稀土元素在铝合金中的作用和应用

稀土元素在铝合金中的作用和应用
稀土元素在铝合金中的作用和应用

在铝合金中加入微量稀土元素,可以显著改善铝合金的金相组织,细化晶粒,去除铝合金中气体和有害杂质,减少铝合金的裂纹源,从而提高铝合金的强度,改善加工性能,还能改善铝合金的耐热性、可塑性及可锻性,提高硬度、增加强度和韧性。稀土元素的加入使得稀土铝合金成为一种性能优良、用途广泛的新型材料,目前稀土铝合金的产量已近全国铝产量的1/4。

稀土元素在铝合金中的作用

稀土元素非常活泼,极易与气体(如氢)、非金属 (如硫)及金属作用,生成相应的稳定化合物。稀土元素的原子半径大于常见的金属如铅、镁等,在这些金属中的固溶度极低,几乎不能形成固溶体。一般认为,稀土元素加入到铝合金中可起到微合金化的作用;此外,它与氢等气体和许多非金属有较强的亲和力,能生成熔点高的化合物,故它有一定的除氢、精炼、净化作用;同时,稀土元素化学活性极强,它可以在长大的晶粒界面上选择性地吸附,阻碍晶粒的生长,结果导致晶粒细化,有变质的作用。以下就这3方面的作用详细介绍。

1.变质作用

变质处理是指在金属及合金中加入少量或微量的变质剂,用以改变合金的结晶条件,使其组织和性能得到改善的过程。变质剂又称晶粒细化剂或孕育剂。稀土元素的原子半径为0.174 ~0.204mm,大于铝原子半径(0.143mm)。稀土元素比较活泼,它熔于铝液中,极易填补合金相的表面缺陷,从而降低新旧两相界面上的表面张力,使得晶核生长的速度增大,同时还在晶粒与合金液之间形成表面活性膜,阻止生成的晶粒长大,使合金的组织细化。此外,铝与稀土形成的化合物在金属液结晶时作为外来的结晶晶核,因晶核数的大量增加而使合金的组织细化。研究表明:稀土对铝合金具有良好的变质效果。例如,合金化的7005铝合金铸锭本身就呈十分细小的组织。同时值得一提的是,稀土的变质作用具有长效及重熔稳定性的特点,比用钠(Na)、锶(Sr)等变质剂具有明显优点。稀土的变质作用只受共晶硅变化的影响。

2.精炼、净化作用

稀土元素的脱氧能力比强脱氧剂Al、Mg、Ti等强,微量稀土就能使[O]脱到<lppm(即<10-4%)。稀土的脱硫能力也相当强,可以生成RES或RE2S3,生成物主要取决于稀土与硫的活度或溶解度。稀土元素在金属液中还可以与氧和硫同时发生反应生成RE2O2S型硫化物。稀土元素还能与P、Sn、As等低熔点金属元素化合,生成REP、RESn、REAs等化合物。这些稀土化合物都具有熔点高、比重轻,当它们的熔点高于金属冶炼温度时,能上浮一部分成渣,它们微小的质点则成为铝结晶过程的异质晶核,而留在固态金属内的部分则能降低其危害性。稀土对氢的的吸附力特别大,能大量吸附和溶解氢,稀土与氢的化合物熔点较高,并且弥散分布于铝液中,以化合物形成的氢不会聚集形成气泡,大大降低铝的含氢量和针孔率。

3.合金化作用

稀土在铝合金中的强化作用主要有细晶强化、有限固溶强化和稀土化合物的第二相强化等。当稀土加入量不同时,稀土在铝合金中主要以三种形式存在:固熔在基体α(Al)中;偏聚在相界、晶界和枝晶界;固熔在化合物中或以化合物形式存在。当稀土含量较低时(低于0.1%),稀土主要以前两种形式分布。第一种形式起到了有限固溶强化的作用,第二种形式增加了变形阻力,促进位错增殖,使强度提高。加入稀土后合金的铸态组织中合金晶粒明显减少,二次枝晶间距有可能细化,稀土与Al、Mg、Si等元素形成的金属间化合物呈球状和短棒状分布在晶界或界内,组织中有大量位错分布。当稀土含量大于0.3% ,后一种存在形式开始占主导地位。这时,稀土与合金中的其他元素开始形成许多含稀土元素的新相,同时使第二相的形状、尺寸发生变化,可能使得第二相从长条状等形状转变成短棒状粒子出现,粒子的尺寸也变得比较细小,且呈弥散分布。大部分含稀土元素的第二相都出现了粒子化、球化和细化的特征,这种变化在一定程度上都强化了铝合金。

铝合金加入稀土元素后性能的变化

随着稀土元素加入量的增加,铝合金的强度、塑性均有所提高。这主要得益于稀土元素对合金组织的改善以及弥散的稀土化合物强烈的沉淀强化效应等。添加稀土元素可以导致合金断裂过程中裂纹萌生位置与扩展途径发生改变,有利于合金的韧化。同时铝合金中随稀土含量的增加,抗拉强度、硬度提高,而延伸率略有下降。由此可见,伴随稀土的加入,合金的机械性能大有改善。

稀土元素的加入也可以改善铝合金的铸造性能。这是因为铁是铝合金中非常有害的杂质,万分之几的Fe就能形成Al+FeAl3的共晶硅,大多数含铁相的结晶组织都十分粗大,直接影响合金的机械性能,降低合金的流动性,增加组织不均匀性,添加稀土,则可以改变铁相的存在形态,提高铝合金的铸造性能。

在同一温度下,稀土铝合金的电阻率比普通铝合金小得多,说明掺入微量稀土元素后铝合金的导电性能大大提高。这是因为稀土元素作为表面活性元素加到合金中,使合金的铸态组织得以细化,减小了对传导电子的散射,从而使电阻率大幅度下降。

稀土在铝合金中可以形成热硬性高的复杂成分化合物,呈网状分布于晶界或枝晶间,细化了组织,有效地阻碍了基体变形和晶界移动,从而明显提高了合金的高温性能。

稀土铝合金的应用

由于稀土独特的物理、化学性质开发出了众多的含稀土的合金材料,不但大量用于军事工业、农业、轻工业、手工业和交通运输业,也广泛用作建筑材料、家庭生活用具和体育用品等。

我国铝土矿含硅量高(0.1%以上),比国外的电解铝含硅量(0.08%)高,直接影响了铝的性能,不能用作电工铝。然而铝中加入适量稀土元素后,性能则大有改善。目前我国的稀土铝导线主要有高强度稀土铝合金电缆,成分为Al-Mg-Si-RE,

