类。 ②知道有效数字的概念及意义。 ③了解游标卡尺的构造及种类,知道其各部分的用途及用法,理解并掌握其测量原理。 ④掌握游标卡尺的读数方法。 ⑤学会利用游标卡尺测量长度。 2、过程与方法 通过引导提问,使学生懂得对比观察、学会归纳方法。 3、情感态度与价值观 ①培养学生学习物理的兴趣,激发其探求知识的欲望和学习的积极性、主动性。 ②让学生在共同思考中体验解决问题的成功喜悦,增进学习物理的情感。 五、教学重点 误差及有效数字,游标卡尺的使用和读数 六、教学难点 游标卡尺的工作原理和读数 七、教学器材

X射线光电子能谱模板

第二十三章 X射线光电子能谱 1954年以瑞典Siegbahn教授为首的研究小组观测光峰现象,不久又发现了原子内层电子能级的化学位移效应,于是提出了ESCA(化学分析电子光谱学)这一概念。由于这种方法使用了铝、镁靶材发射的软X射线,故也称为X-光电子能谱(X-ray Photoelectron Spectroscopy)。X光电子能谱分析技术已成为表面分析中的常规分析技术,目前在催化化学、新材料研制、微电子、陶瓷材料等方面得到了广泛的应用。 23.1 基本原理 固体表面分析,特别是对固体材料的分析和元素化学价态分析,已发展为一种常用的仪器分析方法。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料(导电材料)的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS 和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间二次离子质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。 X射线光电子能谱最初是由瑞典科学家K.Siegbahn等经过约20年的努力而建立起来的,因在化学领域的广泛应用,被称为化学分析用电子能谱(ESCA)。由于最初的光源采用了铝、镁等的特性软X射线,该技术又称为X射线光电子能谱(XPS)。1962年,英国科学家D.W.Turner等建造出以真空紫外光作为光源的光电子能谱仪,在分析分子内价电子的状态方面获得了巨大成功,同时又用于固体价带的研究,与X射线光电子能谱相对照,该方法称为紫外光电子能谱(UPS) XPS的原理是基于光的电离作用。当一束光子辐射到样品表面时,样品中某一元素的原子轨道上的电子吸收了光子的能量,使得该电子脱离原子的束缚,以一定的动能从原子内部发射出来,成为自由电子,而原子本身则变成处于激发态的离子,如图23-1所示。在光电离过程中,固体物质的结合能可用下面的方程式表示: E b=hγ- E k -φs(23-1) 式中: E k为射出的光子的动能;hγ为X射线源的能量;E b为特定原子轨道上电子的电离能或结合能(电子的结合能是指原子中某个轨道上的电子跃迁到表面Fermi能级(费米能级)所需要的能量);φs为谱仪的功函数。 由于φs是由谱仪的材料和状态决定,对同一台谱仪来说是一个常数,与样品无关,其平均值为3 eV ~4eV。因此,(1)式可简化为: E b =hγ- E k’ (23-2) 由于E k’可以用能谱仪的能量分析器检出,根据式(23-2)就可以知道E b。在XPS分析中,由于X射线源的能量较高,不仅能激发出原子轨道中的价电子,还可以激发出内层轨道电子,所射出光子的能量仅与入射光子的能量及原子轨道有关。因此,对于特定的单色激发光源及特定的原子轨道,其光电子的能量是特征性的。当固定激发光源能量时,其光子的能量仅与元素的种类和所电离激发的原子轨道有关,对于同一种元素的原子,不同轨道上的电子的结合能不同。所以可用光电子的结合能来确定元素种类。图23-1表示固体材料表面受X射线激发后的光电离过程[1]。

γ射线的能谱测量和吸收测定 实验报告

g射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,g 射线产生的原因正是由于原子核的能级跃迁。我们通过测量g射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用g闪烁谱仪测定不同的放射源的g射线能谱。同时学习和掌握g射线与物质相互作用的特性,并且测定窄束g射线在不同物质中的吸收系数m。 【关键词】g射线/能谱/g闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 g射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

