神经网络及应用第六章支持向量机

T W X

z

支持向量机神经网络

该六维空间在平面上的投影如图所示:

可看出分离边缘为,通过支撑向量的超平面在正负两侧平行于最优超平面,其方程为,对应原始空间的双曲。

2ρ=1221x x =±121x x =±

个待分类数据的工作集合,如图(b)所示,此时11个样本;“O”代表2类,共有100个样本。

使用最简单的线性支持向量机训练该集合,结果如图

练,会带来分类误差。

图中虚线为分类判别界,实线为两类样本的最大间隔边界。

定。不同的宽度参数对分类的影响情况如图(e)-(g)所示。

个支持向量,错分样本数为6个,分类正确率为

水平扫描,得到如下分类:

(完整word版)支持向量机(SVM)原理及应用概述分析

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

基于BP神经网络和SVM的分类方法研究

龙源期刊网 https://www.360docs.net/doc/7110533984.html, 基于BP神经网络和SVM的分类方法研究作者:王宏涛孙剑伟 来源:《软件》2015年第11期 摘要:介绍了BP神经网络和SVM算法的分类原理。附加动量因子和随机梯度下降法是对BP神经网络进行优化的重要方法,利用Google实验室的MNIST手写数字库研究了动量因子和随机数以及SVM不同核函数对分类性能影响,为实际应用中模型的选择提供一定依据。同时也研究了两个算法在不同样本数下的性能表现,实验表明样本数较少时SVM比BP具有更高的泛化能力。最后结合两个算法特点,给出层次分类法并做为今后研究方向。 关键词:MNIST数字库;BP神经网络;支持向量机;分类性能 中图分类号:TP391.41 文献标识码:A DOI:10.3969/j.issn.1003-6970.2015.11.024 0 引言 很多实际应用问题都可归为分类问题,如故障诊断、模式识别等,分类过程包括分类器构造和运用模型进行分类两个步骤。神经网络和支持向量机(SVM)是分类领域中两种重要方法。神经网络是模拟人脑神经系统的数学模型,具有高度并行性、较强的自学习自适应和联想记忆功能特点。Vapnik在20世纪90年代基于统计学习理论提出支持向量机,它是借助最优化方法解决问题的,求解支持向量转化为解凸二次优化问题,它能够获得全局最优解,是结构风险最小化的算法。经过多年发展神经网络和支持向量机在很多领域取得成功,但是神经网络和支持向量机参数选择没有理论上支撑,参数选择优化是算法应用成功的关键,挖掘模型参数对算法性能影响具有重要意义。本文在Google的手写数字库上研究了BP(Back Propagation)神经网络和支持向量机的附加动量因子、随机数和不同核函数等变量对准确率、计算时间以及收敛曲线的影响,比较两个算法在不同训练样本数时性能表现。最后结合BP神经网络算法和SVM的各自特点提出分层分类模型,该方法适用于具有结构分解、功能分解特点的对象,为复杂对象分类提供了一种思路。 1 BP神经网络和SVM算法 1.1 BP神经网络技术 神经网络是对人脑的抽象、模拟和简化的信息处理模型,其中神经元数学模型、网络连接方式以及神经网络学习方式是神经网络的三个关键。神经网络原理是利用网络的学习和记忆功能,让神经网络学习各个类别中的样本特征,在遇到待识别样本时神经网络利用记住的特征信

支持向量机的实现

模式识别课程大作业报告——支持向量机(SVM)的实现 姓名: 学号: 专业: 任课教师: 研究生导师: 内容摘要

支持向量机是一种十分经典的分类方法,它不仅是模式识别学科中的重要内容,而且在图像处理领域中得到了广泛应用。现在,很多图像检索、图像分类算法的实现都以支持向量机为基础。本次大作业的内容以开源计算机视觉库OpenCV为基础,编程实现支持向量机分类器,并对标准数据集进行测试,分别计算出训练样本的识别率和测试样本的识别率。 本报告的组织结构主要分为3大部分。第一部分简述了支持向量机的原理;第二部分介绍了如何利用OpenCV来实现支持向量机分类器;第三部分给出在标准数据集上的测试结果。 一、支持向量机原理概述