用于高压输电线路;高导电铝电线,成分为Al-RE;还有在较高温度下使用的高导电稀土铝导线,其成分为Al-Zr-RE。在ZJ104铸造铝合金中加入不同量的稀土元素后合金的抗拉强度、硬度、高温强度均有所提高,因而广泛应用于机械制造业的缸体、曲轴、轴承盖等材料中。已投入批量生产的稀土铝硅过共晶ZL117合金在200~300℃下,抗拉强度超过德国活塞合金KS280和KS282,耐磨性能比常用活塞合金高4~5倍,线膨胀系数小,已用于航空空压机和航模发动机活塞。稀土铝箔是一种生产电子元器件较为理想的材料。

稀土铝合金能大大提高合金的强度、硬度、韧性,还会使表面氧化膜结构发生变化,从而使产品表面光亮、美观,提高产品的耐腐蚀性能。目前我国在民用铝制品工业中已用来制造洗衣机内缸等。

添加适量稀土还可以明显提高铝锰和铝镁合金材料的耐腐蚀性能。稀土元素的加入在铸造、锻造、焊接、热处理及表面涂层技术中都取得了良好的效应。

使用稀土铝合金需注意事项

稀土元素虽然在铝合金中的作用很大,但我们必须防止稀土加入方法不正确和使用不当引起的不良影响。应注意以下几点:

1.注意掌握稀土元素的加入量。稀土的过量加入不但不会使铝合金的性能改善,还会影响铝合金的正常使用,甚至造成材料的报废;

2.稀土不宜做预先脱氧、脱硫剂,当脱氧、脱硫效果良好后再加入稀土,不但有深度脱氧、脱硫作用,还能很好控制氧、硫夹杂物的形态;

3.注意防止生成不均匀分布、大而脆的稀土金属化合物;

4.还要注意防止稀土元素与某些合金元素发生冲突,影响合金的性能等。

结语

稀土元素具有独特的4f电子结构、大的原子磁距、很强的自旋轨道耦合等特性,形成稀土配合物时,配位数在3~12之间变化,并且稀土化合物的晶体结构也是多样化的。稀土元素独特的物理、化学性质,决定了其广阔的潜在用途。

17种稀土元素名称及用途

17种稀土元素名称及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。 镨的广泛应用: (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

稀土在铸造铝合金中的作用_赖华清

稀土在铸造铝合金中的作用 Effect of Rare Earth in Casting Aluminum Alloy 赖华清,徐翔,范宏训 (湖北汽车工业学院材料工程系,湖北十堰442002) 摘 要:综述了稀土在铸造铝合金中的作用和应用概况。指出:稀土添加在铸造铝合金中可以起到细化组织、净化熔体、减少气体和夹杂物含量、降低合金线膨胀系数、提高合金常温和高温力学性能等多方面的良好作用。 关键词:稀土;铸造铝合金;作用 中图分类号:T G29 文献标识码:A 文章编号:1001-3814(2001)05-0037-03 稀土在铸造铝合金中的应用国外开展的较早,如德国在二战期间就研制了四种稀土铝合金用于制造发动机、内燃机的复杂零件。我国在这方面的研究和应用始于20世纪60年代,虽然起步较晚,但发展较快,从机理研究到实际应用都做了大量的工作,已经取得了一些成果。 1 稀土对铸造铝合金的变质作用 根据最新观点[1],铝合金变质处理大致可分三类,第一类是晶粒细化处理,主要用来细化α(Al)晶粒;第二类是共晶体变质,主要用于铝硅共晶合金;第三类是改善杂质相组织或消除易溶杂质相,如改变粗大富铁相等。 1.1 晶粒细化作用 铝合金晶粒细化最有效、最实用的方法是添加含B、Ti等元素的中间合金细化剂,除最常用的Al-Ti-B 中间合金外,目前稀土元素的晶粒细化作用逐渐引起人们的重视[2~4]。文献[4]指出,Al-Ti-B中间合金中配入适量的RE,可有效地抑制细化衰退现象,其原因是稀土元素的表面活性作用能降低铝熔体的表面张力,增加铝熔体对硼化物(TiB2)的湿润性,增大铝熔体在硼化物颗粒表面上的铺展系数,既能使TiB2的异质形核作用充分发挥,又能防止TiB2的聚集、沉淀,从而延缓衰退。此外,稀土本身也能够细化晶粒,RE与铝及铝中的Fe、Si等可形成高熔点的细小化合物,这些化合物能起到非自发形核的作用,使晶粒得到细化。 1.2 对初晶硅细化作用 高硅铝合金中初晶硅的细化一般都是采用加磷处理,现多以磷铜中间合金或磷盐的形式加入。魏伯康等人的研究结果证明了RE对初晶硅的细化作用[5],高硅铝合金中加入微量RE(0.02%),初晶硅形态开始发生变化,出现孪晶缺陷,并开始由规则八面体向不规则多面体转化,加入量至0.1%后,初生硅形态发生急剧变化,由多面体型向长条形、(并随着RE量的增加)进而向分枝生长方式转化。随着RE的增加,初晶硅数目增加,尺寸减小,RE达到0.5%时,细化效果最好,初晶硅可细化至50μm以下。但也有研究结果认为,稀土对初晶硅的细化作用很小甚至无变质作用。孙宝德等指出[6],仅仅加入稀土元素La、Y不能细化初晶硅。尽管对稀土细化初晶硅的作用有分歧,但在磷细化初晶硅的基础上稀土可进一步细化初晶硅的认识上,大家意见基本一致,所以稀土在高硅铝合金中的应用基本上是与磷复合构成双重变质剂使用[7~9],以弥补单独加磷不能同时细化初晶硅和共晶硅的缺点,这在高硅铝活塞材料上得到了相当成功的应用。 1.3 对共晶体变质作用 长期以来,铝合金一直采用钠盐作变质剂,钠变质有效期短,且腐蚀设备、污染环境。后来发展了以Sr为代表的长效变质剂[10],但Sr会增加铝合金的吸氢倾向,同时Sr的价格较贵,应用受到限制。近年来,关于稀土对铝硅合金变质作用的研究和应用的报道不断增多,充分肯定了稀土元素对共晶硅的良好变质作用[11~15]。李道韫等采用Al-RE中间合金对铝硅共晶合金进行变质处理[11],结果表明,微量RE可使铝硅共晶合金获得完全变质组织,RE变质具有比钠盐变质更好的长效性及重熔性,变质后,高温保持4h,重熔两次时,变质作用基本不衰退。张启运等研究了单一稀土元素及混合稀土对共晶铝硅合金的变质效果[13],发现Eu 具有最强的变质能力,La次之,Ce、Pr、Nd和混合稀土的变质能力稍低于La。稀土元素的变质能力随原子半径的减小而迅速降低,到Er、Y已基本不具有变质能力。RE的变质作用对冷速敏感,适用于金属型铸件。多数研究认为,RE的适宜加入量为0.8%~ 1.2%,此时共晶硅由粗针状细化为短杆状或球粒状,变质后抗拉强度可增加15%~20%,相对延伸率增加 1.5~ 2.0 37 《热加工工艺》 2001年第5期综 述 ⒇收稿日期:2001-04-24 作者简介:赖华清(1964-),男,江西大余人,硕士,副教授。DOI:10.14158/https://www.360docs.net/doc/7112752132.html, k i.1001-3814.2001.05.017