噪声测定实验教案

噪声测定实验 一实验目的 1掌握AWA5610C声级计的工作原理及其使用方法 2掌握AWA6270A噪声频谱分析仪的工作原理及其使用方法 二实验内容 1使用AWA5610C声级计测量噪音 2使用AWA6270A噪声频谱分析仪测量噪音 三实验原理 1 AWA5610C声级计的工作原理 工作原理是被测的声压信号通过传声器转换成电压信号,然后经衰减器、放大器以及相应的计权网络、滤波器,或者输入记录仪器,或者经过均方根值检波器直接推动以分贝标定 的指示表头。 2 AWA6270A噪声频谱分析仪的工作原理 工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫瞄产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板。 四实验设备仪器 (一)AWA5610C声级计 AWA5610C型积分声级计是一种袖珍式智能化噪声测量仪 器,可广泛应用于环境噪声的测量与自动监测,也可用于劳动保 护、工业卫生及各种机器、车辆、船舶、电器等工业噪声测量。 本仪器采用了先进的数字检波技术,具有可靠性高、稳定性好、 动态范围宽等优点。 主要技术性能: 驻极体测试电容传声器,灵敏度: 1.传声器:Φ1 2.7mm(1/2”) 约40mV/Pa,频率范围:20Hz~12.5kHz。 2.测量范围:35~130dBA(以2×10-5Pa为参考,下同) 3.频率范围:20Hz~12.5kHz 4.频率计权:A计权 5.时间计权:快(F),慢(S) 图1 AWA5610C声级计 6.检波器特性:真有效值、峰值因数 3 7.准确度:2型 8.测量时间:手控、10s、1min、5min、10min、20min、1h、4h、8h、24h。 9.显示:4位LCD,直接显示测量结果Lp、Leq、Lmax、Lmin、Linst、Tm及日历年、月、日、时、分、秒等。 10.储存:60组数据,包括年、月、日、时、分、设定时间、测量经历时间、最大声级, 最小声级、等效声级。 11.输出接口:RS—232C,可接至微型打印机或计算机。

生态学实验八——植物生活型谱调查统计 山东大学

生态学实验八——植物生活型谱调查统计 13生物基地 201300140059 刘洋 2015-05-04 同组者:吕赞苏志国马华峥孙佳孟徐艺菲齐珂心王若仪蔡正琦 一、实验目的 掌握划分植物生活型的方法,并通过不同地区和不同植被类型植物生活型的分析,进一步认识植物与环境的关系及划分植物生活型的生态意义。 二、实验原理 1.生活型 (life form) : ?生物对外界环境综合适应的外在表现形式。 ?植物生活型是植物对环境特别是对气候的适应而在外貌上的反映。 ?特定环境下不同科属的植物由于趋同进化而具有相同生活型。 ?生活型是植物对生境长期适应的结果,具有一定的稳定性。 ?在同一类生活型中包括在分类系统上地位不同的许多种,只要物种对某一类环境具有相同或相似的适应方式,而且在外貌特征上相似,它们就属于同一生活型。 丹麦植物学家Raunkiaer按植物的越冬休眠芽的位置与适应特征,将高等植物分为五大生活型类群 ①高位芽植物(Ph)。其芽离地面高,完全受气候的影响。在温暖和潮湿地区很多,不需要保护。5个亚型是:大高位芽植物(MG)(植物体超过30米以上的大乔木)、中高位芽植物(MS)(高8~30米的中乔木)、小高位芽植物(M)(高2~8米的小乔木和灌木)、矮高位芽植物(N)(高2米以下的灌木及小灌木)、攀援植物(S)(没有高度限制,在温暖潮湿地区占优势); ②地上芽植物(Ch)。草本或木本植物,芽紧贴地面,冬季被雪覆盖保护,包括北极地区和高山寒冷气候下的植物,温带也有分布; ③地面芽植物(HK)。芽的一半埋在土层顶部或腐殖质层中,地上部分冬季全部死亡。温带多年生草本大多属此类; ④隐芽植物(K)。芽完全埋在土中或水中,以适应寒冷或干旱的气候,冬季地上部分和一部分地下部分死亡。如球茎、块茎、根茎植物; ⑤一年生植物(T)。