在高维空间中的分类问题实际上是寻找一个超平面,将两类样本分开,这个超平面就叫做分类面。两类样本中离分类面最近的样本到分类面的距离称为分类间隔。最优超平面指的是分类间隔最大的超平面。支持向量机实质上提供了一种利用最优超平面进行分类的方法。由最优分类面可以确定两个与其平行的边界超平面。通过拉格朗日法求解最优分类面,最终可以得出结论:实际决定最优分类面位置的只是那些离分类面最近的样本。这些样本就被称为支持向量,它们可能只是训练样本中很少的一部分。支持向量如图1所示。 图1 图1中,H是最优分类面,H1和H2别是两个边界超平面。实心样本就是支持向量。由于最优超平面完全是由这些支持向量决定的,所以这种方法被称作支持向量机(SVM)。 以上是线性可分的情况,对于线性不可分问题,可以在错分样本上增加一个惩罚因子来干预最优分类面的确定。这样一来,最优分类面不仅由离分类面最近的样本决定,还要由错分的样本决定。这种情况下的支持向量就由两部分组成:一部分是边界支持向量;另一部分是错分支持向量。 对于非线性的分类问题,可以通过特征变换将非线性问题转化为新空间中的线性问题。但是这样做的代价是会造成样本维数增加,进而导致计算量急剧增加,这就是所谓的“维度灾难”。为了避免高维空间中的计算,可以引入核函数的概念。这样一来,无论变换后空间的维数有多高,这个新空间中的线性支持向量机求解都可以在原空间通过核函数来进行。常用的核函数有多项式核、高斯核(径向基核)、Sigmoid函数。 二、支持向量机的实现 OpenCV是开源计算机视觉库,它在图像处理领域得到了广泛应用。OpenCV 中包含许多计算机视觉领域的经典算法,其中的机器学习代码部分就包含支持向量机的相关内容。OpenCV中比较经典的机器学习示例是“手写字母分类”。OpenCV 中给出了用支持向量机实现该示例的代码。本次大作业的任务是研究OpenCV中的支持向量机代码,然后将其改写为适用于所有数据库的通用程序,并用标准数据集对算法进行测试。本实验中使用的OpenCV版本是,实验平台为Visual

计算机系统结构_第六章练习答案

第六章向量处理机 1.在大型数组的处理中常常包含向量计算,按照数组中各计算相继的次序,我们可以把向量处理方法分为哪三种类型? 横向处理方式,纵向处理方式,纵横处理方式 横向处理方式:向量计算是按行的方式从左至右横向的进行 纵向处理方式:向量计算是按列的方式自上而下纵向的进行 纵横处理方式:横向处理和纵向处理相结合的方式 2.解释下列与向量处理有关的术语。 (1)向量和标量的平衡点:为了使向量硬件设备和标量设备的利用率相等,一个程序中向量代码所占的百分比 (2)用户代码的向量化比值:用户代码可向量化的部分占全部的比重 (3)向量化编译器或量化器:将标量运算进行向量化或者将向量运算进行适当的修改使之能够进入向量处理进行向量处理的编译器 3.简要叙述提高向量处理机性能的常用技术 (1)链接技术 (2)向量循环或分段开采技术 (3)向量递归技术 (4)稀疏矩阵的处理技术 4.下述的几个需要解决的问题中,那个是向量处理机所最需要关心的? A.计算机指令的优化技术 B.设计满足运算器带宽要求的存储器 C.如何提高存储器的利用率,增加存储器系统的容量 D.纵横处理方式的划分问题 5.假设系统在向量模式下面能够达到9Mflops,在标量模式下能够达到1Mflops速度,而代码的90%是向量运算,10%是标量运算,这样花在两种模式上的计算时间相等。那么向量平衡点是: A.0.1 一个程序中向量代码所占的百分比 D.以上都不是 6.查看下面三条指令: V3←A V2←V0+V1 V4←V2*V3 假设向量长度小于64,且前后其他的指令均没有相关性,数据进入和流出每个功能部件,包括访问存储器都需要一拍的时间,假设向量的长度为N。三条指令全部采用串行的方法,那么执行的时间是: +20 +21 +22 +23 7.下面一组向量操作能分成几个编队?假设每种流水功能部件只有一个。 LV V1,Rx ;取向量 MULTSV V2,F0,V1;向量和标量相乘 LV V3,Ry ;取向量Y