锌合金电镀资料

锌合金的主要成份是锌, 还有铝。它们都是两性金属, 化学稳定性差, 在空气中容易氧化、变色.腐蚀. 所以我们首先必须了解电镀或涂装锌合金压铸件表面状态的质量控制 1.1工件的几何形状设计 锌合金铸件在设计其几何形状时, 尽量避免盲孔深的凹部等结构, 因此, 要求在零件设计时,在不影响外观和使用的部位, 留出便于溶液、气体流动的排泄工艺孔。这样不仅能很好地实施镀覆, 而且减轻了镀液被污染的程度。 1.2 压铸件的模具设计和压铸工艺 锌合金压铸件表面是致密层, 厚度约0.1 mm, 内部则是疏松多孔结构。在模具设计和采用压铸工艺时, 尽量使工件表面光滑, 减少裂纹、气孔、冷隔缝隙、飞边及毛刺等铸造缺陷。为此, 必须进行机械清理, 这时应避免损伤表面致密层, 以免露出多孔的基体造成电镀困难,并影响电镀质量。锌合金压铸时常常使用脱模剂, 对脱模剂的使用和去除应给予一定的重视, 它是影响镀层结合力的因素之一。 1.3 工件的材质选择 常用的锌合金材料中用于电镀的有2ZnAl 4-3、2ZnA1 4-1、2ZnAl 4-0.5、2ZnA14 使用最多的牌号为ZnAl-925, ZnAl-903, 但ZnAl-903 比ZnAl-925 更好。 另外, 在压铸时常用一部分回料, 其比例应控制在15%, 最好不要超过20%。因回料中容易掺杂其他(如硅)成分, 影响镀层的结合力。若使用回料多的铸件, 电镀时最好用氢氟酸活化。

2、镀前处理 2.1 毛坯检验 (1) 外观: 查看毛坯表面是否存在裂纹、凸泡、划伤、松孔等严重弊病。判断这些弊病的程度, 若可以使用机械手段(磨光、抛光等)除去, 可以增加打磨工序。 (2) 材质检验: 查阅锌合金的牌号, 了解使用回料的比例, 测试压铸件的质量, 把工件放置在100-110℃烘箱中保温30min, 查看外表有否凸泡。 2.2 表面的机械清理 锌合金压铸件表面存在着铸造缺陷, 必须进行机械清理、磨光和抛光。 (1) 较大工件须采用磨光及抛光除去表面缺陷。例如, 除去毛刺、飞边、模痕等。磨光的砂轮使用的砂粒一般应大于220目, 采用红色抛光膏; 新砂头应适当倒角, 布轮的直径50-40 0 mm, 圆周速度视工件大小而定, 通常为1100-2200 m/min。锌合金磨光时不要过度用力, 尽可能不要损伤表面的致密层, 不要使工件变形。为了使工件表面光滑, 还应该进行抛光口可选用白色抛光膏, 抛光膏不要太少, 以防局部过热, 出现密集细麻点。抛轮的大小和圆周速度可参照磨光, 抛光后最好用白粉拉一下, 清除滞留的抛光膏, 便于电镀。 (2) 较小工件不便抛磨, 可选择滚磨或滚光处理。若工件飞边、瑕疵较多, 应先滚磨。磨料可选择氧化铝、花岗石、陶瓷、塑料颗粒, 以及能除油及润滑的肥皂水、表面活性剂等。磨料及零件的装载量为3/4-4/5滚桶(易变形工件多装些, 溶液均浸满零件), 磨料与零件比为(1.5~2):1, 滚桶的转速6-12 r/min 。容易变形的零件转速慢些。

稀土材料的应用简介

稀土矿的应用简介 一、稀土矿的简介 1、稀土的发现史 从1794年发现元素钇,到1945年在铀的裂变物质中获得钷,前后经过151年的时间,人们才将元素周期表中第三副族的钪、钇、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥17个性质相近的元素全部找到,把它们列为一个家族,取名稀土元素。我国稀土品种全,17种元素除钷尚未发现天然矿物,其余16种稀土元素均已发现矿物、矿石。2、资源储量分布 我国稀土矿产主要集中在内蒙古白云鄂博铁-铌、稀土矿区,其稀土储量占全国稀土总储量的90%以上,是我国轻稀土主要生产基地。即轻稀土主要分布在北方地区,重稀土则主要分布在南方地区,尤其是在南岭地区分布可观的离子吸附型中稀土、重稀土矿,易采、易提取,已成为我国重要的中、重稀土生产基地。此外,在南方地区还有风化壳型和海滨沉积型砂矿,有的富含磷钇矿(重稀土矿物原料);在赣南一些脉钨矿床(如西华山、荡坪等)伴生磷钇矿、硅铍钇矿、钇萤石、氟碳钙钇矿、褐钇铌矿等重稀土矿物,在钨矿选冶过程中可综合回收,综合利用。 二、稀土的用途 稀土(RE)常被冠以“工业味精”的美誉。稀土元素因其具有独特的电子结构而表现出特殊的光、电、磁学等物理化学性质。无论是稀土金属还是其化合物都有良好的应用价值。1、传统领域中的稀土材料 (1)稀土在农轻工中的应用 稀土元素作为微量元素用于农业有2个优点:一是作为植物的生长、生理调节剂;二是稀土属低毒、非致癌物质,合理使用对人畜无害、环境无污染。如添加稀土元素的硝酸盐化合物作为微量元素化肥施用于农作物可起到生物化学酶或辅助酶的生物功效,具有增产效果。 纺织业中:铈组元素(Eu以前的镧系元素)的氯化物或醋酸盐可提高纺织品的耐水性,并使织物具有防腐、防蛀、防酸等性能。某些稀土化合物还可以作为皮革的着色剂或媒染剂,La、Ce、Nd的一些化合物可用作油漆的干燥剂,增强油漆的耐腐蚀性。 (2)稀土在冶炼工业中的应用 稀土元素对O、S和某些非金属具有强亲和力,利用这一特点,将稀土用于炼钢中能净化钢液,能起到脱S和脱O的作用,其原理是加入钢中的稀土能结合钢中可能生成的MnS、Al2O3和硅铝酸夹杂物中的O和S形成化合物。 钢的脱硫:在钢中添加混合稀土金属的目的之一是控制硫夹杂物的含量和形状。炼钢通常要添加锰,锰与硫结合形成硫化物夹杂物,这种夹杂物在轧钢时会变形。而添加混合稀土金属则能产生稀土的硫化物、硫氧化物,它们在轧钢时形状保持不变,使钢的性能得到改善。 稀土球墨铸铁:混合稀土金属以稀土硅铁合金或硅镁钛合金的形式加入铁不中促进石墨的球化,从而提高铸铁的可锻强度。产品称球墨铸铁。 打火石:混合稀土金属制造打火石,这是75%的混合稀土金属和25%的铁制成的一种合金。 有色金属合金中:稀土金属有色金属合金中也获得广泛应用。例如有一种稀土镁合金(含有Mg、Zn、Zr、La、Ce)可用于制造喷气式发动机的传动装置,直升飞机的变速箱,飞机的着陆轮和座舱罩。在镁合金中添加稀土金属优点是可提高其高温抗蠕变性,改善铸造性能和室温可焊性。有一种铝锆钇合金用作电线,其特点是输出功率高、耐热、耐振动和耐腐蚀。(3)稀土在炼油业中的应用 目前,世界上90%的炼油裂化装置都使用含稀土的催化剂,其中稀土分子筛型石油裂化