教科版八年级物理上册《测量:实验探究的重要环节》教案

二、测量:实验探究的严重环节 一、本节三维目标要求 1.知识与技能 使学生了解统一计量标准的意义。熟悉长度的国际单位制单位,以及与其他单位的换算。 学习使用刻度尺,了解零点(零刻度线)、分度值、量程等概念。 了解误差,练习多次测量求平均值减小误差的方法。学习记录、分析、表达数据和结果。 2.过程与方法 通过一些实例练习测量长度的方法。训练使用测量工具的规范操作。 通过测量活动,从中体会、练习灵活运用知识的方法和技巧,培养学生灵活运用知识的能力和创造性思维。 3.情感、态度与价值观 通过规范学生的操作行为,培养严肃认真,实事求是的科学态度。 训练实验技能的同时注意培养优良的实验习惯。 二、教学重点和难点 长度的测量是本课时的重点,理解长度测量的基础性是本课的难点。 三、教学器材: 示教刻度尺、方体木块、学生自备透明三角尺 四、课时安排:1课时 五、教学过程

本节分为三个教学板块:(1)从木工尺到米原器;(2)实验:测量长度;(3)实验:测量时间; 一、从木工尺到米原器 1.引入:测量是科学实验的严重环节。物理量的测量首先要规定它的标准量,并以之作为单位,将待测物理量与它的标准量进行比较。以鲁班制定中国木工尺为例,说明了统一计量标准的严重性:国际单位制是进行科学、科技、贸易交流的保障。测量本质上是比较,是将被测物和标准物做比较。像鲁班那样,为了更好地进行科学、技术、贸易的交流,1888年,科学家们制造了一个国际通用的长度基准——“米原器”,作为各国测量1米的基准。 “如果不许使用尺子,你怎样测量教室的长和宽?”学生可能提出各种各样的测量方法,选其中之一进行实际测量,比如请一高一矮两位同学用步来量教室的宽,必然得出例外的结果。教师就此向学生指出,同一长度的测量得不出统一的结果是没有意义的。然后让学生讨论怎样才能得出统一的结果呢?通过这个活动和鲁班的故事,启发学生认识建立长度标准的必要性,同时认识长度单位以及国际单位制。中国古代在计量方面有许多举世瞩目的成就,特别是秦始皇统一度量衡,合适介绍,增强学生的爱国意识和民族自信心。 2.长度的单位(SI): 1)基本单位:米(m) 2)常用单位:千米、分米、厘米、毫米、微米、纳米。它们的代表符号分别是km,dm,cm,mm,um,nm。(通常刻度尺的单位标注是用符号表示) 通过列举事例使学生对米、分米、厘米、毫米等单位长度能心中有数,有个粗略的概念。例如:常用铅笔笔芯直径大约1毫米,小姆指宽约有1厘米,手掌的宽大约有1分米,成年人的腿长大约1米左右。 3)单位换算:1km=1000m;1m=1000mm;1mm=1000um;1um=1000nm;1m=10dm=100cm。 例:下列各式中表达正确的是:(C)