支持向量机原理及应用(DOC)

支持向量机简介 摘要:支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。我们通常希望分类的过程是一个机器学习的过程。这些数据点是n 维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 关键字:VC 理论 结构风险最小原则 学习能力 1、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解

神经网络与支持向量机的竞争与协作

神经网络与支持向量机的竞争与协作 简单介绍了神经网络与支持向量机,对比分析两者的优缺点,提出了神经网络与支持向量机的协作发展,为两者实际应用的缺欠领域创造更多可能。 标签:神经网络;支持向量机;竞争;协作 人工神经网络(Artificial Neural Network,ANN)与支持向量机(Support Vector Machine,SVM)都是非线性分类模型。1986年,Rummelhart与McClelland创造出前馈型神经网络学习算法,简称BP算法。Vapnik等人于1992年提出支持向量机的概念。神经网络为包含输入、输出以及隐含层的非线性模型,隐含层可以是单层也可以是多层,支持向量机则运用核理论将非线性问题转换为线性问题。神经网络与支持向量机同为统计学习的代表方法,其中神经网络建立在传统统计学的基础上,支持向量机则建立在统计学理论的基础上。传统统计学假定样本数据无限大,从而推导出各种算法,得到其统计性质及其渐进理论。而在实际应用中,样本数为有限数据,对神经网络算法造成了限制。为了对比分析,研究者分别对BP神经网络与支持向量机进行仿真实验,得出支持向量机具有更强的逼近能力这一结果。但从后文所述支持向量机的优缺点来看,当训练样本规模较大时,运用支持向量机的算法很难实现。一直以来,神经网络与支持向量机处于“竞争”的关系,但无论是神经网络还是支持向量机,都做不到完美无缺。 1 人工神经网络 1.1 神经网络特点 神经网络是由大量的神经细胞(亦称神经元)组成,这些神经细胞具有很高的互连程度,构成了神经网络复杂的并行结构。神经网络结构来源于对人脑结构的模仿,因而也反映了人脑的基本结构与基本特征,构成了类似人脑结构复杂程度的学习与运算系统。为前馈网络选择适当的隐含层数目与隐含层节点数目,便能以任意精度逼近非线性函数。在工业过程的控制与建模操作中,神经网络技术得以广泛应用并成果显著。神经网络具有以下特点:在线及离线学习,自学习和自适应不确定的系统;能够辨识非线性系统,逼近任意非线性函数;讯息分布存储、并行处理,因而容错性强且处理速度快;通过神经网络运算,解决自动控制计算的许多问题。具有以上特点,使神经网络良好的应用于自动控制领域。 1.2 神经网络缺陷 神经网络的缺陷性主要表现为:网络结构需事先确定,训练过程不断修正,无法保证最优网络;通过实验调整网络权系数,且有局限性;样本数目足够多时结果质量好,但需要大量训练时间;出现无法得到最优解的情况,易陷入局部最优;目前收敛速度的决定条件无法判断,定量分析训练过程的收敛速度无法实现;经验风险最小化原则的基础下,无法保证优化时神经网络的泛化能力。前馈型神经网络普遍运用于自动控制领域,但实际应用中存在的问题却不容忽视,在经验