铝合金电缆问题汇总

铝合金电缆问题汇总 1为什么不用同等截面的单根线芯代替多根线芯 2 怎么保证铝合金电缆的热稳定性与铜芯电缆的热稳定性是一样。 3 铝合金电缆退火的作用是什么。 4、铝合金的冶炼怎样解决偏析的问题。 5、铜芯电缆的电阻小电损也就小,铝的电阻大电损就大,铝合金电缆以铝为基,材料上节约了,但常时间的用电量增加,反而成本增加了。 6、铝合金带铠装相比钢带铠装有哪些区别,优势在哪 7、铝合金电缆的使用寿命比铜缆长多少年,为什么 8、铝合金电缆各种规格的线芯单丝截面是否相同,如不相同,有哪几种常用的 单丝截面 9、铝合金如何决解铝达不到铜缆的指标? 10、加铝导体线芯是异型线组合成型,而欣意公司导体线芯是硬性挤压,怎能保证你公司导体线芯在硬性挤压时所带来的伤害得到恢复并且保证与加铝的导体一样的性能。 11、加铝是世界500强的企业,在管理在生产控制与设备均为世界一流,产品质量的可靠性是值得依赖的,欣意公司的产品如何保证性能与加铝相当,另欣意的价格较市场上做铝合金电缆的企业价格较高,你公司与这些企业相比较在性能上如何能证明参数上优于他们?

12、铜芯电缆使用桥架,如铝合金电缆也使用桥架,由于铝合金电缆的截面相对来说偏大些,也会增加桥架的宽度,安装成本增加,你们怎样解决这个问题。 13、铜芯电缆的再次利用与铝合金电缆差异偏差很大,如何解释这个问题。 14、铜芯电缆设计已结束且敷设管道已完毕,如更改设计,由于铝合金电缆的截面相较于铜芯电缆大,如何解决安装穿管的问题。 15、铝合金电缆和铜缆可不可以进行连接,应如何进行连接 16、AA8030与AA8176的区别在什么地方,为什么设计的8030而可以用8176的铝合金来使用。 17、欣意电缆的铝合金投标的优势在什么地方。 18、与业主沟通的流程及与电力系统沟通的流程。 19、铝合金电缆在出厂前要经过哪些实验检测,型式试验有哪些检验项目,欣意公司在哪些项目中优于别的厂家。 20、电机中使用这种铝合金电缆,由于相对于铜缆来说截面偏大,在狭小的空间怎样才能连接上,并有足够的空间有安全的保障与散热。 21、铝合金电缆能替代母线吗,设计院能把母线改成铝合金电缆吗。 22、铝合金电缆的趋肤效应是如何解决的。 23、相同截面的铜电缆与铝合金电缆的载流量相差多少。 24、给出机器的使用功率,请问需要什么型号、规格的电缆,请提供计算公式。

稀土永磁材料概述

稀土永磁材料概述 从广义上讲,所有能被磁场磁化、在实际应用中主要利用材料所具有的磁特性的一类材料成为磁性材料。它包括硬磁材料、软磁材料、半硬磁材料、磁致伸缩材料、磁光材料、磁泡材料和磁制冷材料等,其中用量最大的是硬磁材料和软磁材料。硬磁材料和软磁材料的主要区别是硬磁材料的各向异性场高、矫顽力高、磁滞回线面积大、技术磁化到饱和需要的磁场大。由于软磁材料的矫顽力低,技术磁化到饱和并去掉外磁场后,它很容易退磁,而硬磁材料由于矫顽力较高,经技术磁化到饱和并去掉磁场后,它仍然长期保持很强的磁性,因此硬磁材料又称为永磁材料或恒磁材料。古代,人们利用矿石中的天然磁铁矿打磨成所需要的形状,用来指南或吸引铁质器件,指南针是中国古代四大发明之一,对人类文明和社会进步做出过重要贡献。近代,磁性材料的研究和应用始于工业革命之后,并在短时间内得到迅速发展.现今,对磁性材料的研究和应用无论在广度或者深度上都是以前无可比拟的,各类高性能磁性材料,尤其是稀土永磁材料的开发和应用对现代工业和高新技术产业的发展起着巨大的推动作用。 永磁材料性能要求 永磁材料的主要性能是由以下几个参数决定的 1.2.1最大磁能积:最大磁能积是退磁曲线上磁感应强度和磁场强度乘积的最大值。这个值越大,说明单位体积内存储的磁能越大,材料的性能越好。 1.2.2饱和磁化强度:是永磁材料极为重要的参数。永磁材料的饱和磁化强度越高,它标志着材料的最大磁能积和剩磁可能达到的上限值越高。 1.2.3矫顽力:铁磁体磁化到饱和后,使它的磁化强度或磁感应强度降低到零所需要的反向外磁场称为矫顽力。它表征材料抵抗退磁作用的本领。 1.2.4剩磁:铁磁体磁化到饱和并去掉外磁场后,在磁化方向保留的剩余磁化强度或剩余磁感应强度称为剩磁。 1.2.5居里温度:强铁磁体由铁磁性和亚铁磁性转变为顺磁性的临界温度称为居里温度或居里点。居里温度高标志着永磁材料的使用温度也高。