X射线能谱分析

X射线能谱分析简介 导言: 早在二十世纪年代中期就开始了X射线能谱分析课题的研究。例如,Parrish和Kohler(1956)曾指出用分解正比计数器脉冲高度谱的方法进行X射线能量分析的可能性。后来Dolby(1959、1960)发展了这种方法并且获得了Be、C、O等超轻元素的扫描X射线图像。同年,Duncumb提出一种用纯元素的标准谱拟合实际谱进行分析的方法。而Birks等人用正比计数器和一台400道多道分析器配合,在电子探针中首次进行了能谱分析。到了1968年,Fitzgerald、Keil和Heinrich等人开始把锂漂移硅探测器用到了电子探针中。 由于锂漂移硅探测器有一些独到的优点,得到了有关专家的广泛重视。在1963年和1970年,美国材料试验学会先后两次就能谱分析技术进行了专门的讨论,促进了能谱技术的发展。例如,在1966年,锂漂移硅探测器的能量分辨率还只能达到约800eV,但是到了1970年,就迅速提高到约150eV。探测器分辨率的提高,反过来促进了能谱分析方法及其相关技术的迅速发展。 目前,能谱分析系统已成为电子探针和扫描电镜/透射电镜微区分析的一项标准设备,同时与其相关的波谱分析、电子被散射衍射等有机结合,愈来愈成为微区分析中不可或缺的分析手段。 锂漂移硅探测器简述: 能谱分析系统的心脏是一只硅晶体二极管,它是由一块p型硅晶片经锂(向硅中)扩散和飘移后制成的,因此称为锂漂移硅探测器

(Lithium Drifted Silicon Detector),通常缩写为Si(Li)探测器。 我们知道硅是一种典型的半导体材料。硅晶体的结晶结构与金刚石结构相同,即为面心立方体结构,每个晶胞含有两个硅原子,每个硅原子有四个价电子(两个3s电子,两个3p电子)。在晶体中,每个原子与相邻四个原子构成四条共价键。根据能带理论,四个价电子形成四个能带,由于每个格点上有8个价电子,因此,如果格点数为N,则四个能带上将填满8N个电子,这种能带称为满带。满带的上方有一个能隙,称为禁带,禁带中不可能有任何电子,或者说,不可能存在其能量相当于禁带能量的电子。在禁带上面有很多可能的能带-----导带。在纯净而完整的晶体中,导带中没有电子,因此呈绝缘体特性。但是,即使纯度非常高的硅单晶,仍有极少量的杂质存在,而且难免有些晶格缺陷,加上硅的禁带宽度较小(~1.1eV),在热骚动下可能有极少量的电子进入导带,因此硅晶体有一定程度的导电性。温度愈高,由于热骚动而进入导带的电子愈多,晶体的导电性就愈强,因而使硅晶体成为一种典型的半导体。 半导体的导电率取决于杂质的类型和含量。杂质的作用是这样的:假如有一种五价杂质(P,As等)参入硅中,它将取代硅原子的位置,用四个价电子与相邻的四个硅原子结合而维持原来的四条共价键,并把多余的一个电子释放出去,被释放的电子很可能进入导带,使晶体呈电子性导电,这种晶体就称为n型半导体。如果掺入的杂质是三价原子,那么这些杂质将会俘获满带中的电子而使满带中出现空穴,从而使晶体成为p型半导体。在硅中常见的一种杂质是硼(B),它的

大学物理实验教案4长度测量

大学物理实验教案

实验目的: 1.掌握游标卡尺、螺旋测微计和移测显微镜的测量原理和使用方法。 2.根据仪器的精度和有效数字的定义,正确记录原始数据。 3.掌握直接测量和间接测量的数据处理方法,并用不确定度报告测量结果。 实验仪器: 游标卡尺、螺旋测微计、移测显微镜、滚珠、圆管、毛细管、铝块。 实验原理: 1. 游标卡尺 普通测长度的尺子其准确度有一定的局限性,主要是由于其分度值(即仪器能准确鉴别的最小量值)较大。例如米尺的分度值为1mm 而不能更小,否则,刻度线太密将无法区分。为此,在主尺上装一个能够沿主尺滑动的带有刻度的副尺,称为游标,这样的装置称为游标卡尺。 游标卡尺的结构如图1 所示。主尺 D 是一根钢制的毫米分度尺,主尺头上附有钳口 A 和刀口A ′,游标E 上附有钳口 B 、刀口 B ′ 和尾尺 C ,可沿主尺滑动。螺丝F 可将游标固定在主尺上,当钳口AB 密接时,则刀口 A ′B ′对齐,尾尺C 和主尺尾部也对齐,主尺上的0线与游标上的0线重合。 图1 游标卡尺 钳口AB 用来测物体的长度及外径,刀口 A ′B ′用来测物体的内径,而尾尺C 则用来测物体的深度。它们的读数值,都是表示游标的0线与主尺的0线之间的距离。 游标卡尺的规格有多种,其精密程度各不相同,但不论哪一种,它的原理和读数方法都是一样的。常用游标尺的设计,在游标尺上刻有m 个分格,游标上m 个分格的总长,正好与主尺上(m –1)个分格的总长相等,如果用 y 表示主尺上最小分格的长度,x 表示游标上每一小格的长度,则 (m –1)y = mx 所以,主尺与游标上每个分格长度的差值是 m y x y = - 这个量就是游标卡尺的分度值。通常主尺最小分格y 都为1mm ,因此,游标的分格数越多,分度值就越小,卡尺的精密度就越高。 常用的游标卡尺的分度值有0.1mm 、0.05mm 、0.02mm 三种。 利用游标卡尺测物体的长度时,把物体放于钳口之间,游标右移。游标0线对准主尺上某一位置,毫米以上整数部分l 0可以从主尺上直接读出,毫米以下部分△l 从副尺上读出。