支持向量机理论与应用研究综述_张博洋

第19期2015年10月No.19October,2015 无线互联科技 Wireless Internet Technology 支持向量机(Support Vector Machine,SVM)是通过分析统计理论基础上形成的模式分类方法。上述方式在实际实施的时候,依据最小化风险的基本原则有效增加系统的泛化作用,也是一种为了得到最小误差实施的决策有限训练样中的独立测试集,能够适当分析和解决学习问题、选择模型问题、维数灾难问题等。研究SVM主要就是分析支持向量机自身性质,此外还分析提高应用支持向量机的广度和深度,在文本分类、模式分类、分析回归、基因分类、识别手写字符、处理图像等方面得到应用。1 支持向量机的原理分析1.1 结构风险最小化 依据能够应用的有限信息样本,不能合理计算分析期望风险,所以,传统方式应用主要是经验风险最小化(ERM)标准, 利用样本对风险进行定义: 基于统计学理论分析函数集以及实际经验风险的关系,也就是推广性的界。总结分析上述问题,能够得到实际风险 和经验风险之间概率1-符合以下条件关系: 其中l是训练集样本数,h为函数集VC维,体现高低复杂 性,从上述理论基础可以发现,通过两部分构成学习机实际风险:一是置信范围;二是经验风险也就是训练误差。机器学习的时候不仅需要经验风险,还要尽可能缩小VC维符合置信范围,保证能够获得实际比较小的风险,实际上就是结构风险最小化SRM (Structure Risk Minimization)原则[1]。1.2 支持向量机 支持向量机实际上从最优化线性分析分类超平面形成技术,分析情况的时候,最基本理念就是2类线性。支持向量机学习的主要目的就是能够发现最优超平面,不仅需要正确分开2类样本,还能够具备最大的分类间隔。分类间隔就是说距离超平面最近的2类分类样本,并且可以与2类分类平面间距平行。分析线性分类问题,假设T是训练集: {(x 1,y 2),...,(x l ,y l )}∈(X×Y)l ,其中x i ∈x=R n ,yi ∈y={-1,1},i=1,2,...,l。假设(ωx)+b=0是超平面,超平面和训练集之间的集合间距就是1/ω。可以通过以下方式找到最大间隔超平面问题中的原始优化问题: b w min )(ωτ=1/2ω2 , S.t. y i ((ωx i )+b)≥1,i=1,...,l 利用Wolfe对偶定理,能够等价原始最优化问题得到相 关对偶问题: α≥0,i=1,...,l, 此时能够得到最优解就是引入松弛变量以后能够得到等价对偶问 题: 其中,C (C>0)是惩罚因子。1.3 核函数 很多不可分线性问题,在某个高位特征空间中合理筛选符合分类样本情况的非线性变换映射,确保能够得到高维空间目标样本线性可分。依据上述方式进行计算的时候,仅仅只是计算训练样本内积,需要依据原空间来实现函数,不需要分析变换形式,依据泛函基本理论,一种核函数K (x,x /)需要充分符合Mercer ,与某空间变化内积对应。 假设对应变化核函数是K (x,x /),K (x,x /)=(φ(x),φ(x /)),依据之前分析的原始对偶问题,得到相应的决策函数就是: f (x)=sgn *) ),(*(1 b i x x i K y i l i +∑=α,有3种常见的核函数,一是径向有机函数(RBF) : 二是多项式核函数: 作者简介:张博洋(1990-),男,天津,硕士研究生;研究方向:数据挖掘。 支持向量机理论与应用研究综述 张博洋 (北京交通大学 计算机与信息技术学院,北京 100044) 摘 要:文章研究支持向量机技术,分析支持向量机的运行基本原理,研究支持向量机技术中的多类问题和选择核函数,并 且从人脸检测、文本分类、处理图像、识别手写字符等方面合理分析支持向量机,为进一步应用和发展支持向量机技术提供依据和保证。关键词:支持向量机;理论;应用;综述

基于数据数量对支持向量机和BP神经网络性能分析

基于数据数量对支持向量机和BP神经网络性能分析 摘要 本文在阐述创新型预测模型理论的基础上,分别利用基于BP神经网络和支持向量机的玉米开盘预测模型,在样本大小不同情况下对玉米开盘价格指数进行了研究和预测。研究结果表明,基于支持向量机的预测模型在预测精度、运算时间、最优性等方面均优于基于BP神经网络的预测模型。 近年来,以GARCH类模型、SV类模型等为代表的预测模型在资产价格预测方面获得了广泛的应用,但是这些模型在研究中往往受到样本数据分布、样本容量等方面的限制。因此,包括以神经网络、支持向量机等智能算法为基础的创新型预测模型,在金融资产价格预测方面得到了广泛的应用。本文在阐述创新型预测模型理论的基础上,分别利用基于神经网络、支持向量机的预测模型,在不同样本大小的基础上,就玉米开盘价格分别用支持向量机和单隐层和双隐层的BP神经网络做预测,比较预测结果,对比分析支持向量机和BP神经网络在样本大小不同的情况下两者的性能分析。 关键词:支持向量回归BP神经网络libsvm工具箱