各种稀土元素的应用领域

各种稀土元素的应用领域 镧(La):镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce):1,铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。2,目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。3,硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。4,Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr):1,镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉

混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。2,用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。3,用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。4,镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。 钕(Nd):钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代"永磁之王",以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。

铝合金的发展前景及应用展望

铝合金的发展前景及应用展望 1 前言 经过对铝合金化学成分的组成与优化,铝合金型材的铸造工艺、热挤压加工工艺和人工时效工艺进行优化,形成了合理的工艺路线和工艺流程。在此工艺路线和工艺流程的指导下生产出的铝合金型材强度高、延伸率大,延展成型性能好,且具有良好的抗腐蚀性能,已突破普通铝合金建筑材料的应用范围的局限,除应用于铝合金建筑门窗、幕墙外,可用做高层建筑的阳台护栏、栅栏、交通护栏、指示牌、广告牌,以及交通运输设施,汽车、高速列车、航空航天、船舶、军工以及大型建筑结构等领域。因其良好的耐腐蚀性能,不仅可以杜绝碳素钢,铸铁护栏因生锈而带来的反复维护的成本与烦恼,且表面多彩化,可与建筑群、建筑小区的人文环境效果匹配,大大丰富了建筑物的外立面,增强建筑的整体美感。目前,该项成果正在进一步向交通高速公路护栏、汽车等行业渗透推广。 2 论文部分 一铝合金的发展前景 2.1 铝合金在汽车领域应用前景广阔 铝合金的优良特性以及节能、环保、安全的三大汽车技术发展主题确定了铝在汽车行业应用的美好前景,特别是以宝马、奔驰、卡迪拉克等品牌为代表的高档轿车的引进,为铝合金的应用提供了新的市场。 在近期和不久的将来,汽车工业将加快对钢制产品的替代工作,并渴望在如下方面取得进展:1、全铝车身,包括美国福特、通用、日本本田、德国奥迪的概念车车身已经大量采用铝合金,与钢结构相比,重量减轻40%以上;2 、底盘结构件及支架和悬挂类零部件;3、储气罐,后保险杠;4、新材料的开发,为铝合金应用领域的扩展提供了可能。如德国开发成功的泡沫铝材AFS(aluminumfoamsandwich)具有高的刚度/重量和强度/重量之比,能够有效吸收冲击能,具有防震防噪音、易于回收等特点,在车门立柱,保险杠,门侧防撞杆、前防撞梁、军车上的防爆板、轿车发动机零部件等方面拥有极强的应用前景;5、铝镁合金、铝钛合金在汽车车轮、电器件、内饰件等方面的应用也正在逐步扩大。 2.2 稀土锌铝合金镀层金属制品前景看好 如由马鞍山鼎泰金属制品(集团)公司研制开发的国产新一代稀土锌铝合金镀层钢丝、钢绞线,投放市场后,受到用户青睐。专家认为该产品潜在市场十分巨大,前景相当广阔。 稀土锌铝合金镀层钢丝、钢绞线、钢丝绳是新一代耐腐蚀金属制品,目前世界公认的、有产品标准可遵循的只有两种,一种是含铝55%、硅6%、锌43.4%,称为Ga

浅谈稀土的应用现状与前景

浅谈稀土的应用现状与前景 12化本 120900017 贺惠苹 摘要:21世纪的发展使稀土工业面临着新的挑战。为了适应时代的脉搏,探索新的产品和用途,必须对各种形式的稀土产物的特性和可能产生的附加值进行广泛、深入的研究。我国有丰富的稀土资源,约占世界己探明储量的80%以上。我国是世界稀土资源大国,我国稀土资源的特点是储量大、类型多、品种全、质量好、开采成本低。除Pm外的16个稀土元素,在我国从南到北分布齐全。北方以包头矿为主,生产轻稀土;南方以江西、四川、湖南、广东等省为主,生产中、重稀土。目前已形成了良好的生产布局,产量稳居世界首位。因此,开发推广稀土应用对充分利用我国富有的稀土资源、推动稀土产业的发展,具有重要的社会意义。 关键字:稀土资源应用前景 引言:稀土在国民经济发展中发挥着愈来愈重要的作用,其作用并不在于其自身的价格,而在于它在其他领域的应用能产生其自身价值数十倍甚至上万倍的经济效益和社会效益。近年来稀土应用领域越来越广泛,新的应用不断出现。以我国为例,稀土应用已遍及国民经济的13个领域40多个行业,经济效益十分显著。另一方面,稀土在高新技术领域的应用前景十分广阔,是高新技术发展的战略材料。稀土元素因其特有的4f层电子结构,而具有很好的光、电、磁性质,成为光、电、磁等新型功能材料的核心。它还可以与其他元素组合成性能优异的功能材料,在新材料发展中起重要作用。稀土材料在高新技术领域中具有十分重要的战略地位,人们都在大力加强稀土新材料的研究和开发,竞争十分激烈。[1] 一稀土在钢铁冶金领域的应用 稀土元素由于其特殊的原子结构和活性,作为微量添加剂用于钢、铸铁、钦、铝、镍、钨、钥等材料中,能产生消除杂质、细化晶粒和改善组成的神奇功效,从而改进合金的机械、物理和加工性能,提高合金的热稳定性和耐腐蚀性。例如,稀土作为添加剂,可以净化钢液,改变钢中夹杂物的形态和分布,细化晶粒,改善钢的组织和性能.稀土在钢铁冶金中的应用是中国稀土的最大消费领域。特别是在铸铁中的应用很普遍,一直占最大的比例。稀土在钢中的用量占的比例相应小一些。稀土在铸铁中的作用主要是作为球化剂、蠕化剂和孕育剂使用;稀土处理的合金铸铁件亦有发展。稀土铸铁主要应用于冶金行业的轧辊、钢锭模,以及汽车和拖拉机行业的曲轴、汽缸体、变速箱、履带,机械行业的各种齿轮、凸轮轴、各种机座,建筑行业的各种口径的输水管线和暖气片等。目前存在的问题是,稀土铸铁的用量还不多,推广面应进一步扩大。在钢中的作用主要是脱硫、脱氧、细化晶粒、去除杂质等作用,从而改善钢的各项力学性能。[2] 二稀土在有色冶金中的应用 稀土金属具有很高的化学活性和较大的原子半径,因此,将其用于有色金属及合金中,一般都可以产生良好的效果,如细化晶粒、防止偏析、去气、除杂、净化和改善金相组织等作用,从而在一定程度上改善合金的力学性能、物理性能、

稀土元素及用途

稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。稀土的分类】 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 【名称由来】 17种稀土元素名称的由来及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce) "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.

