粘土矿物的制备及应用技术特点 (2)

粘土矿物的制备及应用技术特点 (2)
粘土矿物的制备及应用技术特点 (2)

粘土矿物的制备及应用技术特点

摘要:本文介绍了粘土矿物的性质、种类、优点及制备方法,并详细介绍了高岭石、蒙脱石、凹凸棒石、海泡石的研究进展和面临的问题,并阐述了纳米粘土矿物的应用情况。

关键词:粘土矿物;种类;制备;应用

The preparation and application of clay minerals Abstract:In this letter we introduced the properties,kinds, advantages and preparations of the clay minerals. Introduces the research progress of kaolinite, montmorillonite, attapulgite and sepiolite, and the problems faced in study,and e xpounds the application of nanometer clay minerals.

Key word: clay mineral; kinds ; preparation; application

1前言

粘土是一类广泛存在于土壤中的物质, 由于长期处于特定的环境条件下, 粘土矿物具有许多优越的特性,例如巨大的比表面积,良好的吸附性能,较高的吸附容量和离子交换能力,出色的粘附性、润滑性、悬浮性、流变性、稳定性等, 而这些特性是沙子或泥土无法通过机械粉碎实现的。粘土的用途非常广泛, 包括可用来制作陶器、陶瓷、耐火产品的内衬、计算机芯片、化妆品和药品。粘土中常见的矿物有:高岭石、蒙脱石、凹凸棒石、海泡石、伊利石、绿泥石等硅酸盐类化合物和由硅藻类微生物骨骸紧密堆积而成的硅藻土,以及层状双金属氢氧化物类化合物水滑石等矿物。纳米黏土主要用作聚合物基复合材料的增强材料。近年来,纳米黏土增强聚合物基复合材料的基础理论研究、应用开拓研究等取得一系列研究成果,不仅为纳米黏土在高新技术领域的应用开辟了新的途径,而且在制备技术、生产工艺参数和生产过程的控制等方面较其他纳米材料更简单,生产成本更低廉,具有广阔市场前景。

纳米技术是高新技术,能否稳定健康发展最终将取决于技术创新,主要表现在制备技术和应用技术的创新上,就是如何降低纳米材料的生产制备成本和提高产量。如何将纳米材料的科学观念、制备技术引入到矿物材料尤其是粘土纳米矿物材料(高岭土、膨润土、石墨、蛋白石、蛇纹石、坡缕石、沸石、凹凸棒石、硅藻土等)的科学研究与生产加工中,无疑将会大大降低其纳米材料的生产成本,从而是其纳米材料的商品化和更具适用化的进程得以极大提高。

2纳米粘土矿物的种类及制备

2.1高岭石

高岭石是长石和其他硅酸盐矿物天然蚀变的产物,是一种含水的铝硅酸盐。它还包括地开石、珍珠石和埃洛石及成分类似但非晶质的水铝英石,它们总是以极微小的微晶或隐晶状态存在,并以致密块状或土状集合体产生。高岭石为或致密或疏松的块状,一般为白色,如果含有杂质便呈米色。高岭石经风化或沉积等作用变成高岭土,而高岭土则是制作陶瓷的原料。除此以外,高岭土还可作化工填料、耐火材料、建筑材料等等,用途十分广泛。中国江西的景德镇有一个高岭村,这里盛产高岭土,故名。明末,在景德镇高岭村开采此矿,后经德国地质学家李希霍芬按高岭土之音译成“Kaolin”介绍到世界矿物学界。高

岭石的化学组成为Al

4(Si

4

O

10

)·(OH)

8

,晶体属三斜晶系的层状结构硅酸盐矿物,多呈隐

晶质、分散粉末状、疏松块状集合体,白或浅灰、浅绿、浅黄、浅红等颜色,条痕白色,土状光泽。摩氏硬度2-2.5,比重2.6-2.63。吸水性强,和水具有可塑性,粘舌,干土块具粗糙感。高岭石是组成高岭土的主要矿物,常见于岩浆岩和变质岩的风化壳中。中国高岭石的著名产地有江西景德镇、江苏苏州、河北唐山、湖南醴陵等。世界其它著名产地有英国的康沃尔和德文、法国的伊里埃、美国的佐治亚等。高岭石是陶瓷的主要原料,在其它工业中也有广泛使用。

陈汉周[1]等利用改性纳米高岭土,采用原位聚合的方法合成了高岭土/聚对苯二甲酸乙二醇酯(PET)纳米复合材料(KPET),通过扫描电镜、FTIR、TG等分析方法研究了材料的分散性,显微结构以及热稳定性,得出了纳米高岭土在PET基体中分散性好,高岭土在PET 中的粒径最可几分布为0.2-0.5μm。FTIR光谱分析表明,高岭土通过改性剂与PET发生了键合作用。KPET 的热稳定性优于 PET,热稳定性与高岭土的分散性及其含量有关,并随高岭土含量的增加,KPET的热稳定性能有增加趋势。

刘卓钦[2]等用不同的改性剂对纳米高岭土进行了表面处理,探讨了在改性时表面活性剂加入使活化指数升高的作用机理。结果表明在纳米高岭土的改性过程中,辅助加入阳离子表面活性剂CTAB能显著减少改性剂用量,升高活化指数,其作用机理为吸附-增溶作用。硅烷偶联剂和硬脂酸复合改性剂用量为1.3%,配比以1∶1为宜。FTIR分析表明,改性后高岭土颗粒表面已接上偶联剂分子,未改性和改性后的纳米高岭土的补强效果均好于炭黑,硅烷偶联剂和硬脂酸复合改性对橡胶的补强效果优于单独使用硅烷偶联剂改性,单独使用硅烷偶联剂改性的效果不理想。

崔巧丽[3]等将一定量的纳米高岭土投入高速混合机中,然后慢慢加入定量溶剂稀释的硅烷偶联剂,高速搅拌20min后出料,制得改性纳米高岭土。再将PA66树脂和改性纳米高岭土在90℃下鼓风干燥12h, PA66、POE-g-MAH和改性纳米高岭土按比例混合,在双螺杆挤出机中熔融挤出造粒。将所得粒料在90℃下鼓风干燥12h,再注射成标准样条用于性能测

试。实验结果表明改性纳米高岭土和POE-g-MAH对PA66具有协同增韧作用。改性纳米高岭土可明显提高POE-g-MAH对PA66复合体系的冲击强度,拉伸强度和弹性模量仅略有下降。PA66/POE-g-MAH/改性纳米高岭土质量为100/20/0.2时,复合材料的冲击强度最大,比PA66提高了7.3倍;复合材料的低温冲击强度也达到最大,比PA66提高了2.7倍。具有重要的实际应用意义。

2.2蒙脱石

蒙脱石又名微晶高岭石,是一种层状结构、片状结晶的硅酸盐粘土矿。蒙脱石是由颗粒极细的含水铝硅酸盐构成的矿物,它们一般为块状或土状。蒙脱石晶体属单斜晶系的含水层状结构硅酸盐矿物,名称来源于首先发现的产地法国的Montmorillon。蒙脱石颗粒细小,约0.2-1μm,具胶体分散特性,通常都呈块状或土状集合体产出。蒙脱石在电子显微镜下可见到片状的晶体,颜色或白灰,或浅蓝或浅红色。当温度达到100-200℃时,蒙脱石中的水分子会逐渐跑掉。失水后的蒙脱石还可以重新吸收水分子或其他极性分子。当它们吸收水分后还可以膨胀并超过原体积的几倍。蒙脱石的用途多种多样,人们将它的特性运用到化学反应中以产生吸附作用和净化作用。它还可以作为造纸、橡胶、化妆品的填充剂,石油脱色和石油裂化催化剂的原料等,还可作为地质钻探用泥浆,冶金用粘合剂及医药等等方面。

李阳[4]以改性蒙脱土和PET为原料,采用双螺杆挤出机进行共混,用熔融插层法制备了PET/蒙脱土插层复合材料。系统地研究了PET离聚物/蒙脱土的结构性能,并进行了PET/蒙脱土的增韧研究,采用聚合插层的方法制备了一系列SPET/蒙脱土纳米复合材料,比较了复合材料与纯SPET的热力学性能。结果表明,SIPM在2-8mol%范围内,随其含量的增加,逐渐改善了蒙脱土片层在SPET中分散,硅酸盐对SPET的结晶具有异相成核作用,减弱了离子对的相互作用,大大提高了离子含一量较高的SPET6M和SPETSMS的结晶性能。SPET/MMT纳米复合材料具有比纯SPET更好的热稳定性,这是由于蒙脱土本身的高热稳定性,以及其二维层状结构阻碍了聚合物分子链的分解,提高了热分解温度。

李培耀[5]选择自制的有机蒙脱土(OMMT),不加入任何相容剂,直接与非极性聚合物进行复合,制备出了N侧OMMT、NR/B侧OMMT、NR/SBR/OMMT、EPDM/OMMT、HDPE/OMMT、LLDPE/OMMT、HDPE/LLDPE/OMMT、PP/OMMT等多种性能优异的非极性聚合物纳米复合材料。通过研究几种NR/OMMT复合材料的综合性能选择出最佳的OMMT。利用透射电子显微镜观察确认制备出了剥离型的N侧OMMT纳米复合材料,当OMMT仅为3.0phr时,拉伸强度提高了近l倍,撕裂强度提高了57%,氧气透过率降低了49%。.在不加入任何相容剂的条件下,制备出插层型的聚丙烯/有机蒙脱土纳米复合材料。这种插层型的聚丙烯/有机蒙脱土纳米复合材料,能够提高纯聚丙烯树脂的冲击性能至2倍多,而同时纳米复合材料的强度、刚性,尤其耐热性没有降低反而有所提高。