一、模型介绍 1、模型介绍1.1 支持向量机回归 1.1.1 支持向量机回归模型的介绍 在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。给定一组训练样本,每个标记为属于两类,一个SVM 训练算法建立了一个模型,分配新的实例为一类或其他类,使其成为非概率二元线性分类。一个SVM 模型的例子,如在空间中的点,映射,使得所述不同的类别的例子是由一个明显的差距是尽可能宽划分的表示。新的实施例则映射到相同的空间中,并预测基于它们落在所述间隙侧上属于一个类别。 除了进行线性分类,支持向量机可以使用所谓的核技巧,它们的输入隐含映射成高维特征空间中有效地进行非线性分类。1.1.2 支持向量回归求解过程图 1.1.3核函数的介绍 利用支持向量机解决回归问题时,需要根据求解问题的特性,通过使用恰当的核函数来代替内积。这个核函数不仅要在理论上要满足Mercer 条件,而且在实际应用中要能够反映训练样本数据的分布特性。因此,在使用支持向量机解决某一特定的回归问题时,选择适当的核函数是一个关键因素。在实际的应用中,最常用的核函数有4种:线性核、多项式核、径向基(简称RBF)核、多层感知机核等。函数关系表达式分别如下: (1)线性核函数 ) (),(x x x x K i i ?=

计算机系统结构_第六章练习 答案讲课稿

计算机系统结构_第六章练习答案

第六章向量处理机 1.在大型数组的处理中常常包含向量计算,按照数组中各计算相继的次序,我们可以把向量处理方法分为哪三种类型? 横向处理方式,纵向处理方式,纵横处理方式 横向处理方式:向量计算是按行的方式从左至右横向的进行 纵向处理方式:向量计算是按列的方式自上而下纵向的进行 纵横处理方式:横向处理和纵向处理相结合的方式 2.解释下列与向量处理有关的术语。 (1)向量和标量的平衡点:为了使向量硬件设备和标量设备的利用率相等,一个程序中向量代码所占的百分比 (2)用户代码的向量化比值:用户代码可向量化的部分占全部的比重 (3)向量化编译器或量化器:将标量运算进行向量化或者将向量运算进行适当的修改使之能够进入向量处理进行向量处理的编译器 3.简要叙述提高向量处理机性能的常用技术 (1)链接技术 (2)向量循环或分段开采技术 (3)向量递归技术 (4)稀疏矩阵的处理技术 4.下述的几个需要解决的问题中,那个是向量处理机所最需要关心的? A.计算机指令的优化技术 B.设计满足运算器带宽要求的存储器 C.如何提高存储器的利用率,增加存储器系统的容量

D.纵横处理方式的划分问题 5.假设系统在向量模式下面能够达到9Mflops,在标量模式下能够达到 1Mflops速度,而代码的90%是向量运算,10%是标量运算,这样花在两种模式上的计算时间相等。那么向量平衡点是: A.0.1 B.0.9 一个程序中向量代码所占的百分比 C.0.5 D.以上都不是 6.查看下面三条指令: V3←A V2←V0+V1 V4←V2*V3 假设向量长度小于64,且前后其他的指令均没有相关性,数据进入和流出每个功能部件,包括访问存储器都需要一拍的时间,假设向量的长度为N。三条指令全部采用串行的方法,那么执行的时间是: A.3N+20 B.3N+21 C.3N+22 D.3N+23 7.下面一组向量操作能分成几个编队?假设每种流水功能部件只有一个。 LV V1,Rx ;取向量 MULTSV V2,F0,V1;向量和标量相乘 LV V3,Ry ;取向量Y ADDV V4,V2,V3;加法 SV Ry,V4;存结果 可以划分成四个编队:

随机森林与支持向量机分类性能比较

随机森林与支持向量机分类性能比较 黄衍,查伟雄 (华东交通大学交通运输与经济研究所,南昌 330013) 摘要:随机森林是一种性能优越的分类器。为了使国内学者更深入地了解其性能,通过将其与已在国内得到广泛应用的支持向量机进行数据实验比较,客观地展示其分类性能。实验选取了20个UCI数据集,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行,得到的结论可为研究者选择和使用分类器提供有价值的参考。 关键词:随机森林;支持向量机;分类 中图分类号:O235 文献标识码: A Comparison on Classification Performance between Random Forests and Support Vector Machine HUANG Yan, ZHA Weixiong (Institute of Transportation and Economics, East China Jiaotong University, Nanchang 330013, China)【Abstract】Random Forests is an excellent classifier. In order to make Chinese scholars fully understand its performance, this paper compared it with Support Vector Machine widely used in China by means of data experiments to objectively show its classification performance. The experiments, using 20 UCI data sets, were carried out from three main aspects: generalization, noise robustness and imbalanced data classification. Experimental results can provide references for classifiers’ choice and use. 【Key words】Random Forests; Support Vector Machine; classification 0 引言 分类是数据挖掘领域研究的主要问题之一,分类器作为解决问题的工具一直是研究的热点。常用的分类器有决策树、逻辑回归、贝叶斯、神经网络等,这些分类器都有各自的性能特点。本文研究的随机森林[1](Random Forests,RF)是由Breiman提出的一种基于CART 决策树的组合分类器。其优越的性能使其在国外的生物、医学、经济、管理等众多领域到了广泛的应用,而国内对其的研究和应用还比较少[2]。为了使国内学者对该方法有一个更深入的了解,本文将其与分类性能优越的支持向量机[3](Support Vector Machine,SVM)进行数据实验比较,客观地展示其分类性能。本文选取了UCI机器学习数据库[4]的20个数据集作为实验数据,通过大量的数据实验,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行比较,为研究者选择和使用分类器提供有价值的参考。 1 分类器介绍 1.1 随机森林 随机森林作为一种组合分类器,其算法由以下三步实现: 1. 采用bootstrap抽样技术从原始数据集中抽取n tree个训练集,每个训练集的大小约为原始数据集的三分之二。 2. 为每一个bootstrap训练集分别建立分类回归树(Classification and Regression Tree,CART),共产生n tree棵决策树构成一片“森林”,这些决策树均不进行剪枝(unpruned)。在作者简介:黄衍(1986-),男,硕士研究生,主要研究方向:数据挖掘与统计分析。 通信联系人:查伟雄,男,博士,教授,主要研究方向:交通运输与经济统计分析。 E-mail: huangyan189@https://www.360docs.net/doc/7110533984.html,.

支持向量机(SVM)原理及应用概述

东北大学 研究生考试试卷 考试科目:信号处理的统计分析方法 课程编号: 09601513 阅卷人: 刘晓志 考试日期: 2012年11月07日 姓名:赵亚楠 学号: 1001236 注意事项 1.考前研究生将上述项目填写清楚.

2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交 研究生院培养办公室,专业课成绩单与试卷交各学院,各学院把成 绩单交研究生院培养办公室. 东北大学研究生院培养办公室 支持向量机(SVM)原理及应用 目录 一、SVM的产生与发展 (3) 二、支持向量机相关理论 (4) (一)统计学习理论基础 (4) (二)SVM原理 (4) 1.最优分类面和广义最优分类面 (5) 2.SVM的非线性映射 (7)

3.核函数 (8) 三、支持向量机的应用研究现状 (9) (一)人脸检测、验证和识别 (10) (二)说话人/语音识别 (10) (三)文字/手写体识别 (11) (四)图像处理 (11) (五)其他应用研究 (12) 四、结论和讨论 (12) 支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目 标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即