稀土永磁材料与应用

稀土永磁材料与应用 一、稀土永磁材料 稀土永磁材料是将钐、钕混合稀土金属与过渡金属(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经磁场充磁后制得的一种磁性材料。 稀土永磁分钐钴(SmCo)永磁体和钕铁硼(NdFeB)系永磁体,其中SmCo磁体的磁能积在15~30MGOe之间,NdFeB系永磁体的磁能积在27~50MGOe之间,被称为“永磁王”,是目前磁性最高的永磁材料。钐钴永磁体,尽管其磁性能优异,但含有储量稀少的稀土金属钐和稀缺、昂贵的战略金属钴,因此,它的发展受到了很大限制。我国稀土永磁行业的发展始于60年代末,当时的主导产品是钐-钴永磁,目前钐-钴永磁体世界销售量为630吨,我国为90.5吨(包括SmCo磁粉),主要用于军工技术。 随着计算机、通讯等产业的发展,稀土永磁特别是NdFeB永磁产业得到了飞速发展。 稀土永磁材料是现在已知的综合性能最高的一种永磁材料,它比十九世纪使用的磁钢的磁性能高100多倍,比铁氧体、铝镍钴性能优越得多,比昂贵的铂钴合金的磁性能还高一倍。由于稀土永磁材料的使用,不仅促进了永磁器件向小型化发展,提高了产品的性能,而且促使某些特殊器件的产生,所以稀土永磁材料一出现,立即引起各国的极大重视,发展极为迅速。我国研制生产的各种稀土永磁材料的性能已接

近或达到国际先进水平。 现在稀土永磁材料已成为电子技术通讯中的重要材料,用在人造卫星,雷达等方面的行波管、环行器中以及微型电机、微型录音机、航空仪器、电子手表、地震仪和其它一些电子仪器上。目前稀土永磁应用已渗透到汽车、家用电器、电子仪表、核磁共振成像仪、音响设备、微特电机、移动电话等方面。在医疗方面,运用稀土永磁材料进行“磁穴疗法”,使得疗效大为提高,从而促进了“磁穴疗法”的迅速推广。在应用稀土的各个领域中,稀土永磁材料是发展速度最快的一个。它不仅给稀土产业的发展带来巨大的推动力,也对许多相关产业产生相当深远的影响。 二、稀土永磁材料分类 1.稀土钴永磁材料,包括稀土钴(1-5型)永磁材料SmCo5和稀土钴(2-17型)永磁材料Sm2Co17两大类。 2.稀土钕永磁材料,NdFeB永磁材料。 3.稀土铁氮(RE-Fe-N系)或稀土铁碳(RE-Fe-C系)永磁材料。 三、稀土永磁材料制备工艺分类 1.粉末冶金烧结工艺制备的烧结磁体; 2.还原扩散制粉或氢碎处理粉末及粉末冶金烧结工艺制备的烧结磁体; 3.快速凝固制粉或氢碎制粉(HDDR),粉末模压粘结工艺制备的粘结磁体; 4.快速凝固制粉或氢碎(HDDR)粉末的注射工艺制备的注射磁

稀土元素的应用

稀土元素的应用 一、镧元素的应用现状及存在问题 镧的应用非常广泛~应用于各种合金材料、贮氢材料、热电材料、磁阻材料、发光材料、屏蔽涂料、光学玻璃等。它也应用到制备许多有机化工产品的催化剂中。在农业上~有科学家把镧对农作物的作用赋与“超级钙”的美称。 1、传统应用 ,1,钢铁改质剂 金属镧加入钢中可脱硫和脱氧~可细化晶粒~形成微合金并改变夹杂物的形态及分布~提高抗氢脆和抗腐蚀能力,加入到铁中可净化铁水~改变石墨形态~防止杂质元素破坏球化作用。由于钢铁在各个领域应用广泛~金属镧在钢、铸铁等高性能产品发展过程中均扮演着重要的色。 ,2,还原剂 金属镧与氧在高温下发生还原反应~利用蒸气压差可真空蒸馏分离提纯制备金属钐、金属铥等高蒸气压金属~该工艺简单~污染少。 ,3,石油炼制催化剂 为了从原油中获得更多的汽油、柴油等轻质油, 必须在石油精炼加工中对重质油采用催化裂化处理, 就必需使用石油裂化催化剂, 稀土分子筛裂化催化剂比不含稀土的催化剂催化活性和热稳定性均有明显提高, 可使轻质油收率提高4%, 使催化剂寿命延长2倍, 炼油成本降低20%, 并使裂化装置生产能力提高30%-50%。 ,4,功能陶瓷 镧在功能陶瓷材料中具有特别好的应用前景,如在钛酸钡(BaTiO)电容器陶瓷中加入氧化镧,可明显提高电容器的3

稳定性和使用寿命,加入1%氧化镧,可延长使用寿命400-500倍。镧作为固体电解质可用于固体氧化物燃料电池。他们都具有良好的抗断裂韧性、热稳定性和抗循环疲劳性。把镧作为主成分加入锆钛酸铅制备(Pb, La)(Zr,Ti)O, 即电光陶3 瓷, 可用于强核辐射护目镜、光通讯调制器、全息记录等。 2、应用于新型材料 ,1, 光学玻璃 光学玻璃中应用镧既是经典用途~也是目前主要应用领域之一。镧系光学玻璃具有高折射率和低色散的优良光学特性~可简化光学仪器镜头、消除球差、色差和像质畸变~扩大视场角~提高鉴辨率和成像质量~已广泛用于航空摄像机、高档相机、高档望远镜、高倍显微镜、变焦镜头、广角镜头和潜望镜头等方面~已成为光学精密仪器和设备不可缺少的镜头材料。 ,2,储氢材料 La-Ni系列合金储氢能力好~不易粉化。每公斤可贮存 氢约160升~可使高压贮氢钢瓶体积缩小到1/4。利用其可以“呼吸”氢气的特性~可以把纯度为99.999%的氢气提纯到99.99999%~也可用作有机合成的加氢或脱氢反应的催化剂。利用其吸氢放热、呼氢吸热的本领可以把热量从低温向高温传送。目前这种贮氢材料的最大用途是用于稀土镍氢电池的负极材料。电池容量高~寿命长~可反复充放电500次以上~属于环保型绿色电池。稀土镍氢电池目前已广泛用于手提电脑、便携式办公设备和电动工具等方面。最有发展前景的是用于汽车、摩托车的动力电池。 ,3,磁致冷材料 磁致冷是指以磁性材料为介质的一种全新的制冷技术~其中La-Fe系化合物具有优良的磁致冷效应~是目前最有希望实现实用化的室温磁致冷材料~但其二元合