2.3凹凸棒石

凹凸棒石为富镁硅酸盐黏土矿物,理想化学式为:Mg5(H2O)4〔Si4O10〕2(OH)2。在每个2∶1结构单元层中,四面体片的角顶每隔一定周期作180°翻转,构成平行于x轴的链条及通道。通道横断面约0.37×0.63(nm2)。结构特征使凹凸棒石具有纤维状的结晶习性和平行(011)的解理,同时内部充满与纤维延长方向一致的隧道微孔,因此,凹凸棒石具有巨大的比表面积和优良的气相及液相吸附性能。此外,在凹凸棒石的结构中存在Al3+代Si4+等产生的剩余负电荷;在纤维表面、断裂面、解理面上存在丰富的Si-OH、Al-OH、Mg-OH 等活性基团以及Si-O-、Al-O-、Mg-O-等断键,这些都会对凹凸棒石的液相吸附性能产生影响。

王萍[6]用硅烷偶联剂和不饱和脂肪酸对凹凸棒石进行改性,制备了凹凸棒石/丁苯橡胶纳米复合材料,对材料力学性能及其影响因素进行了分析,不同有机试剂处理的凹凸棒石,样品GH-30的扯断伸长率高于BH-30的;不同加量时,所有样品的扯断伸长率都高于TH-30(加入30%炭黑的制成样)的。扯断伸长率最好的样品为GH-30(硅烷偶联剂加十二烷基磺酸钠处理凹凸棒石,加量30%)。对样品GH来说,扯断伸长率、拉伸强度、邵氏硬度都随着凹凸棒石加量的增加而增加,100%定伸强度随着凹凸棒石加量的增加而降低,样品BH-30(丙烯酸加十二烷基磺酸钠处理凹凸棒石,加量30%)的综合力学指标,均优于或近似于TH-30。

陈天虎等[7]以凹凸棒石为载体,通过钛酸四丁酯-丙醇溶液浸渍-过滤-丙醇蒸发-水蒸气作用下钛酸四丁酯水解-低温煅烧程序操作,获得凹凸棒石-TiO

2

纳米复合光催化材料。用1:3钛酸四丁酯-丙醇溶液浸渍凹凸棒石,干燥后在水蒸气作用下使钛酸四丁酯水解,

低温煅烧可得到凹凸棒石-TiO

2纳米复合材料,其中TiO

2

以5-10nm的锐钛矿晶体颗粒存在,

比较均匀地分布在凹凸棒石晶体纳米棒状晶体表面,该方法制备过程简单,钛酸四丁酯利用效率高,是一种有应用前景的光催化材料制备方法。

2.4海泡石

海泡石属斜方晶系或单斜晶系,颜色多变,一般情况下呈淡白或灰白色.海泡石的化

学成分较为简单,主要为硅和镁,其化学式为:Mg

8(H

2

O)

4

〔Si

6

O

15

2

(OH)

4

· 8H

2

O,其中 SiO

2

含量一般在 54%-60% 之间,MgO含量多在21%-25%范围内,并常有少数置换阳离子如 Mg2+可为 Fe2+或 Fe3+、Mn2+等所置换,故能产生变种海泡石.由于海泡石具有特殊构造使其保留着一系列孔道,因而具有极大的比表面积 ( 最大可达150 m2/g ),故有极强的吸附性,脱色性和分散性。另一方面海泡石的热稳定性能极高,耐高温性能可达1500-1700℃,具有造型性能好,绝缘性能好,抗盐度高 (高于其他任何粘土) 等性能,有时还有极美丽的光泽。这种特殊结构与性能导致了它的3个基本特征——吸附性、流变性和催化性,并因为其安全性和有效性而被广泛应用于化工、环境保护、医疗、食品加工和保存、养殖业、化妆品、汽车制造等行业,是一种非常有前途的环保型天然无机非金属材料。

张连松[8]等用X射线衍射(XRD)、扫描电子显微镜(SEM)对海泡石结构和形貌以及吸附

纳米二氧化钛的海泡石的形貌进行了观察;采用BET法(以氮气为吸附气体)测定海泡石吸附纳米二氧化钛的比表面积的变化,用电子自旋波谱仪ESR对海泡石吸附纳米二氧化钛产生羟基自由基(·OH)的能力进行表征。研究结果发现,海泡石对纳米二氧化钛有较好的吸附、分散作用,在自然光条件下可产生·OH,且在355 nm波长照射条件下产生·OH的能力增强。这不仅解决了纳米材料团聚、不易分散的问题,而且增强了纳米材料的光催化性能。

苏秀娟[9]等以湖南湘潭海泡石为吸附剂,吸附废水中的低浓度抗坏血酸。在不同吸附条件下,进行了吸附规律试验研究及吸附材料性能检测。结果表明,在吸附时间为 6.0 min,海泡石用量为15.0g/L,pH=5.5时,对吸附初始质量浓度为150 mg/L的抗坏血酸,其吸附率能达到55%,对吸附初始质量浓度为70.0 mg/L的抗坏血酸,其吸附率能达到66.3%。海泡石对抗坏血酸的饱和吸附量为6.5 mg/g。添加少量的聚合氯化铝,吸附效率能大幅度提高,分析表明吸附效率的提高可能是吸附与絮凝协同作用的结果。经粒度测试显示,湖南湘潭海泡石粒度小、比表面积大,是一种无公害、天然的吸附材料,适于用作VC废水的深度处理。

3纳米粘土矿物的应用

现如今对纳米粘土矿物材料的研究非常广泛。主要进行的研究有纳米粘土矿物在环境治理领域的研究;纳米矿物对橡胶增强增韧的机理研究;纳米粘土矿物材料在医药、保健品中的应用研究等等。

3.1 应用于环境治理领域

对于环境污染,特别是对水污染的治理,主要采用活性污泥法和粉未活性碳投料——活性污泥法两种,但由于活性污泥存在着对水质变动敏感,容易膨胀等缺陷,并且活性价格昂贵,投放量难以增加,所以开发一种新型的材料是很有意义的,纳米粘土矿物具有较大表面积,吸附性能好,价格较便宜,被越来越多的应用于污水治理的研究中。

粘土矿物对于重金属离子、有机物、阳离子染料分子等的吸附主要有表面吸附和离子交换吸附。表面吸附是一种或多种化学物质在表面的富集。只有具有较大的表面积,例如高度分散的细粉或多孔的固体,才具有较大的表面能,才能作为良好的吸附材料。离子交换吸附是为了平衡电荷常需要吸附环境中的异号离子,为了消除电价不饱和,就要在层间吸附其它阳离子来进行置换,以达到吸附目的【10】。

吸附作用还可以分为选择性吸附和非选择性吸附。选择性吸附是属于化学吸附,受可变电荷表面的电量控制,非选择性吸附即通常所说的交换吸附,属于静电作用,受矿物所带的永久电荷量控制,主要是在粘土结构单元之间的空隙进行的。

吸附能力的大小取决于活性表面的多少及表面电荷密度,而能否吸附则与粘土矿物的自由孔径有关。如果被吸附的离子团或分子直径大于粘土矿物自由孔径,使离子团或分子难以进入粘土矿物内表面,吸附便只发生在外表面,从面降低了吸附效果。而纳米粘土矿物就具有大的比表面积、优良的表面活性等特性。有利于其对污水中的重金属离子、有机

物、阳离子染料分子等的吸附主要有表面吸附和离子交换吸附。

由于粘土矿物的资源丰富,价格便宜,被越来越多的应用于环境保护中。目前,用于污水处理的主要是膨润土、凹凸棒石、坡缕石、海泡石、硅藻土等几种,海泡石更多的是应用在催化方面,粘土矿物在环境保护中还有其它的用途,如空气净化,土壤的净化,地下水的修复等,因此对粘土矿物应用的研究还有更大的发展前景。

3.2 在医药、保健品中的应用研究

粘土矿物因有大的比表面积,丰富的孔隙率,良好的吸附性能,较高的吸附容量和离子交换能力等,已作为很多药物的活性成分和药物辅料,被广泛用于胃、肠道疾病,急慢性腹泻,皮肤病及风湿病的治疗。随着人们对粘土矿物性能和治病机理研究的深入,粘土矿物作为天然无毒副作用药物材料的研究越来越受到重视。

例如,由于海泡石具有大的活性表面,可以保持活性产物,又因其表面的低交换性能与三价铁的含量低,可用作制药的赋形剂,能使药品耐氧化褪变. 同样,因其良好的吸附性能,海泡石在治疗腹泻中可用作毒素,细菌和液体的肠胃吸附剂.再者,对海泡石与MgO 混合物同海泡石与Al(OH)

及三硅酸镁(tri-silicates magnesium)混合物进行比较研究显

3

示,海泡石具有控制pH值的性能,在治疗胃酸症中可用作抗酸药品。

国外对纳米级天然蒙脱石的药理研究表明,由于蒙脱石带有不饱和的负电荷及具强烈的阳离子交换能力,对进入人体的病毒细菌有绝对的吸附固定作用,当纳米级的蒙脱石进入人体时,在肺道的消化粘膜内层覆盖一层膜,可以阻止有害病毒细菌通过肠道与粘液结合进到血液中,从而起到抑制作用。纳米蒙脱石对大肠杆菌、霍乱弧菌、空肠弯曲菌、金黄色葡萄球菌和轮状病毒及胆盐都有较好的吸附作用,对细菌毒素有固定作用;研究还表明蒙脱石只吸附、固定表面带有粒编码蛋白(CS31A)的致病性带电病原菌,对表面不带CS31A的正常菌群无固定清除作用。