支持向量机与人工神经网络_艾娜

第19卷第5期 山东理工大学学报(自然科学版) Vo l.19N o.52005年9月 Jour nal of Shandong U niversity of T echnology (Sci &T ech ) Sep.2005文章编号:1672-6197(2005)05-0045-05 支持向量机与人工神经网络 艾 娜,吴作伟,任江华 (北京交通大学机电学院,北京100044) 摘 要:支持向量机(Support Vecto r M achine ,SVM )是由V apnik 等人提出的一种基于统计学习理论的新型机器学习算法;而人工神经网络(Ar tificial Neural Netwo rk ,A NN )已经成功用于解决模式识别和任意非线性函数回归估计问题中.介绍了支持向量机与人工神经网络的基本原理,并对二者进行了逼近方面的比较,结果表明,支持向量机作为一种新兴技术而具有的独特的优越性. 关键词:支持向量机;人工神经网络;统计学习理论 中图分类号:TP183文献标识码:A Support vector machine and artificial neural network AI Na ,WU Zuo -w ei ,REN Jiang -hua (School of M echanical &Electrical Eng ineering ,Beijing Jiaoto ng U niver sity ,Beijing 100044) A bstract :The support vector machine (SVM ),put forw ard by some researchers and Vapnik ,is a new machine learning algorithm ,based theoretically on statistic learning theory.At the same time ,the artificial neural netw ork (ANN )has been successfully applied to solve problems such as mode recognition and reg ression of non -liner function.The paper introduc es the basic theory of SVM and ANN in brief.In addition ,the paper compares the approach ability of SVM and ANN ,and the re -sults indicate that SVM ,as a new technique ,has more superiorities. Key words :SVM ;A NN ;statistic learning theo ry 自1943年心理学家McCulloch 和数学家Pitts 合作提出了第一个神经计算模型(MP 模型),经历了兴起、萧条、兴盛几个阶段的发展.从20世纪80年代初神经网络的研究再次复苏并形成热点以来,发展非常迅速,从理论上对它的计算能力、对任意连续映射的逼近能力、学习理论以及动态网络的稳定性分析上都取得了丰硕的成果.特别是应用上已迅速扩展到许多重要领域.20世纪的最后10年中,产生大量关于神经网络的论文,新的理论和实践工作层出不穷.20世纪90年代初期,Vapnik 等人在基于统计学习理论的 基础上提出了一种新的机器学习方法即支持向量机(Support Vector Machine ,简称SVM )[1]. 收稿日期:20050120作者简介:艾  娜 DOI 牶牨牥牣牨牫牫牰牱牤j 牣cn ki 牣sd gc 牣牪牥牥牭牣牥牭牣牥牨牨

支持向量机

支持向量机 支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。 简介 支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折中,以期获得最好的推广能力。 我们通常希望分类的过程是一个机器学习的过程。这些数据点是n维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 支持原因 支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。建立方向合适的分隔超平面使两个与之平行的超平面间的距离最大化。其假定为,平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.CBurges的《模式识别支持向量机指南》。 支持向量概述 所谓支持向量是指那些在间隔区边缘的训练样本点。这里的“机(machine,机器)”实际上是一个算法。在机器学习领域,常把一些算法看做是一个机器。 支持向量机(Supportvectormachines,SVM)与神经网络类似,都是学习型的机制,但与神经网络不同的是SVM使用的是数学方法和优化技术。 相关技术支持 支持向量机是由Vapnik领导的AT&TBell实验室研究小组在1963年提出的一种新的非常有潜力的分类技术,SVM是一种基于统计学习理论的模式识别方法,主要应用于模式识别领域。由于当时这些研究尚不十分完善,在解决模式识别问题中往往趋于保守,且数学上比较艰涩,这些研究一直没有得到充分的重视。直到90年代,统计学习理论(StatisticalLearningTheory,SLT)的实现和由于神经网络等较新兴的机器学习方法的研究遇到一些重要的困难,比如如何确定网络结构的问题、过学习与欠学习问题、局部极小点问题等,使得SVM迅速发展和完善,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。从此迅速的发展起来,现在已经在许多领域(生物信息学,文本和手写识别等)