稀土与铝行业

稀土元素在铝合金行业中应用 摘要:在金属铝或铝合金中加入稀土元素金属,制得稀土铝合金,这些稀土铝合金相对与没加稀土元素前的金属铝或铝合金性质上差别较大,稀土铝合金具有许多特殊的和优异的性能,即稀土元素在金属铝或铝合金中起到改性作用。本文简述稀土元素在铝合金中的机理和行为,稀土元素作为微量元素加入铝及其合金中,不仅有细化晶粒的变质作用,还有净化熔体、减少气体含量及氧化夹杂的精炼效果,从而可显著改善和提高铝及其合金的综合性能。论述了稀土在铝及其合金中的应用现状及发展前景。 关键词:稀土元素;铝合金;稀土铝合金;应用 铝及其合金是有色金属及其合金中品种最多、用途较广、用量仅次于钢铁的金属材料。随着科学技术的发展,对铝及其合金的性能提出了更高的要求。为了改善铝及其合金的性能,一方面在熔炼及其加工工艺上进行改进,另一方面在铝及其合金中添加其他元素。 稀土是冶金工业中的有效添加剂,稀土金属具有很高的化学活性、低电位和特殊的电子壳层结构,几乎能与所有元素反应发生作用。稀土元素在铝及其合金中的作用和应用研究已经取得了明显的效果,主要集中在铝硅系铸造合金、铝镁硅(锌)系变形铝合金、铝合金导线及活塞合金等方面。目前的研究表明:铝、镁合金中添加稀土元素,可以提高合金的强度,尤其是高温强度,改善合金的塑韧性、耐磨性、抗腐蚀性能、铸造工艺性能等,具有显著的冶炼、合金化作用。 1.稀土元素在铝及其合金中的机理和行为 主要基于稀土有很高的化学活性,几乎能与所有的化学元素起反应,尤其与氢、氧和氮有很大的亲合力,从而减少了铝铸锭中气孔、疏松和缩孔等缺陷多能与铁、硅、铅等杂质起作用,故能减少这些杂质的有害影响,充当结晶核心,使铸锭晶粒细化。总之,趋于一致的结论是,稀土对铝及其合金有净化、变质和合金化三种作用。 2. 稀土元素对铝及其合金作用 (1)一般作用:稀土元素位于元素周期表第三副族,具有较大的原子半径,在化合物中3价为特征氧化态,有时呈现2价或4价,在金属元素中化学活性仅次于碱金属和碱土金属元素。添加少量稀土元素,未形成稀土金属间化合物之前,稀土元素在合金中主要起变质和细化作用,从而使合金获得一系列性能的改善。当稀土元素添加量足以生成金属间化合物、共晶复合物的金属纤维组织以及固溶强化相时,可以显著提高合金基体的高温性能。铝合金中添加稀土元素,具有良好的冶炼、改善成形工艺和合金化作用。 (2)冶炼作用:稀土元素在铝合金熔液中具有良好的净化作用。首先,稀土元素与氧、硫、氢、氮、卤族等元素具有很强的相互作用,生成产物RE2O3, RE2S3,RES, RES2, RE3S4, REH2, REH3, REN, REX3(X为卤族元素)等,在高温下稀土元素与碳、硅、硼反应生成REC2, RE2C3, REC, RE2C, RE3C, RE4C,RESi2, REB4, REB6等。同时氢在稀土中的溶解度远高于铝、镁合金,因此稀土元素可以较好地除去铝、镁合金中的氢。对于耐热铝、镁合金,由于晶界夹杂的减少,可以明显提高耐热强度等高温性能。其次,稀土能与铝、镁合金中低熔点元素砷、铋、铅、锌等作用,生成熔点较高的二元或多元化合物,这些化合物可以成渣析出,也可以成为强化相存在,避免了低熔点金属引起的红脆性问题。最后,稀土的加入影响或改善铝、镁合金金属液和熔渣的物理化学性质,诸如表面张力、流动性、粘度、夹杂溶解度等,有利于非金属夹杂的球化,促进其上浮,实现铝、镁金属液较好地去除夹杂。 稀土元素在铝、镁合金中具有良好的细化、变质作用。铝镁合金中少量添加稀土元素,可以增加液态金属结晶中心、增加表面张力、增加过冷度,在析出相或生长相的表面生成一层吸附膜,阻碍晶粒继续长大,进而达到细化晶粒的目的。添加稀土还可以减小柱状晶,细化合金二次枝晶臂间距,改善晶粒形态,并在一定程度上控制材料晶粒度。镧和铕对铝合金具有强烈的变质作用,这与其具有较大的原子半径有关。稀土能够提高铝、镁合金的力学性能,在微观

铝合金电缆

铝合金电缆 简介 铝合金电力电缆是以AA8030 系列铝合金材料为导体,采用特殊紧压工艺和退火处理等先进技术发明创造的新型材料电力电缆。合金电力电缆弥补了以往纯铝电缆的不足,虽然没有提高了电缆的导电性能,但弯曲性能、抗蠕变性能和耐腐蚀性能等却大大提高,能够保证电缆在长时间过载和过热时保持连续性能稳定,采用AA-8000 系列铝合金导体,可以大大提高铝合金电缆的导电率、耐高温性,同时解决了纯铝导体电化学腐蚀、蠕变等问题。铝合金的导电率是最常用基准材料铜IACS的61.8%,载流量是铜的79%,优于纯铝标准。但在同样体积下,铝合金的实际重量大约是铜的三分之一。因此,相同载流量时铝合金电缆的重量大约是铜缆的一半。采用铝合金电缆取代铜缆,可以减轻电缆重量,降低安装成本,减少设备和电缆的磨损,使安装工作更轻松。 在满足同等电气性能的前提下,使用铝合金电缆的重量是铜芯电缆的一半,其截面是传统铜芯电缆的1.1~1.25倍,价格比传统的铜芯电缆低15~30%。 优点 抗蠕变性能 铝合金导体的合金材料与退火处理工艺减少了导体在受热和压力下的“蠕变”倾向,相对于纯铝,抗蠕变性能提高300%,避免了由于冷流或蠕变引起的松弛问题。 抗拉强度和延伸率