在此基础上,国内采用纳米蒙脱石和普通蒙脱石与大肠杆菌的体外对比吸附检测的方法,结果发现纳米蒙脱石的吸附能力明显提高,这为纳米蒙脱石应用于医药领域提供了证据。纳米蒙脱石还可起到较好的缓释作用,提高戊二醛消毒剂的稳定性[11]。

另外,经试验,超细纳米级蒙脱石粉末在某种中药粉末中按比例配搭,治疗烫伤有奇效。

在化妆品生产中,利用粘土矿物与有机物结合形成保护因子有屏蔽紫外线功能,能够有效减轻紫外辐射对皮肤的伤害。海泡石或蒙脱石与苯基水杨酸盐的复合药剂就具有较好的紫外线吸收能力。吸附有N-甲基-8-羟基喹啉甲基硫酸盐的蒙脱石也能很好的吸收紫外辐射,减轻紫外线对皮肤的伤害。

因此,粘土矿物主要作为胃、肠道疾病,腹泻的治疗药物或药物的辅料填料以及护肤品领域[12]。

3.3 纳米粘土矿物在其他方面的研究

在土工领域,由于纳米粘土矿物具有较大的比表面积及表面活性,再加上具有较好的流变性和润滑性。因此,纳米粘土矿物可作为填充剂加入混凝土水泥中提高混凝土的部分性能。例如,据有关实验数据表明在一定掺量时,在水化混凝土中掺纳米粘土材料可提高水化混凝土的流动度、抗压强度和抗渗、抗冻融性。另外,纳米粘土材料掺入水泥混凝土中未见有新的水化产物产生,但增长了水泥水化的程度,早期加快了水泥水化的速度,使水化产物的量增多。在水泥混凝土中掺入纳米粘土材料可改善混凝土水化的孔结构,小孔量增加,大孔明显减少。提高了混凝土的密实度,提高其强度。掺纳米粘土材料提高混凝土强度和耐久性是减水增强,填充密实和晶核反应等多种作用的宏观表现[13-14]。

在有机复合材料工程领域,纳米粘土矿物的应用研究也在蓬勃兴起。比如,聚合物/ 粘土纳米复合材料是近10年国内外在纳米复合材料领域的研究热点之一。这种纳米复合材料,与聚合物基体或微米复合材料相比,除了具有更加优越的力学性能、气密性、抗溶剂性、热性能;还具有阻燃的特性,为研究新一代高效、清洁、低烟、无毒聚合物阻燃材料开拓了新的途径,被国外誉为阻燃材料技术革命。

由于粘土具有层状结构的无机天然矿物,资源丰富,价廉易得,是聚合物工业中常用的填料。从可持续发展的观点来看,有关专家提出在矿产资源的开采和使用方面,应当由原来的粗放型向精细化转变,提高其使用价值,物尽其用。针对粘土特殊的层状结构,利用表面改性和纳米复合技术使粘土全部或部分以单晶层状态分布于聚合物基质中,提高聚合物基体的各项性能,实现了粘土由传统的体积填料向功能填料的转化,同时粘土片层的刚性、不可透性和纳米尺寸效应赋予聚合物以新的功能,在力学性能、热稳性、导电性、阻隔性能等诸多方面得到提高和改善。目前,粘土/塑料那米复合材料得到较多的研究和应用,并由此制备出一批具有特殊性能的新型材料。

再者,坡缕石、海泡石是具有结构性纳米孔道的粘土矿物,其纳米孔道可在一维或多维尺度上分布。有人对海泡石-坡缕石族矿物的超临界氢吸附性能进行了研究,并对矿物储氢的机制进行了探讨。还有人研究了蒙脱土在复合贮能材料方面的应用,利用插层复合法制备了NPG-TAM/蒙脱土纳米复合材料,结果表明该材料具有较适宜的相变温度和相转变焓,同时较好地解决了多元醇单独使用时存在的塑晶现象。因此,我们可以制备成储能材料[15]。

4结语

作为一种特殊的纳米材料,纳米粘土具有特殊的性能和很广阔的应用前景。但是,在纳米粘土的制备、加工和应用中都存在一个比较棘手的问题,即纳米微粒的团聚问题。纳米微粒由于具有很高的表面活性而容易团聚,分散性差,这是纳米材料在实际应用中存在的一个普遍问题。为避免纳米微粒的团聚,应及时对微粒表面进行修饰处理,使其稳定而不再发生团聚。选择合适的表面处理方法(表面化学改性或包覆改性)以及分散稳定方法是避免团聚现象的关键环节。另外,对于纳米粘土,特别是聚合物基纳米复合材料的研究尽管十

分热门,但由于其结构复杂,加上纳米粒子具有的量子效应、表面效应等,对它的研究还不够深入。目前,聚合物/粘土纳米复合材料的制备技术有些已十分成熟,然而大规模应用问题至今尚未能很好地解决,从而在一定程度上限制了其发展。而且,目前对于纳米粘土的研究,主要集中在聚合物/粘土纳米复合材料方面,而对其它领域研究相对较少。因此,纳米粘土许多新的特性及应用领域还有待进一步研究和开发。

参考文献:

[1]陈汉周,刘钦甫,侯丽华,等. 高岭土/PET纳米复合材料的制备与表征[J].非金属矿, 2008,31(3):42-44

[2]刘卓钦,皮振邦,田熙科,等. 纳米高岭土表面改性的初步研究[J]. IM&P化工矿物与加工,2005,(5):18-20

[3]崔巧丽,王国全,曾晓飞,等. PA66 /POE-g-MAH/改性纳米高岭土复合材料的形态和力学性能[J].塑料工业, 2009, 37(7): 50-53.

[4]李阳. 聚对苯二甲酸乙二醋/蒙脱土纳米复合材料的制备及结构性能研究[D]. 上海:东华大学,2006

[5]李培耀. 非极性聚合物/有机蒙脱土纳米复合材料的结构与性能研究[D]. 北京:北京化工大学,2009

[6]王萍.凹凸棒石/丁苯橡胶纳米复合材料制备及其性能[J]. 非金属矿,2004,27(6): 8-10

[7]陈天虎,史晓莉,彭书传. 凹凸棒石-TiO2纳米复合材料制备和表征[J]. 硅酸盐通报,2005,(1):112-114

[8]张连松,冀志江,王静,等. 海泡石吸附纳米TiO2对·OH基产生的影响[J]. 岩石矿物学杂志,2005,24(6):603-606

[9]苏秀娟,朱一民,赵二华,等. 海泡石对水相中抗坏血酸的吸附[J]. 东北大学学报,2007,28(5):725-728

[10]戴清清,宋绵新.粘土矿物在水污染治理中的应用发展概述,矿业快报[J].2005,(2):428

[11]林亚萍,皮振邦,田熙科,等.蒙脱石对戊二醛的吸附及其控释研究,应用化工[J].2004,33 (5):45-47.

[12]汤庆国1沈上越 2梁金生1,梁广川1,欧秀琴1,王丽娟 1,丁燕1(1.河北工业大学能源与环保研究所,天津300130;2.中国地质大学材料科学和化学工程学院,武汉430074).粘土矿物的药理作用及其医药应用,中国制药机械设备网[J].2007-1-26

[13]仲晓林,孙跃生,仲朝明,朱泽民,李维霞.纳米粘土材料对水泥混凝土作用机理的研究.全国中文核心期刊[J].2006,(04):198.

[14]仲晓林,李顺凯,孙跃生,仲朝明,于秀斌.纳米粘土材料对水泥混凝土性能的影响,全国中文核心期刊[J].2005,(08):190.

[15]蒋长龙,于少明,杭国培. NPG-TAM/蒙脱土纳米复合贮能材料的研究[J ] .合肥工业大学学报,2004 ,27 (10) :1281-1283.

粘土矿物在扫描电镜下的识别

10自生粘土矿物鉴定 根据矿物的形态特征和成分特点进行鉴定. 10.1高岭石 10.1.1形态特征 用扫描电子显微镜观察,沉积岩中自生高岭石呈蠕虫状(图版I-b)、书页状(图版I-c)集合体赋存子粒间.其单晶为六方板状(图版I—a),常与自生石英、方解石等自生矿物共生.10.1.2成分特征 用能谱测定高岭石的化学成分.主要元素为硅(Si)、铝(Al),其Si02/Al2O3的比值为1·1-1.3。 10.2蒙皂石 10.2.1形态特征 用扫描电子显微镜观察.沉积岩中自生蒙皂石呈蜂窝状(图版I-a、b、c)赋存子粒表,星棉絮状、片状赋存予粒间. 10.2.2成分特征 用能谱测定其成分.主要成分为硅(Si)、铝(Al)、钙(Ca)、钠(Na),氧化钾(K2O)含量低,通常小于1.5%. 10.3伊利石 10.3.1形态特征 用扫描电子显微镜观察,自生伊利石呈片状(图版I-a、c)或丝状(图版I-b)集合体,赋存子粒表和粒同. 10.3.2成分特征 用能谱测定伊利石成分.主要元素为硅(Si)、铝(Al)、钾(K).其氧化钾(K20)值通常大于7.5%. 10.4绿泥石 10.4.1形态特征 用扫描电子显微镜观察,自生绿泥石墨绒球状(图版Ⅳ-a)赋存子粒间,或以针叶状(图版Ⅳ-b)赋存于粒表,其单晶结构为叶片状(图版Ⅳ-c). 10.4.2成分特征 用能谱测定绿泥石成分.主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg).除硅、铝外,富含铁、镁是其主要特征. 10.5伊/蒙混层 10.5.1形态特征 用扫描电子显微镜观察,伊/蒙混层呈丝状(图版Va、b、c),是蒙皂石向伊利石过渡期的粘土矿物.形态特征是蒙皂石特征逐渐消失,伊利石特征逐渐增强,赋存于粒表和粒间.10.5.2成分特征 用能谱测定伊/蒙混层成分,主要元素为硅(Si)、铝(Al)、钾(K)、钙(Ca)、钠(Na).其成分特征主要反映在氧化钾(K2O)含量为1.5%~7.5%.确定为过渡期的混层粘土矿物.10.6绿/蒙混层 10.6.1形态特征 用扫描电子显微镜观察,绿/蒙混层粘土矿物呈蜂窝状(图版Ⅵ-a、b)和丝状结构(图版Ⅵ-c).是蒙皂石向绿泥石过渡期的粘土矿物,具有蒙皂石和绿泥石的形态特征. 10.6.2成分特征 用能谱测定绿/蒙混层成分,主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg)、钙(Ca)。其铁、镁含量较高是主要特征.