光谱实验报告

实习报告

(一)实验名称:《地物光谱特性测量》 (二)所属课程名称:《资源环境遥感》 (三)学生姓名: (四)实验日期及地点: (五)实验目的:对校园中的一些地物进行遥感光谱特性测量 (六)实验意义: (1)对光谱测量仪器的认识:ASD野外光谱分析仪FieldSpecPro是一种测量可见光到近红外波段地物波谱的有效工具,它能够快速扫描地物,光线探头在毫秒内得到地物的单一光谱。FieldSpec分光仪主要由附属手提电脑,观测仪器,手枪式把手,光线光学探头以及连接数据线组成。通过连接电脑,可实时持续显示测量光谱,使得测量者可以即时获取需要的测量数据。 (2)对课堂内容的认识:地物反射光谱是指某种物体的反射率或反射辐射能随波长变化的规律,以波长为横坐标,反射率为纵坐标所得到的曲线即为反射波谱特性曲线。影响地物波谱变化的因素:太阳位置(太阳高度角和方位角)。不同的地理位置,海拔高度不同。时间、季节的变化。地物本身差异、土壤含水量、植被病虫害。 (七)实验原理: (八)人员要求: 设备: (1)ASD公司生产的Field Spec3高光谱辐射仪 (2)软件:RS3和View SpecPro Graph

工作要求: (1)天气情况: 地面能见度:晴朗,地面能见度不小于10km, 云量要求:太阳周围90°立体角范围内淡积云量小于2%,无卷云或浓积云等, 风力要求:无风或微风(测量时间风力小于4级,对植物测量时风力最好小于3级)测量时间:为保持太阳高度角大于45度,且由于北京地区处于中纬度地区,所以测量时间应在北京时间10:00~14:00之间,冬季对于测量时间应该更加严格一些。另外,测量速度应该满足<=1min/组。 (2)测量情况: 为减少反射光对观测目标的影响,观测人员应着深色服装,观测时面对太阳站立与目标区后方,观测时保持探头垂直向下,使得机载成像光谱仪观测方向保持一致,注意观测目标的二项反射影响。记录人员应站在观测人员身后,并避免在目标区周围走动。 对于记录人员,在输出光谱数据设置项中,每条光谱的平均采样次数应不少于10,测定暗电流的平均采样次数不少于20次。每隔20分钟要重新对标准白板进行测量校正,以保持测量数据的准确性。此次实验能够测得波谱范围为:350~1050nm之间(可见光和近红外波段) (九)实验步骤: (1)准备工作:安装好电池,将Field Spec3高光谱辐射仪打开,并与笔记本电脑链接。打开RS3软件,填写好需要存储数据的路径、名称和其他内容。Opt-->WR-->control-->spectrum save。其中RS3软件使用时要求电脑设置为英文环境。【在控制面板的区域和语言选项中选择“英文(美国)”,在高级选项中也选择“英文(美国)”,然后单击确定】。准备好白板。 (2)选择待测地物:可以是植被、土壤、建筑物、水体等。不同地物的光谱特性不一样,同种地物间光谱特性也有可能不同。比如,植被有针叶林、阔叶林,也有健康的和有病虫害的,植被叶片颜色呈绿色的和呈枯黄色的。由于植物含水量以及叶绿素含量的不同,会导致对电磁波反射吸收的能力也不同,因此会导致光谱特征曲线不同。 (3)测量过程: A.镜头对准白板,在RS3软件中选择OPT进行优化。 B.镜头对准白板,点击WR采集参比(白板应充满镜头,并保持没有阴影)。镜头对准目标地物,目标与镜头之间的距离大致等于桶采集参比时白板与镜头的距离。点击空格键存储目光光谱。为提高光谱数据的质量,每隔一定时间(20分钟左右)进行一次采集参比。(4)整理工作:测量完成后,将相关数据拷贝到U盘中。依次关闭电脑以及光谱仪电源,将仪器、白板等实验工具整理好,收回到仪器包中。 (5)数据导出步骤: 打开,导出已测量出的数据。