铝合金导体相比于纯铝导体,由于加入了特殊的成分并采用了特殊的加工工艺,极大的提高了抗拉强度,且延伸率提高到30%,使用更加安全可靠。 热膨胀系数 热膨胀系数用来计算在温度变化时材料的尺寸变化。铝合金的热膨胀系数与铜相当,多年来铝连接器一直可靠地用于铜和铝导体,且当今使用的大部分电气连接器都是用铝制造的,这尤其适合铝合金。所以铝合金导体与连接器的膨胀和收缩完全一致。 连接性能 用铝合金制造的电气连接与用铜导体制造的连接一样安全稳定。 铝合金的成分大大改进了其连接性能,当导体退火时,添加的铁产生高强度抗蠕变性能,即使在长时间过载和过热时,也能保证连接稳定。 自重承载力强 铝合金改善了纯铝的抗拉强度,铝合金电缆可支撑4000米长度的自重,铜电缆只能支撑2750米。这种优势在大跨度的建筑(如体育场馆)配线时体现得尤为突出。 防腐蚀性能 铝固有的防腐性能源自当铝表面与空气接触时形成薄而坚固的氧化层,这种氧化层特别耐受各种形式的腐蚀。而合金中添加的稀土元素又能进一步改善铝合金的耐腐蚀性能,特别是电化学腐蚀。铝能承受恶劣环境的特点使其被广泛应用于托盘内电缆的导体,以及许多工业元件和容器。腐蚀的产生通常与不同的金属在潮湿环境中的连接有关,可使用

稀土元素的应用

一、镧元素的应用现状及存在问题 镧的应用非常广泛,应用于各种合金材料、贮氢材料、热电材料、磁阻材料、发光材料、屏蔽涂料、光学玻璃等。它也应用到制备许多有机化工产品的催化剂中。在农业上,有科学家把镧对农作物的作用赋与“超级钙”的美称。 1、传统应用 (1)钢铁改质剂 金属镧加入钢中可脱硫和脱氧,可细化晶粒,形成微合金并改变夹杂物的形态及分布,提高抗氢脆和抗腐蚀能力;加入到铁中可净化铁水,改变石墨形态,防止杂质元素破坏球化作用。由于钢铁在各个领域应用广泛,金属镧在钢、铸铁等高性能产品发展过程中均扮演着重要的色。 (2)还原剂 金属镧与氧在高温下发生还原反应,利用蒸气压差可真空蒸馏分离提纯制备金属钐、金属铥等高蒸气压金属,该工艺简单,污染少。 (3)石油炼制催化剂 为了从原油中获得更多的汽油、柴油等轻质油, 必须在石油精炼加工中对重质油采用催化裂化处理, 就必需使用石油裂化催化剂, 稀土分子筛裂化催化剂比不含稀土的催化剂催化活性和热稳定性均有明显提高, 可使轻质油收率

提高4%, 使催化剂寿命延长2倍, 炼油成本降低20%, 并使裂化装置生产能力提高30%-50%。 (4)功能陶瓷 镧在功能陶瓷材料中具有特别好的应用前景;如在钛酸钡(BaTiO3)电容器陶瓷中加入氧化镧,可明显提高电容器的 稳定性和使用寿命,加入1%氧化镧,可延长使用寿命400-500倍。镧作为固体电解质可用于固体氧化物燃料电池。他们都具有良好的抗断裂韧性、热稳定性和抗循环疲劳性。把镧作为主成分加入锆钛酸铅制备(Pb, La)(Zr,Ti)O3, 即电光陶瓷, 可用于强核辐射护目镜、光通讯调制器、全息记录等。 2、应用于新型材料 (1)光学玻璃 光学玻璃中应用镧既是经典用途,也是目前主要应用领域之一。镧系光学玻璃具有高折射率和低色散的优良光学特性,可简化光学仪器镜头、消除球差、色差和像质畸变,扩大视场角,提高鉴辨率和成像质量,已广泛用于航空摄像机、高档相机、高档望远镜、高倍显微镜、变焦镜头、广角镜头和潜望镜头等方面,已成为光学精密仪器和设备不可缺少的镜头材料。 (2)储氢材料 La-Ni系列合金储氢能力好,不易粉化。每公斤可贮存

稀土国家标准《铈铝合金》(送审稿)编制说明

稀土国家标准《铈铝合金》(送审稿)编制说明 一、工作简况 1、任务来源 铈铝合金最主要的作用是做中间合金使用,在不同的有色金属合金中作为改性添加剂用,如用Ce作为铝合金的净化剂和变质剂,就需要用Ce-Al合金进行添加;铈铝合金也是代替铜材制造电线电缆的理想材料,可以节省大量生产成本;铈铝合金在铸造铝合金中应用也取得同样良好的效果。在用量最多的铝硅系铸造合金中,加上千分之几的铈,就能明显改善合金的机械加工性能,已有多种牌号的产品用于飞机、船舶、汽车、柴油机、摩托车和装甲车等方面的活塞、齿轮箱、汽缸和仪器仪表等器部件上。 同时,铈铝合金还用于建筑铝材和民用铝制品上,可以提高材料的冲压性能、耐腐蚀性能、机械强度和表面光洁度,既能改善产品质量,又能提高成品率。稀土建筑铝型材经久耐用不变形,质感好。稀土铝合金用于高压锅和普通铝锅等制品方面,由于强度大和冲压性能好,可以减簿制品的壁厚,既节省材料又精巧耐用。 我国在研究开发铈铝合金过程中,发明了在铝电解槽中直接电解制备铈铝合金的新工艺,配合对掺法和铝热还原法可以生产出不同品质和用途的铈铝合金。我国的铈铝合金生产工艺和应用技术已达到国际先进水平。另外,Ce-Al合金具有使用工艺简便、无污染、易储存、综合成本低等优点,克服了当前变质剂的缺点,有着广阔的市场前景。 但到目前为止国内没有一个统一的产品标准,因此制定铈铝合金产品标准很有必要。标准的制定可为铈铝产品贸易提供更合理的仲裁依据;为铈铝产品的指标控制提供新的指导意义。 随着现代工业的发展,铈铝合金的应用前景将越来越广泛。制定的铈铝合金标准将充分反映了当前国内各生产企业的技术水平,便于生产,宜于应用。新制定的标准可为铈铝合金产品贸易提供仲裁的依据;为铈铝合金产品的指标控制提供指导意义。 《铈铝合金》国家标准计划编号为:20161880-469;全国稀土标准化技术委员会于2017年4月27日在江苏省扬州市召开的《2017年度第一次稀土标准

相关文档
最新文档