环境保护中粘土矿物的应用

环境保护中粘土矿物的应用 [文档副标题] [日期]

环境保护中粘土矿物的应用 摘要:无机非金属环境矿物材料基于其不同的性能广泛用于空气污染处理、 废水处理和固体废弃物处理的环境治理,并在节能保温材料方面、在降噪隔 声方面、在无形磁波污染控制方面、在自然灾害防治方面、在太阳能材料应 用方面、在传动系统减震方面、在新型抗菌材料方面、在人体健康材料方面 等都将起到重要作用。 1.粘土矿物材料的研究现状 人类社会的发展史就是人们利用矿物材料的文明史。随着科学技术的发展和工业化程度的不断提高,许多金属材料的性能已不能适应高强、高速、高温、轻质、绝缘、耐腐蚀等方面的要求,因而非金属矿物材料的发展十分迅速,如美国汽车工业中轿车钢铁构件已由占81%降为61%,采用由非金属材料制成的构件大大减轻了车重,节约了钢材;发达国家一些原来从事钢铁、造船等行业的研究已转向新型材料及新型陶瓷的研究。同时,伴随着矿物材料的深加工技术的发展,矿物材料的利用价值和应用领域不断提高,如散装膨润土30美元/吨,而有机膨润土2400-3600美元/吨;重晶石散装未碎者40美元/吨,而药物级达2560美元/吨;石墨原矿500美元/吨,石墨密封材料7000美元/吨,而石墨乳10000美元/吨。近年来无机非金属矿物材料在环境保护中的应用不断加强,使矿物材料成为治理、修复环境污染的环境材料。 新型材料是发展高新技术产业的重要支柱之一,随着材料结构向多元化、功能化、智能化发展,矿物材料已成为现代材料科学的重要组成部份。传统的或一般的矿物材料的应用是直接利用矿物(包括部分岩石)本身所具有的物理化学性质和工艺特性,而且只作为单一性能或低性能的一般材料来应用。如陶瓷矿物材料、建筑矿物材料、化工矿物材料和冶金辅助矿物材料等,这种传统的矿物材料都是低值材料或产品,并由于其本身性能的局限性或未得以强化增强,因而在诸

粘土矿物在环境中的应用

https://www.360docs.net/doc/7110386042.html, 粘土矿物在环境中的应用 刘龙涛1,崔丹2 1中国矿业大学(北京)资源学院(100083) 2陕西师范大学旅环院(710062) E-mail:wfhtllt@https://www.360docs.net/doc/7110386042.html, 摘要:随着科学技术的不断发展,人们在享受科技成果的同时,也造成了对自身生存环境的污染。许多化学污染物以多种途径进入环境,工业和生活废弃物的排放日益增多,造成土壤、水体和大气污染,严重影响着生态系统的安全,对人类与生态环境产生了直接或潜在的危害。随着工农业生产的飞速发展和人口急剧膨胀,人类活动与自然资源和环境之间的矛盾日益加剧,合理利用矿产资源和有效控制环境污染已是实现社会可持续发展的战略问题。目前,对于环境污染,人们已经研究出多种物理、化学和生物的方法来转移这些污染物。由于粘土矿物价格便宜且具有机械稳定性,多孔隙率、多种表面和结构、分散悬浮性、离子交换性、吸附性等,故用颗粒细小的粘土矿物及改性粘土矿物来转移污染物已经成为人们研究的热点。 关键词:粘土矿物 环境保护 构造特征 1. 引言 近几年,粘土矿物在环保方面的应用越来越广泛,在污水处理、大气吸附、过滤脱色等方面的应用水平不断提高;在生态建材(如具有保温、隔热、吸音、调光等功能的建材)、杀菌、消毒剂等方面都有新的应用技术和产品[22-23]。加强环境保护、改善生态平衡已成为当务之急。 2. 粘土矿物的结构特征概述 粘土矿物是颗粒细小(<0.1mm)的含水层状结构硅酸盐矿物,其结构单元层是由Si-O四面体片与Al-O八面体片按不同的规律连结起来而构成,按其连接方式的不同把粘土矿物划分为1:1和2:1两种结构类型,前者如高岭石,后者如蒙脱石、伊利石、凹凸棒石等.粘土矿物结构单元层内部因发生离子的类质同象置换,比如四面体中Si4+被Al3+置换,八面体中Al3+被Fe2+、Mg2+置换,从而使其单元层表面具有电性.此外,粘土矿物颗粒细小,比表面积大,因而,粘土矿物会表现吸附性、离子变换性、胶体性、分散性和催化性,这些特性在环境污染处理中具有十分重要意义. 在粘土矿物中,硅、铝、氧是其中最主要的元素。在这些粘土矿物中,硅和氧结合生成硅氧四面体,铝和氧结合生成了铝氧八面体,其中硅氧四面体分布在同一个平面内,彼此以3个角顶相连,从而形成二维延展的网层即四面体片。同样,铝氧八面体共用边角形成了八面体.这些硅氧四面体片和铝氧八面体片又共用氧原子,将不同的片结合在一起.形成层状结 -1-

粘土矿物分析

作为岩石组分的粘土矿物其含量、种类及其分布、产状等对地层伤害有着非常密切的关系。由于粘土矿物颗粒细小(<0.01mm),比表面极大,并具有特殊的结构组成,因此它们对外来作业流体如注入水、压裂液、酸化液、压井液等的侵入极为敏感。当与外来流体接触时,粘土矿物往往会发生膨胀、微粒运移、生成某种沉淀等从而堵塞储层油气流动的孔隙通道,造成储层渗流能力的下降,损害油气层。因此了解粘土矿物的性质对油田开发十分重要。 通过X射线衍射分析和扫描电子显微镜技术可以确定岩石中粘土矿物的含量、分布及产状等。选取了西泉5井的部分岩石样品进行了上述测定,测定结果见表1。 表1 西泉5井区三叠系储层粘土矿物含量统计表 根据X衍射和扫描电镜分析,韭菜园子组砂层以蒙皂石(包括蒙脱石和皂石两个亚族)为主,63%~98%,平均87.8%;其次为伊/蒙混层(20%~99%,平均72.76%),绿泥石(1%~55%,平均9.33%),另有高岭石(1%~12%,平均5.74%)和伊利石(2%~16%,平均6.24%)(见表1)。 对韭菜园子组敏感性的简单分析:(供参考) 韭菜园子组伊/蒙混层和绿/蒙混层含量较多,伊/蒙混层和绿/蒙混层是遇水易膨胀的矿物,易发生粘土膨胀和分散造成地层伤害。 韭菜园子组绿泥石含量相对较高(平均9.33%),绿泥石是酸敏性矿物,酸化时易造成氢氧化铁胶体沉淀(酸敏)。另外伊利石和高岭石是速敏性矿物,易造成颗粒运移堵塞地层。

粘土矿物分析在储层潜在敏感性评价中的应用 一、粘土矿物类型 粘土矿物(clay minerals)是粘土和粘土岩中晶体一般小于2微米,主要是含水的铝、铁和镁的层状结构硅酸盐矿物。有的在其成分中还有某些碱金属或碱土金属存在。粘土矿物包括高岭石族矿物、蒙皂石、蛭石、粘土级云母、伊利石、海绿石、绿泥石和膨胀绿泥石以及有关的混层结构矿物,此外还包括具过渡性的层链状结构的坡缕石(凹凸棒石)和海泡石以及非晶质的水铝英石。除水铝英石外均属层状或层链状结构硅酸盐,因此粘土矿物可按层状结构硅酸盐矿物的分类来划分。粘土矿物按成因可分为他生粘土矿物和自生粘土矿物两类,他生粘土矿物主要是来自沉积物源区的陆源矿物,矿物成分与母源区岩石类型关系密切;自生粘土矿物为储层在特定成岩阶段化学反应析出的矿物,如自生绿泥石、自生高岭石等。不同成因粘土矿物通常具有不同的矿物组合、产状、晶形和分布规律等特征。 粘土矿物的粒度细小,其大小和形态需用电子显微镜才能测定。多数粘土矿物如伊利石等呈鳞片状,结晶良好的高岭石则呈完整的假六方片状。少数粘土矿物呈管状(埃洛石)或纤维状(坡缕石和海泡石)。 晶体结构与晶体化学特点决定了它们的如下一些性质。①离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、CI-、(PO4)3-、(NO3)-。产生阳离子交换性的原因是破键和晶格内类质同象置换引起的不饱和电荷需要通过吸附阳离子而取得平衡。阴离子交换则是晶格外露羟基离子的交代作用。②粘土-水系统特点。粘土矿物中的水以吸附水、层间水和结构水的形式存在。结构水只有在高温下结构破坏时才失去,但是吸附水、层间水以及海泡石结构孔洞中的沸石水都是低温水,经低温(100~150℃)加热后就可脱出,同时象蒙皂石族矿物失水后还可以复水,这是一个重要的特点。粘土矿物与水的作用所产生的膨胀性、分散和凝聚性、粘性、触变性和可塑性等特点在工业上得到广泛应用。③粘土矿物与有机质的反应特点。有些粘土矿物与有机质反应形成有机复合体,改善了它的性能,扩大了应用范围,还可作为分析鉴定矿物的依据。此外,粘土矿物晶格内离子置换和层间水变化常影响光学性质的变化。蒙皂石族矿物中的铁、镁离子置换八面体中的铝,或者层间水分子的失去,都使折光率与双折射率增大。 粘土矿物的形成方式有三种:①与风化作用有关。风化原岩的种类和介质条件如水、气候、地貌、植被和时间等因素决定了矿物种和保存与否。②热液和温泉水作用于围岩,可以形成粘土矿物的蚀变富集带。③由沉积作用、成岩作用生成粘土矿物。 高岭土主要用作陶瓷原料、造纸的填料和涂层;主要由蒙脱石构成的膨润土用于作