r射线能谱实验报告

实验报告 系 级 姓名 日期 No. 评分: 实验题目:γ能谱及γ射线的吸收 实验目的: 学习闪烁γ谱仪的工作原理和实验方法,研究吸收片对γ射线的吸收规律 实验原理: 1.γ能谱的形状 闪烁γ能谱仪可测得γ能谱的形状,下图所示是典型 Cs 137 的γ射线能谱图。图的纵轴代表单位时间内的脉 冲数目即射线强度,横轴代表脉冲幅度即反映粒子的能量值。 从能谱图上看,有几个较为明显的峰,光电峰e E ,又称全能峰,其能量就对应γ射线的能量γE 。这是由于γ射线进入闪烁体后,由于光电效应产生光电子,能量关系见式(1),如果闪烁体大小合适,光电子停留在其中,可使光电子的全部能量被闪烁体吸收。光电子逸出原子会留下空位,必然有外壳层上的电子跃入填充,同时放出能量i z B E =的X 射线,一般来说,闪烁体对低能X射线有很强的吸收作用,这样闪烁体就吸收了z e E E +的全 部能量,所以光电峰的能量就代表γ射线的能量,对 Cs 137 ,此能量为0.661Me V。 C E 即为康普顿边界,对应反冲电子的最大能量。 背散射峰b E 是由射线与闪烁体屏蔽层等物质发生反向散射后进入闪烁体内,形成的光电峰,一般峰很小。 2.谱仪的能量刻度和分辨率 (1)谱仪的能量刻度 闪烁谱仪测得的γ射线能谱的形状及其各峰对应的能量值由核素的蜕变纲图所决定,是各核素的特征反映。但测得的光电峰所对应的脉冲幅度(即峰值在横轴上所处的位置)是与工作条件有关系的。如光电倍增管高压改