支持向量机SVM分类算法

支持向量机SVM分类算法 SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。 以上是经常被有关SVM 的学术文献引用的介绍,我来逐一分解并解释一下。 Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。 结构风险最小听上去文绉绉,其实说的也无非是下面这回事。 机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的(如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多大差距,我们就没法得知。比如说我们认为宇宙诞生于150亿年前的一场大爆炸,这个假设能够描述很多我们观察到的现象,但它与真实的宇宙模型之间还相差多少?谁也说不清,因为我们压根就不知道真实的宇宙模型到底是什么。 这个与问题真实解之间的误差,就叫做风险(更严格的说,误差的累积叫做风险)。我们选择了一个假设之后(更直观点说,我们得到了一个分类器以后),真实误差无从得知,但我们可以用某些可以掌握的量来逼近它。最直观的想法就是使用分类器在样本数据上的分类的结果与真实结果(因为样本是已经标注过的数据,是准确的数据)之间的差值来表示。这个差值叫做经验风险Remp(w)。以前的机器学习方法都把经验风险最小化作为努力的目标,但后来发现很多分类函数能够在样本集上轻易达到100%的正确率,在真实分类时却一塌糊涂(即所谓的推广能力差,或泛化能力差)。此时的情况便是选择了一个足够复杂的分类函数(它的VC维很高),能够精确的记住每一个样本,但对样本之外的数据一律分类错误。回头看看经验风险最小化原则我们就会发现,此原则适用的大前提是经验风险要确实能够逼近真实风险才行(行话叫一致),但实际上能逼近么?答案是不能,因为样本数相对于现实世界要分类的文本数来说简直九牛

支持向量机资料

支持向量机 1基本情况 Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则。 其原理也从线性可分说起,然后扩展到线性不可分的情况。甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机(Support Vector Machine,简称SVM)。支持向量机的提出有很深的理论背景 支持向量机方法是在近年来提出的一种新方法。 SVM的主要思想可以概括为两点: ⑴它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能; ⑵它基于结构风险最小化理论之上在特征空间中建构最优分割超平面, 使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上 界。 例子 如图: 将1维的“线性不可分”上升到2维后就成为线性可分了。 在学习这种方法时,首先要弄清楚这种方法考虑问题的特点,这就要从线性可分的最简单情况讨论起,在没有弄懂其原理之前,不要急于学习线性不可分等较复杂的情况,支持向量机在设计时,需要用到条件极值问题的求解,因此需用拉格朗日乘子理论。 2一般特征 ⑴SVM学习问题可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数

的全局最小值。而其他分类方法(如基于规则的分类器和人工神经网络)都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解。 ⑵SVM通过最大化决策边界的边缘来控制模型的能力。尽管如此,用户必须提供其他 参数,如使用核函数类型和引入松弛变量等。 ⑶通过对数据中每个分类属性引入一个哑变量,SVM可以应用于分类数据。 ⑷SVM一般只能用在二类问题,对于多类问题效果不好。 3原理简介 SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空 间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线 性可分的问题.简单地说,就是升维和线性化.升维,就是把样本向高维空间做映射,一般 情况下这会增加计算的复杂性,甚至会引起“维数灾难”,因而人们很少问津.但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归).一般的升维都会带来计算的复杂化,SVM 方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了“维数灾难”.这一切要归功于核函数的展开和计算理论. 选择不同的核函数,可以生成不同的SVM,常用的核函数有以下4种: ⑴线性核函数K(x,y)=x·y; ⑵多项式核函数K(x,y)=[(x·y)+1]^d; ⑶径向基函数K(x,y)=exp(-|x-y|^2/d^2) ⑷二层神经网络核函数K(x,y)=tanh(a(x·y)+b). 最优分类面:最优超平面 SVM是从线性可分情况下的最优分类面发展而来的,基本思想可用图2的两维情况说明。 如图:方形点和圆形点代表两类样本,H为分类线,H1,H2分别为过各类中离分类线最近的样本且平行于分类线的直线,他们之间的距离叫分类间隔。 最优分类线就是要求分类线不但能将两类正确分开(训练错误率为0),且使分类间隔最大。 推广到高维空间,最优分类线就变为最优分类面。

支持向量机(SVM)原理及

支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方 法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

相关文档
最新文档