南海粘土矿物组合特征及其环境意义_邱中炎

文章编号:1001-909X (2008)01-0058-07 收稿日期: 2006-05-15 基金项目:国家自然科学基金资助项目(40476050) 作者简介:邱中炎(1981-),男,广西柳州市人,硕士研究生,主要从事海洋环境记录方面的研究。 南海粘土矿物组合特征及其环境意义 邱中炎 1,2 ,沈忠悦3,韩喜球 1,2 ,陈建芳 1 (1.国家海洋局第二海洋研究所,浙江杭州 310012; 2.国家海洋局海底科学重点实验室,浙江杭州 310012; 3.浙江大学地球科学系,浙江杭州 310027) 摘 要:利用X 射线衍射法(X RD )对南海12个海底表层沉积物和20个悬浮物样品中粘土矿物组成和分布特征进行了综合分析。结果表明:(1)研究区的表层沉积物粘土矿物以伊利石为主,其次为绿泥石、高岭石、伊/蒙间层矿物以及蒙皂石;悬浮物粘土矿物是以绿泥石为主,其次为高岭石、蒙皂石、伊利石以及伊/蒙间层矿物。(2)粘土矿物的组成和分布特征主要受气候条件、物质来源、水动力条件及相互间稀释作用的制约。伊利石的含量随离岸距离和水深的增加呈增大趋势;高岭石则在近岸区特别是河口区富集;绿泥石在西部沿岸海区的含量较低,在东部岛弧和北部台湾岛附近海区的含量较高;蒙皂石与火山作用密切相关,在东部火山岛弧附近海区含量较高。(3)粘土沉积物的来源以河流输入为主,海洋自生和风尘搬运对该区的沉积影响不大。(4)深海悬浮物粘土矿物的组成变化能够很好地指示短尺度气候环境的变迁,伊利石的结晶程度对气候和环境变化反映灵敏,其随所处环境的压力增大而变差。 关键词:南海;粘土矿物;结晶度;环境意义中图分类号: P736.21 文献标识码:A 0 引言 南海背靠亚洲大陆、外绕岛弧,是一个典型的 半封闭性边缘海,其独特的地理位置和晚新生代以来的高沉积速率,引起了中外众多海洋地质学家的极大关注。海洋粘土矿物的分布非常广泛,它的组成和分布特征可以反映源区气候以及许多非气候条件,如物质来源、沉积环境和水动力条件等。对粘土矿物的组合、含量、粒度分布特征以及结构特点的深入研究,可为了解粘土矿物的形成、推测来源区气候环境的特征及沉积环境提供有益的信息,对解决相关的地质科学问题、改善生态环境具有重要意义。前人对南海表层沉积物中的粘土矿物特征曾进行了大量的研究[1-6] ,本文在对其组合特征进行研究的同时,还对不同季节、不同水深采集到的悬浮物样品中粘土矿物组合特征进行了研究,为未来南海粘土矿物来源及在时间和空间上变化的进一步研究提供科学依据。 1 样品及实验方法 本文共采集了32个样品,其中12个样品来自于南海海底表层沉积物,20个样品来自于南海N E 2站位(17.2534°N 、119.5013°E )的海洋悬浮物(图1)。 表层沉积物样品是利用箱式采集器采集的,悬浮物样品是1998年7月8日~1999年4月30日利用悬浮物采集器采集的。采集悬浮物时,将各采集器悬挂于浅、中、深3种不同水深处,当悬浮物缓慢沉淀到采集器中后,将悬浮物取出,经低温冷冻烘干后密封保存,供实验室分析和测量使用,采集的周期为半个月至一个月不等。 实验室分析和测量步骤如下:(1)原样品经醋酸处理去除碳酸盐矿物后,用离心法分离,获得粒级小于2μm 的粘土矿物;(2)采用自然沉降法制取定向样品,并进行X 射线衍射(X RD)分析;(3)自然定向样品在60℃的乙二醇饱和蒸汽中恒温16h, 第26卷 第1期2008年3月 海 洋 学 研 究 JOURNAL OF MARINE S CIENC ES V ol.26 N o.1M a r., 2008

粘土类矿物的概述

立志当早,存高远 粘土类矿物的概述 在可浮性分类中粘土类矿物属氧化物及硅酸盐、铝硅酸盐类矿物。粘土 一般指天然产出,以含水铝硅酸为主的土状集合体。除含少量粗粒外,大部分 粒度很细,直径数微米或1 微米以上,其矿物组成复杂。本节的粘土(类)是 指粒度极细、可浮性较差的各种极性硅(铝—硅)酸盐土状矿物原料,可以包 括高岭土、耐火粘土、膨润土(蒙脱石土)、酸性白土和海泡石等。其中几个 代表矿物的组成如表1。这些粘土类矿物原料,用途相当广泛。可用作陶瓷和 耐火材料的原料、纸张、橡胶、肥皂的充填剂、脱色剂、粘合剂、钻探泥浆、 催化剂等等。对这类矿物原料的技术加工和产品要求,因用途不同差别很大。 本节以研究较深入的高岭土为基础从浮选加工的角度,对极性粘土原料的浮选 略加介绍。高岭土原料的加工,可能包括下列过程:破碎—磨矿—浮选(磁选)—分级—漂白—浓密—过滤—干燥。其中:浮选用于脱去锐钛矿 (TiO2),磁选(强磁或高梯度磁选)用于除去氧化铁。漂白用氯气、二氧化 硫或硫氰化锌作漂白剂,目的是溶去铁锈等有色物质,增加产品白度(对某些 粘土矿物,还要进行活化处理)。其余过程的目的和原理与一般选矿过程相 同。表1 代表性的极性粘土矿物矿物化学式比重零电点其它高岭土埃洛石蒙脱 石海泡石坡缕石Al2Si2O3(OH)4(Na,Ca)0.33(Al,Mg)2Si4O10(OH)2 H2OAl2Si2O3 (OH)4·nH2OMg3Si12O30 (OH)4·(OH2)4·8H2OMg3Si8O20 (OH)2·(OH2)4·4H2O2.6092-2.83.4 其主要成分为硅酸盐或铝硅酸盐的粘土矿物,表面电位多为3~4。由于粒度小,比表面大,特别是海泡石等矿物晶体呈 凹凸交替的长条形,有很大的离子交换容量,在浮选中有如下几个共同的特 点:(1)药剂消耗量大(脂肪酸类用量可以高达2.5gk/t)(2)浮选浓度低,有较好的选择性。浮选的矿浆浓度以10%最适宜,载体浮选(背负浮选)

粘土矿物在地质、环境、材料科学领域中的应用

粘土矿物在地质、环境、材料科学领域中的应用 随着人类对粘土矿物研究的日益深入以及粘土矿物在各领域中的应用日益加深,粘土矿物的独特性质正越来越受到人们的关注。粘土矿物分布的广泛性、特有的物理、化学、晶体结构的性质及其形成机理的独特性,决定了它在地质、环境、材料科学领域应用中的重要意义。 1.粘土矿物的结构特征概述 粘土矿物是颗粒细小(<0.1mm)的含水层状结构硅酸盐矿物,其结构单元层是由si-o四面体片与Al-o八面体片按不同的规律连结起来而构成,按其连结方式的不同把粘土矿物分为1:1和2:1两种结构类型,前者如高岭石,后者如蒙脱石、伊利石、凹凸棒石等。粘土矿物结构单元层内部因发生离子的类质同象置换,比如四面体中Si离子被Ai离子置换,八面体中Ai离子被Fe、Mg离子置换,从而使其单元层表面具有电性。此外,粘土矿物颗粒细小,比表面积大,因而,粘土矿物会表现吸附性、离子交换性、胶体性、分散性和催化性,这些特征在地质、环境、材料科学领域中具有十分重要的意义。 在粘土矿物中,硅、铝、氧是其中最主要的元素。在这些粘土矿物中,硅和氧结合生成硅氧四面体,铝和氧结合生成铝氧八面体,其中硅氧四面体分布在同一个平面内,彼此以三个角顶相连,从而形成二维延展的网层即四面体片。同样,铝氧八面体共用边角形成了八面体片。这些铝氧四面体片和硅氧八面体片又共用氧原子,将不同的片结合在一起,形成层状结构。 粘土矿物除少数为非晶质外,大多是是由按四面体配位阳离子(Si4+、Al3+、Fe3+)和按八面体配位阳离子(Al3+、Fe3+、Fe2+、Mg2+)组成层状或链状的硅酸盐化合物。层状硅酸盐的基本结构单元是硅氧四面体层或水镁石层或三水铝石八面体层。粘土矿物可分为高岭石类、蒙脱石类和云母类等。高岭石为1:1型结构,基本式为Si4Ai4O10(OH)8,个单元层间距小,小分子或阳离子很少有机会进入层际空隙中,故层际通常不发生离子交换,而是在粘土的表面和边、角发生。蒙脱石类和云母类粘土均为2:1型结构其基本式为Si3Ai4O20(OH)4·nH2O,由于同晶置换,这两种类型的粘土矿的离子交换除在层面的边、脚上发生,更多是由层际间的阳离子交换而形成。 2.粘土矿物在石油地质中的应用