变、线性放大器放大倍数不同等,都会改变各峰位在横轴上的位置,也即改变了能量轴的刻度。因此,应用γ谱仪测定未知射线能谱时,必须先用已知能量的核素能谱来标定谱仪的能量刻度,即给出每道所对应的能量增值E。例如选择 Cs 137 的光电峰γE =0.661Me V和Co 60的光电峰MeV E 17.11=γ、MeV E 33.12=γ等能量值,先 分别测量两核素的γ能谱,得到光电峰所对应的多道分析器上的道址(若不用多道分析器,可给出各峰位所为应的单道分析器上的阈值)。可以认为能量与峰值脉冲的幅度是线性的,因此根据已知能量值,就可以计算出多道分析器的能量刻度值E。如果对应MeV E 661.01=的光电峰位于A道,对应MeV E 17.12=的光电峰位于B 道,则有能量刻度 MeV A B e --= 661 .017.1 (1) 测得未知光电峰对应的道址再乘以e 值即为其能量值。 (2)谱仪分辨率 γ能谱仪的一个重要指标是能量分辨率。由于闪烁谱仪测量粒子能量过程中,伴随着一系列统计涨落因素,如γ光子进入闪烁体内损失能量、产生荧光光子、荧光光子进入光电倍增管后,在阴极上打出光电子、光电子在倍增极上逐级打出光电子而使数目倍增,最后在阳极上形成电流脉冲等,脉冲的高度是服从统计规律而有一定分布的。光电峰的宽窄反映着谱仪对能量分辨的能力。如图2.2.1-7中所示的光电峰的描绘,定义谱仪能量分辨率η为 %100??=?= V V E E 光电峰脉冲幅度半高度η (2) η表示闪烁谱仪在测量能量时能够分辨两条靠近的谱线的本领。目前一般的闪烁谱仪分辨率在10%左右。对η的影响因素很多,如闪烁体、光电倍增管等等。 (3)物质对γ射线的吸收 当γ射线穿过物质时,一旦与物质中的原子发生三种相互作用,原来的光子就消失或通过散射改变入射方向。通常把通过物质且未经相互作用的光子所组成的射线称为窄束γ射线(或良好几何条件下的射线束)。实验表明,单能窄束γ射线的衰减遵循指数规律: (8)

细胞生物学实验及研究方法 (2)

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:细胞生物学实验及研究方法教师:宋关斌姓名:学号: 专业:生物学类别:学硕上课时间:年月至年月 考生成绩: 卷面成绩平时成绩课程综合成绩阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

重庆大学生物工程学院2014级硕士生 《细胞生物学实验及研究方法》课程考核 1.试结合你感兴趣的领域,以某种细胞为研究对象,依据本学院的实验条件设计一个1年期的小课题。请简述立题依据和拟选取的研究内容和研究方法。(20分) 答:目前癌症的发病率越来越高,其中肺癌的发病率更是居高不下,因而以人肺癌细胞A549为研究对象。立题依据:核因子κB(nuclear factor-κB,NF-κB)是一种作用十分广泛的真核细胞转录因子。近年来的研究显示核因子-κB (nuclear factor-κB,NF-κB)的活化能够调节肿瘤细胞的侵袭和转移。基质金属蛋白酶(matrix metalloproteinases,MMPs)由肿瘤细胞分泌,能够分解细胞外基质中的Ⅳ型胶原。肿瘤细胞在侵袭的过程中必须穿过富含Ⅳ型胶原的细胞外基质,才能扩散到身体其他部位,因此MMPs 在肿瘤细胞的侵袭和转移中发挥重要的作用。但是对于NF-κ B 活性的改变对肺癌细胞株A549 细胞侵袭能力是否也有影响,目前尚无相关研究报道。研究内容:用表达IκBα的真核表达质粒pcDNA3.1(+)/IκBα转染体外培养的A549 细胞,以抑制A549 细胞的NF-κ B 活性,观察NF-κB活性降低A549 细胞侵袭能力以及对MMPs 表达的影响。研究方法:①构建表达NF-κ B 抑制物α同分异构体(inhibitor of NF-κB,αisoform,IκBα)的真核表达重组质粒pcDNA3.1(+)/IκB α。②体外培养A549 细胞,分为未转染组(不转染质粒)、转染pcDNA3.1(+)组、转染pcDNA3.1(+)/IκBα组,分别转染相应的质粒。③应用RT-PCR、Western blot检测各组细胞IκBα的表达情况,应用凝胶电泳迁移率改变实验(electrophoreticmobility shift assay,EMSA)检测各组细胞NF-κ B 的活性,应用Transwell 侵袭小室检测各组细胞的侵袭能力,应用RT-PCR 方法检测各组细胞MMP-2、MMP-9 的mRNA 水平,应用明胶酶谱法检测各组细胞基质金属蛋白酶-2 (matrixmetalloproteinase-2,MMP-2)、基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)的活性。

相关文档
最新文档