无机粘土矿物

无机粘土矿物 蒙脱石(montmorillonite) ?蒙脱石(montmorillonite)含水层状结构硅酸盐矿物。成分为(Na,Ca) 0.33 ( Al,Mg)2[Si4O10](OH)2·nH2O 。水的含量变化很大。颗粒细小,约0.2~1微米,具胶体分散特性,通常呈块状或土状集合体产出。又... 蒙脱石(montmorillonite) 含水层状结构硅酸盐矿物。成分为(Na,Ca) 0.33 ( Al,Mg)2[Si4O10](OH)2·nH2O 。水的含量变化很大。颗粒细小,约0.2~1微米,具胶体分散特性,通常呈块状或土状集合体产出。又称微晶高岭石或胶岭石。在电子显微镜下观察,晶体属单斜晶系,一般呈不规则片状。颜色为白色带浅灰,有时带浅蓝或浅红色,光泽暗淡;莫氏硬度2~2.5;比重2~2.7。具有很强的吸附能力和离子交换能力。同时还具有高度的胶体性、可塑性和粘结力。吸水性很强,加水膨胀,体积可增加几倍到十几倍。是组成膨润土的主要成分。用作钻探泥浆,铸型砂和铁矿球团的粘合剂,造纸、橡胶、化妆品的填充剂,纺织和石油工业中作吸收剂、石油脱色和裂化催化剂的原料。各种富含铝硅酸盐的矿物经风化作用,热液蚀变或沉积变质作用在碱性条件下都可以形成。在土壤和现代沉积物中蒙脱石也相当多。产地有美国怀俄明和意大利蓬札等。中国产地有辽宁、吉林、河北、浙江、新疆等。 高岭石(kaolinite) ?高岭石(kaolinite)化学组成为Al4〔Si4O10〕(OH )8的层状结构的硅酸盐矿物。因最早发现于中国景德镇高岭林而得名。晶体属1∶1型单元层的二八面体型结构。由于堆叠中结构单元层间的相对位移,便构成了与地...

1粘土矿物的结晶结构及基本特征

3粘土矿物的结晶结构及基本特征 3.1粘土矿物概念、类型及其结构化学特征 粘土的本质是粘土矿物。粘土矿物是细分散的含水的层状硅酸盐和含水的非晶质硅酸盐矿物的总称。晶质含水层状硅酸盐矿物有高岭石、蒙脱石、伊利石、绿泥石等: 含水非晶质硅酸盐矿物有水铝英石、胶硅铁石等。粘土矿物决定了整个粘土类或岩石的性质,它是最活泼的组分。 粘土矿物的晶体结构主要是由两个最基本结构单元组成,即硅氧四面体和铝氧八面体,并沿X 轴方向发展。四 面体的中心是四价的硅Si 4+,而四个二价的氧O 2- 分布于四面体的四个顶角,四面体的四个面均为等边三角形(如图3.1- (a)),有时四面体中的氧原子为氢氧原子所代替,四面体的底面落在同一平面上,以三个尖顶彼此连结,第四个尖顶均指向同一个方向,在平面上组成六角形网格状结构或链状结构(如图3.1- (b)),成为四面体层(片)。八面体由六 个氧或氢氧原子以等距排列而成,A13+(或Mg 2+ )居于中心(如图3.2- ( a )),八面体亦排列成层状态结构,成为八面体层(片)(如图3.2- (b))。 由于单位晶格的大小相近似,四面体层与八面体层很容易沿C 轴叠合而成为统一的结构层,此结构层称为结构单位层,简称晶层,几个结构层组成晶胞。四面体层与八面体层的不同组合堆叠重复,便构成了各种粘土矿物的不同层状结构。由一个四面体层与一个八面体层重复堆叠的称为1:1型结构单位层(如高岭石等),也称为二层型; 由两个四面体层间夹一个八面体层重复堆叠的称为2:1型结构单位层(如蒙脱石、伊利石等),也称为三层型;在层状结构中,四面体层与八面体层间共用一个氧原子层,故四面体层与八面体层间的键力大,联结较强,但在1:1型或2:1型结构单位层间并不共用氧原子层,层间的联结较弱。 在高岭石类粘土矿物中,结构单位层间为O 与HO(或OH 与OH)相邻(如图3.3 ),堆叠时,在相邻两晶层之间,除了范德华(Van der waals)力增扩的静电能外,主要为表层(羟)基及氧原子之间的氢键力,将相邻两晶层紧密地结合起来,使水不易进入晶层之间。即使有表面水合能撑开晶层,但不足以克服晶层间大的内聚力,几乎无阳离子交换(阳离子交换容量很小,其CEC 值为3-15毫克当量/100克干土)和类质同象置换现象,其基本层是中性的。同时,高岭石晶体基面间距(C 轴间距或doo1值)小(约7.2 A ),没有容纳阳离子的地方,即晶层无阳离子存在。高岭石晶体只有外表面,没有内表面,比表面积很小(一般远小于100m 2 /g ),被吸附的交换性阳 离子(如Na + 、Ca 2+等)仅存于高岭石矿物外表面,这对晶层水合无重要影响,所以高岭石是较稳定的非膨胀性粘土矿物,层间联结强,晶格活动性小,最活跃的表面是在晶体断口、破坏的及残缺部位的边缘部分,浸水后结构单位层间的距离(C 轴间距或doo1值)不变,使高岭石膨胀性和压缩性都较小,但有较好的解理面。 蒙脱石类粘土矿物中的结构单位层间为O 与 O(如图3.4 ),相邻两晶层之间的联结力主要为范德华(Van der waals)力,层间联结极弱,易于拆开。蒙脱石既有外表

粘土矿物在环境保护中的应用研究

粘土矿物在环境保护中的应用 杨飞华姜志刚郑学松 (北京市建材科学研究院北京100041) 摘要无机非金属环境矿物材料基于其不同的性能广泛用于空气污染处理、废水处 理和固体废弃物处理的环境治理,并在节能保温材料方面、在降噪隔声方面、在无形磁波污染 控制方面、在自然灾害防治方面、在太阳能材料应用方面、在传动系统减震方面、在新型抗菌 材料方面、在人体健康材料方面等都将起到重要作用, 1.粘土矿物材料的研究现状 人类社会的发展史就是人们利用矿物材料的文明史。随着科学技术的发展和工业化程度的不断提高,许多金属材料的性能已不能适应高强、高速、高温、轻质、绝缘、耐腐蚀等方面的要求,因而非金属矿物材料的发展十分迅速,如美国汽车工业中轿车钢铁构件已由占81%降为61%,采用由非金属材料制成的构件大大减轻了车重,节约了钢材;发达国家一些原来从事钢铁、造船等行业的研究已转向新型材料及新型陶瓷的研究。同时,伴随着矿物材料的深加工技术的发展,矿物材料的利用价值和应用领域不断提高,如散装膨润土30美元/吨,而有机膨润土2400-3600美元/吨;重晶石散装未碎者40美元/吨,而药物级达2560美元/吨;石墨原矿500美元/吨,石墨密封材料7000美元/吨,而石墨乳10000美元/吨。近年来无机非金属矿物材料在环境保护中的应用不断加强,使矿物材料成为治理、修复环境污染的环境材料。 新型材料是发展高新技术产业的重要支柱之一,随着材料结构向多元化、功能化、智能化发展,矿物材料已成为现代材料科学的重要组成部份。传统的或一般的矿物材料的应用是直接利用矿物(包括部分岩石)本身所具有的物理化学性质和工艺特性,而且只作为单一性能或低性能的一般材料来应用。如陶瓷矿物材料、建筑矿物材料、化工矿物材料和冶金辅助矿物材料等,这种传统的矿物材料都是低值材料或产品,并由于其本身性能的局限性或未得以强化增强,因而在诸多领域的应用受到限制。随着科学技术的发展,矿物材料正在向轻型、高纯、精细和复合方向发展,具有特殊功能的矿物材料已成为新型材料和应用技术研究开发的主流。因此,特种矿 2.粘土矿物在环境治理中的应用 虽然物质文明提高、人类在创造物质文明的同时,也在不断破坏人类赖以生存的空间环境,地球温室效应、酸雨现象、高新技术产生的污染、臭氧层的穿孔、地球资源的枯竭、废弃物的增加等对地球环境的破坏越来越严重,保护环境、治理环境、有机地协调经济发展与生态环境保护已成为我国21世纪可持续发展的战略目标的重要内容。随着“在原料采用、产品制造、使用或者再生循环以及废料处理等环节中对地球负荷最小和最有利于人类健康的材料”绿色材料新概念的提出,矿物材料不仅是绿色材料主要组成,而且在环境保护和环境治理中起着重要的作用。 2.1矿物材料在治理空气污染中的应用 大气污染系指由于人类活动和自然过程引起某种物质进入大气中,呈现足够的浓度,达

粘土矿物分析在储层潜在敏感性评价中的应用

粘土矿物分析在储层潜在敏感性评价中的应用 一、粘土矿物类型 粘土矿物(clay minerals)是粘土和粘土岩中晶体一般小于2微米,主要是含水的铝、铁和镁的层状结构硅酸盐矿物。有的在其成分中还有某些碱金属或碱土金属存在。粘土矿物包括高岭石族矿物、蒙皂石、蛭石、粘土级云母、伊利石、海绿石、绿泥石和膨胀绿泥石以及有关的混层结构矿物,此外还包括具过渡性的层链状结构的坡缕石(凹凸棒石)和海泡石以及非晶质的水铝英石。除水铝英石外均属层状或层链状结构硅酸盐,因此粘土矿物可按层状结构硅酸盐矿物的分类来划分。粘土矿物按成因可分为他生粘土矿物和自生粘土矿物两类,他生粘土矿物主要是来自沉积物源区的陆源矿物,矿物成分与母源区岩石类型关系密切;自生粘土矿物为储层在特定成岩阶段化学反应析出的矿物,如自生绿泥石、自生高岭石等。不同成因粘土矿物通常具有不同的矿物组合、产状、晶形和分布规律等特征。 粘土矿物的粒度细小,其大小和形态需用电子显微镜才能测定。多数粘土矿物如伊利石等呈鳞片状,结晶良好的高岭石则呈完整的假六方片状。少数粘土矿物呈管状(埃洛石)或纤维状(坡缕石和海泡石)。 晶体结构与晶体化学特点决定了它们的如下一些性质。①离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、CI-、(PO4)3-、(NO3)-。产生阳离子交换性的原因是破键和晶格内类质同象置换引起的不饱和电荷需要通过吸附阳离子而取得平衡。阴离子交换则是晶格外露羟基离子的交代作用。②粘土-水系统特点。粘土矿物中的水以吸附水、层间水和结构水的形式存在。结构水只有在高温下结构破坏时才失去,但是吸附水、层间水以及海泡石结构孔洞中的沸石水都是低温水,经低温(100~150℃)加热后就可脱出,同时象蒙皂石族矿物失水后还可以复水,这是一个重要的特点。粘土矿物与水的作用所产生的膨胀性、分散和凝聚性、粘性、触变性和可塑性等特点在工业上得到广泛应用。③粘土矿物与有机质的反应特点。有些粘土矿物与有机质反应形成有机复合体,改善了它的性能,扩大了应用范围,还可作为分析鉴定矿物的依据。此外,粘土矿物晶格内离子置换和层间水变化常影响光学性质的变化。蒙皂石族矿物中的铁、镁离子置换八面体中的铝,或者层间水分子的失去,都使折光率与双折射率增大。 粘土矿物的形成方式有三种:①与风化作用有关。风化原岩的种类和介质条件如水、气候、地貌、植被和时间等因素决定了矿物种和保存与否。②热液和温泉水作用于围岩,可以形成粘土矿物的蚀变富集带。③由沉积作用、成岩作用生成粘土矿物。 高岭土主要用作陶瓷原料、造纸的填料和涂层;主要由蒙脱石构成的膨润土用于作钻井泥浆、精炼石油的催化剂和漂白剂、铁矿球团的粘结剂和铸形砂粘合剂;凹凸棒石粘土和海泡石粘土是制造抗盐泥浆的优质原料、油脂的脱色剂和吸收剂。 下面我们介绍一下常见的几种粘土矿物: 1、蒙脱石

(完整word版)1粘土矿物的结晶结构及基本特征

3粘土矿物的结晶结构及基本特征 3.1粘土矿物概念、类型及其结构化学特征 粘土的本质是粘土矿物。粘土矿物是细分散的含水的层状硅酸盐和含水的非晶质硅酸盐矿物的总称。晶质含水层状硅酸盐矿物有高岭石、蒙脱石、伊利石、绿泥石等: 含水非晶质硅酸盐矿物有水铝英石、胶硅铁石等。粘土矿物决定了整个粘土类或岩石的性质,它是最活泼的组分。 粘土矿物的晶体结构主要是由两个最基本结构单元组成,即硅氧四面体和铝氧八面体,并沿X轴方向发展。四面体的中心是四价的硅Si4+,而四个二价的氧O2-分布于四面体的四个顶角,四面体的四个面均为等边三角形(如图3.1- (a)),有时四面体中的氧原子为氢氧原子所代替,四面体的底面落在同一平面上,以三个尖顶彼此连结,第四个尖顶均指向同一个方向,在平面上组成六角形网格状结构或链状结构(如图3.1- (b)),成为四面体层(片)。八面体由六个氧或氢氧原子以等距排列而成,A13+(或Mg2+)居于中心(如图3.2- ( a )),八面体亦排列成层状态结构,成为八面体层(片)(如图3.2- (b))。 由于单位晶格的大小相近似,四面体层与八面体层很容易沿C轴叠合而成为统一的结构层,此结构层称为结构单位层,简称晶层,几个结构层组成晶胞。四面体层与八面体层的不同组合堆叠重复,便构成了各种粘土矿物的不同层状结构。由一个四面体层与一个八面体层重复 堆叠的称为1:1型结构单位层(如高岭石等),也称为 二层型; 由两个四面体层间夹一个八面体层重复堆 叠的称为2:1型结构单位层(如蒙脱石、伊利石等), 也称为三层型;在层状结构中,四面体层与八面体层 间共用一个氧原子层,故四面体层与八面体层间的 键力大,联结较强,但在1:1型或2:1型结构单位层 间并不共用氧原子层,层间的联结较弱。 在高岭石类粘土矿物中,结构单位层间为O 与HO(或OH与OH)相邻(如图3.3 ),堆叠时,在相 邻两晶层之间,除了范德华(Van der waals)力增扩的 静电能外,主要为表层(羟)基及氧原子之间的氢键 力,将相邻两晶层紧密地结合起来,使水不易进入 晶层之间。即使有表面水合能撑开晶层,但不足以 克服晶层间大的内聚力,几乎无阳离子交换(阳离子 交换容量很小,其CEC值为3-15毫克当量/100克 干土)和类质同象置换现象,其基本层是中性的。同 时,高岭石晶体基面间距(C轴间距或doo1值)小(约 7.2 A ),没有容纳阳离子的地方,即晶层无阳离子 存在。高岭石晶体只有外表面,没有内表面,比表 面积很小(一般远小于100m2/g ),被吸附的交换性阳 离子(如Na+、Ca2+等)仅存于高岭石矿物外表面,这 对晶层水合无重要影响,所以高岭石是较稳定的非 膨胀性粘土矿物,层间联结强,晶格活动性小,最 活跃的表面是在晶体断口、破坏的及残缺部位的边 缘部分,浸水后结构单位层间的距离(C轴间距或 doo1值)不变,使高岭石膨胀性和压缩性都较小,但 有较好的解理面。 蒙脱石类粘土矿物中的结构单位层间为O与 O(如图3.4 ),相邻两晶层之间的联结力主要为范德华(Van der waals)力,层间联结极弱,易于拆开。蒙脱石既有外表

粘土矿物在环境保护中的应用研究

粘土矿物在环境保护中的应用 黏土的用途黏土 1.粘土矿物材料的研究现状 人类社会的发展史就是人们利用矿物材料的文明史。随着科学技术的发展和工业化程度的不断提高,许多金属材料的性能已不能适应高强、高速、高温、轻质、绝缘、耐腐蚀等方面的要求,因而非金属矿物材料的发展十分迅速,如美国汽车工业中轿车钢铁构件已由占81%降为61%,采用由非金属材料制成的构件大大减轻了车重,节约了钢材;发达国家一些原来从事钢铁、造船等行业的研究已转向新型材料及新型陶瓷的研究。同时,伴随着矿物材料的深加工技术的发展,矿物材料的利用价值和应用领域不断提高,如散装膨润土30美元/吨,而有机膨润土2400-3600美元/吨;重晶石散装未碎者40美元/吨,而药物级达2560美元/吨;石墨原矿500美元/吨,石墨密封材料7000美元/吨,而石墨乳10000美元/吨。近年来无机非金属矿物材料在环境保护中的应用不断加强,使矿物材料成为治理、修复环境污染的环境材料。 新型材料是发展高新技术产业的重要支柱之一,随着材料结构向多元化、功能化、智能化发展,矿物材料已成为现代材料科学的重要组成部份。传统的或一般的矿物材料的应用是直接利用矿物(包括部分岩石)本身所具有的物理化学性质和工艺特性,而且只作为单一性能或低性能的一般材料来应用。如陶瓷矿物材料、建筑矿物材料、化工矿物材料和冶金辅助矿物材料等,这种传统的矿物材料都是低值材料或产品,并由于其本身性能的局限性或未得以强化增强,因而在诸多领域的应用受到限制。随着科学技术的发展,矿物材料正在向轻型、高纯、精细和复合方向发展,具有特殊功能的矿物材料已成为新型材料和应用技术研究开发的主流。因此,特种矿 2.粘土矿物在环境治理中的应用 虽然物质文明提高、人类在创造物质文明的同时,也在不断破坏人类赖以生存的空间环境,地球温室效应、酸雨现象、高新技术产生的污染、臭氧层的穿孔、地球资源的枯竭、废弃物的增加等对地球环境的破坏越来越严重,保护环境、治理环境、有机地协调经济发展与生态环境保护已成为我国21世纪可持续发展的战略目标的重要内容。随着“在原料采用、产品制造、使用或者再生循环以及废料处理等环节中对地球负荷最小和最有利于人类健康的材料”绿色材料新概念的提出,矿物材料不仅是绿色材料主要组成,而且在环境保护和环境治理中起着重要的作用。 2.1矿物材料在治理空气污染中的应用 大气污染系指由于人类活动和自然过程引起某种物质进入大气中,呈现足够的浓度,达到足够的时间,并因此而危害了人体健康,舒适感或环境。大气污染物按其存在状态可分为气溶胶污染物和气态污染物两大类。其中气态污染物在一定的条件下可转化为气溶胶态污染

粘土矿物分析

粘土矿物分析 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

作为岩石组分的粘土矿物其含量、种类及其分布、产状等对地层伤害有着非常密切的关系。由于粘土矿物颗粒细小(<0.01mm),比表面极大,并具有特殊的结构组成,因此它们对外来作业流体如注入水、压裂液、酸化液、压井液等的侵入极为敏感。当与外来流体接触时,粘土矿物往往会发生膨胀、微粒运移、生成某种沉淀等从而堵塞储层油气流动的孔隙通道,造成储层渗流能力的下降,损害油气层。因此了解粘土矿物的性质对油田开发十分重要。 通过X射线衍射分析和扫描电子显微镜技术可以确定岩石中粘土矿物的含量、分布及产状等。选取了西泉5井的部分岩石样品进行了上述测定,测定结果见表1。 表1 西泉5井区三叠系储层粘土矿物含量统计表 根据X衍射和扫描电镜分析,韭菜园子组砂层以蒙皂石(包括蒙脱石和皂石两个亚族)为主,63%~98%,平均%;其次为伊/蒙混层(20%~99%,平均%),绿泥石(1%~55%,平均%),另有高岭石(1%~12%,平均%)和伊利石(2%~16%,平均%)(见表1)。 对韭菜园子组敏感性的简单分析:(供参考) 韭菜园子组伊/蒙混层和绿/蒙混层含量较多,伊/蒙混层和绿/蒙混层是遇水易膨胀的矿物,易发生粘土膨胀和分散造成地层伤害。 韭菜园子组绿泥石含量相对较高(平均%),绿泥石是酸敏性矿物,酸化时易造成氢氧化铁胶体沉淀(酸敏)。另外伊利石和高岭石是速敏性矿物,易造成颗粒运移堵塞地层。 粘土矿物分析在储层潜在敏感性评价中的应用

一、粘土矿物类型 粘土矿物(clay minerals)是粘土和粘土岩中晶体一般小于2微米,主要是含水的铝、铁和镁的层状结构硅酸盐矿物。有的在其成分中还有某些碱金属或碱土金属存在。粘土矿物包括高岭石族矿物、蒙皂石、蛭石、粘土级云母、伊利石、海绿石、绿泥石和膨胀绿泥石以及有关的混层结构矿物,此外还包括具过渡性的层链状结构的坡缕石(凹凸棒石)和海泡石以及非晶质的水铝英石。除水铝英石外均属层状或层链状结构硅酸盐,因此粘土矿物可按层状结构硅酸盐矿物的分类来划分。粘土矿物按成因可分为他生粘土矿物和自生粘土矿物两类,他生粘土矿物主要是来自沉积物源区的陆源矿物,矿物成分与母源区岩石类型关系密切;自生粘土矿物为储层在特定成岩阶段化学反应析出的矿物,如自生绿泥石、自生高岭石等。不同成因粘土矿物通常具有不同的矿物组合、产状、晶形和分布规律等特征。 粘土矿物的粒度细小,其大小和形态需用电子显微镜才能测定。多数粘土矿物如伊利石等呈鳞片状,结晶良好的高岭石则呈完整的假六方片状。少数粘土矿物呈管状(埃洛石)或纤维状(坡缕石和海泡石)。 晶体结构与晶体化学特点决定了它们的如下一些性质。①离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、CI-、(PO4)3-、(NO3)-。产生阳离子交换性的原因是破键和晶格内类质同象置换引起的不饱和电荷需要通过吸附阳离子而取得平衡。阴离子交换则是晶格外露羟基离子的交代作用。②粘土-水系统特点。粘土矿物中的水以吸附水、层间水和结构水的形式存在。结构水只有在高温下结构破坏时才失去,但是吸附水、层间水以及海泡石结构孔洞中的沸石水都是低温水,经低温(100~150℃)加热后就可脱出,同时象蒙皂石族矿物失水后还可以复水,这是一个重要的特点。粘土矿物与水的作用所产生的膨胀性、分散和凝聚性、粘性、触变性和可塑性等特点在工业上得到广泛应用。③粘土矿物与有机质的反应特点。有些粘土矿物与有机质反应形成有机复合体,改善了它的性能,扩大了应用范围,还可作为分析鉴定矿物的依据。此外,粘土矿物晶格内离子置换和层间水变化常影响光学性质的变化。蒙皂石族矿物中的铁、镁离子置换八面体中的铝,或者层间水分子的失去,都使折光率与双折射率增大。 粘土矿物的形成方式有三种:①与风化作用有关。风化原岩的种类和介质条件如水、气候、地貌、植被和时间等因素决定了矿物种和保存与否。②热液和温泉水作用于围岩,可以形成粘土矿物的蚀变富集带。③由沉积作用、成岩作用生成粘土矿物。

第二章土壤矿物质

第二章土壤矿物质 【教学目标】 ●土壤矿物 1.了解土壤原生矿物的种类。 2.重点掌握次生矿物的种类及特性。 ●矿物质土粒 1.了解矿物质土粒的分类系统。 2.掌握矿物质土粒水分物理特性。 ●土壤质地 1. 了解土壤质地的分类系统。 2.掌握不同质地土壤的水分物理特性。 1 土壤矿物 土壤母质来源于岩石、矿物的风化产物,岩石是由矿物所构成,是矿物的天然集合体。 1.1 几种主要岩石类型与特性 地壳中的岩石可分为岩浆岩(火成岩)、沉积岩和变质岩三大类。 岩浆岩(火成岩)由岩浆冷却凝固形成,如花岗岩、闪长岩、玄武岩等,它们含有石英、长石、深色矿物(如黑云母、辉石、角闪石等原生矿物)。 沉积岩是由岩石风化物经搬运、沉积再胶结而形成的,如花岗岩风化形成的石英沙沉入海底经地质变化胶结成的岩石,称为沙岩。 变质岩是火成岩或沉积岩在高温、高压下发生质变而形成的,如花岗岩变质形成片麻岩、沙岩和页岩变质形成石英岩和板岩,石灰岩变质可形成大理岩。 1.1.1 岩浆岩 (1)花岗岩为粗粒、中粒或细粒全晶质的岩石,呈红色、灰色或浅灰色。主要矿物有石英、正长石、黑云母,也有角闪石、斜长石,由于矿物结晶颗粒较大,组成复杂,容易发生物理风化。在干旱地区崩解成砂粒,在湿润地区暗色矿物被分解为含水氧化铁次生矿物,长石类矿物分解为高岭石,石英以砂粒残留于风化物中。 (2)流纹岩:化学成分与花岗岩基本相似,灰白、浅黄或浅红色。斑状结构,斑晶为圆柱状的石英和长方形透长石。因结晶颗粒较小,难以发生物理风化。在温暖湿润地区所形成深厚的风化层,多呈红色的粘壤土或砂质粘壤土。 (3)正长岩:其矿物组成以正长石和角闪石为主,不含石英,有少量的磷灰石,磁铁矿,色浅红,呈块状或粒状构造。风化后形成砂壤或壤质土壤,通气性良好,富含磷、钾、钙、镁等营养元素。土壤多为中性至微酸性反应。 (4)玄武岩:是基性喷出岩,在地壳中分布较广。化学成分与辉长岩相当。色暗近似黑色,隐晶质结构,常有气孔构造,风化后质地较黏,含盐基物质较多。 (5)橄榄岩:主要由橄榄石和辉石组成,一般为暗绿色或黑绿色,全晶质粗粒或中粒 结构,容易风化。 1.1.2 沉积岩 (1)砾岩砾岩是各种岩石碎块经过搬运沉积再经胶结硬化而成。直径一般(2mm,如经河水长途搬运,其棱角磨圆,其间有孔隙,易透水,风化后呈砂砾状。实物图片:砾岩 (2)砂岩一般由直径0.1-2.0mm的砂粒胶结而成,主要成分为石英,其次为长石、白云母、磁铁矿、石榴子石等。石英含量大于95%以上的为石英砂岩;长石含量达25%-60%的为长石砂岩。以氧化硅为胶结剂的称为硅质砂岩;以氧化铁为胶结剂的称为铁质砂岩;以

粘土主要矿物的结构与性质

粘土主要矿物的结构与性质 摘要 主要论述了粘土中主要矿物的结构特点,并对各种矿物的主要性能(如可塑性、干燥收缩和膨润性等)进行了综述。 关键词:粘土,高岭石,蒙脱石,伊利石,晶体结构,可塑性,膨润性 ABSTRACT Mainly discusses the main structure characteristics of clay minerals, and a variety of mineral properties ( such as plasticity, drying shrinkage and swelling etc.) are reviewed. KEY WORDS: Clay, kaolinite, montmorillonite, illite, crystal structure, plasticity, swelling 粘土类原料是日用陶瓷、耐火材料等的主要原料之一,它主要是由粘土矿物和其它矿物组成的并具有一定特性的(其中主要是具有可塑性)土状岩石。粘土矿物主要是一些含水铝硅酸盐矿物,其晶体结构是由[SiO4]四面体组成的(Si2O5)n层和一层由铝氧八面体组成的AlO(OH)2层相互以顶角联接起来的层状结构,这种结构在很大程度上决定了粘土矿物的各种性能。 粘土很少由单一矿物组成,而是多种微细矿物的混合体,其主要矿物是被统称为“粘土矿物”的一些含水铝硅酸盐矿物。根据矿物的结构和组成的不同,可把粘土中的主要矿物分为高岭石类、蒙脱石类和伊利石类等三种。 在粘土的使用过程中,由于对各种主要矿物的结构认识不足,常常在生产中造成资源的浪费,并且产品达不到理想的性能。材料的结构决定性能,只有掌握了矿物的的结构与性能的关系,才能对矿物进行合理、充分的利用。为此,我主要分析一下三种主要粘土矿物的结构与性能。

相关文档
最新文档