线性空间--子空间

线性空间--子空间
线性空间--子空间

线性空间子空间

子空间就是线性空间的非空集合对于其中的运算也构成一个空间,而span{ v1,v2...,vn }表示由v1,v2...,vn 张成的子空间,即v1,v2...,vn 所有可能的线性组合构成的子空间。子空间是空间,从而子空间存在着基底,子空间的任何一个基底张成的空间就是这个子空间本身。综上:子空间可以看成一些向量张成的空间,而由一些向量v1,v2...,vn 张成的空间span{ v1,v2...,vn }一定是一个子空间。

2、R3中的一条通过原点的直线是R3的子空间。按照子空间的判断方法,只需要验证对其加法和数乘运算封闭即可。这里的加法是向量加法,数乘是数和向量的数乘。

易知,对于过原点的直线来说,其上任意两点对应的两个向量(原点为起点,直线上的点为终点对应的向量)必共线,从而可知相加之后,起点仍选为原点,终点必落在原来的直线上,因此,对加法封闭。其次,对于数乘,很容易验证也封闭。

故,R3中的一条通过原点的直线是R3的子空间。

对于不过原点的直线,构不成子空间。

3、请用Rn空间为例子解释下子空间的定义或者是说概念。

这里关键是理解子空间的概念以及其判定方法:

只需要所给线性空间的非空子集合对于线性空间本身的两个运算:加法和数乘封闭即可!

比如:向量(0,0,。。。,0)本身构成Rn的一个零维子空间,

因为这个集合只有一个元素0,0+0=0,k0=0,所以对加法和数乘封闭。

向量(1,0,。。。,0)的倍数的全体就构成Rn的一个一维子空间,

因为这个集合的元素都是(1,0,。。。,0),易知

(1,0,。。。,0)的倍数相加仍是它的倍数,且任何一个数k乘以它的倍数仍是它的倍数,

即k*d(1,0,...,0)=kd*(1,0, 0

所以对加法数乘封闭。

向量(1,0,...,0)和(0,1,0,...,0)的所有线性组合构成Rn的一个2维子空间等。

同样道理,可知对加法数乘都封闭。

子空间的基本内容

线性子空间的研究 数学与应用数学专业学生:罗柏平 指导老师:周绍杰 摘要:线性子空间理论是线性代数的核心内容之一,在数学及其它领域中有着广泛的应用.本文讨论了线性子空间及其交、和、直和的定义,并阐述了线性子空间、子空间直和的几个等价性定义,并做了一定的的推广;在此基础上,给出了求两个子空间交的基的一般方法.且对其作了进一步讨论,得到了一些有用的结果. 关键词:线性空间,线性子空间,子空间的交,维数 Abstract: Linear space and subspaces are one of linear algebra,and they have been applied to mathematics or other fields extensively.This paper discussed the linear subspace and pay, and and, and subspace straight.And we discussed the linear subspace, subspace straight and few equivalence definition,and did some promotion; Based upon these, draw subspace of mixed operation is for and included relation and its two subspaces, and further discussion was gived and several important conclusions were given. Keyword: linear space; linear subspace ; intersection of subspaces; dimensions 0引言 线性子空间理论是高等代数中的重要内容,线性子空间是线性空间的子集,线性子空间中的元素满足对原线性空间的加法与数量乘法封闭.要懂得利用定义及其线性子空间的相关定理来判定线性子空间. 线性子空间包括线性子空间的定义,子空间的交与和,直和等等. 它把具体、直观的平面与集合空间推广到抽象的线性空间.线性子空间是线性空间的子集,线性子空间中的元素满足对原线性空间的加法与数量乘法封闭.线性子空间的应用领域越来越广,在数学、物理、通信、化学、甚至医学等各方面有广泛应用.线性空间的概念是n维向量空间概念的抽象和提高,子空间的理论不仅是高等代数的核心,而且广泛渗透到各自然科学、工程技术、经济管理科学中.因而线性子空间在一定意义上值得广泛推广.为了对线性子空问作进一步的研究,先讨论有关线性子空间的一些基本问题,对线性空间有关的概念和部分结论作一回顾,然后再在应用中对线性子空间做更多的探讨.

线性空间与子空间

第一讲线性空间 一、线性空间的定义及性质 [知识预备] ★集合:笼统的说就是指一些事物(或者对象)组成的整体 集合的表示:枚举、表达式 集合的运算:并(U),交(I) 另外,集合的“与”(+):并不就是严格意义上集合的运算,因为它限定了集合中元素须有可加性。 ★数域:一种数集,对四则运算封闭(除数不为零)。比如有理数域、实数域(R)与复数域(C)。实数域与复数域就是工程上较常用的两个数域。 线性空间就是线性代数最基本的概念之一,也就是学习现代矩阵论的重要基础。线性空间的概念就是某类事物从量的方面的一个抽象。 1.线性空间的定义: 设V就是一个非空集合,其元素用x,y,z等表示;K就是一个数域,其元素用k,l,m等表示。如果V满足[如下8条性质,分两类] (I)在V中定义一个“加法”运算,即当x,y V ∈时,有唯一的与+∈(封闭性),且加法运算满足下列性质 x y V (1)结合律()() ++=++; x y z x y z (2)交换律x y y x +=+; (3)零元律存在零元素o,使x+o x =;

(4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o,且称y 为x 的负元素,记为(x -)。则有()x x +-= o 。 (II)在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。 注意:1)线性空间不能离开某一数域来定义,因为同一个集合,如果 数域不同,该集合构成的线性空间也不同。 (2)两种运算、八条性质 数域K 中的运算就是具体的四则运算,而V 中所定义的加法 运算与数乘运算则可以十分抽象。 (3)除了两种运算与八条性质外,还应注意唯一性、封闭性。 唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。 当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。 例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为 x y=xy , k k x x =o 证明:R +就是实数域R 上的线性空间。

向量空间的基与维数

向量空间的基与维数 结论1 设,当下述三个条件有两条满足时,{}就是V的一个基. (i)零向量可由唯一地线性表示; (ii)V中每个向量都可由唯一地线性表示; (iii). 结论 2 设,都是F上向量空间V的子空间. 若,,则 ,且. 例 1 设和都是数域,且,则是上的向量空间. 域F是F上向量空间,基是{1},. C是R向量空间,{ 1 , i} 是基,. R是有理数域上的无限维向量空间,这是因为对任意的正整数t,是线性无关的,这里. 令,则F是一个数域,F是Q上的向量空间. 1)1,线性无关: 设,. 则(否则,,矛盾),因此. 2) 1,,线性无关: 设,,i=1,2,3 . ( 1 ) , 两端平方得 , 由于1,线性无关,故

假如,则,且,即. 矛盾. 因而故假如,则得,这与是无理数相矛盾. 因而 将代入(1),便得这说明1,,线性无关. 3) 1,,,线性无关: 设,,i=1,2,3,4 . 则有 . ( 2 ) 假如不全为零,则 得到“1,,线性相关”的结论,矛盾. 所以与应全为零,将代入(2)得 又由1,线性无关得. 这样,我们证得了1,,,线性无关. 故{1,,,}是F的一个基.. 例2 C[a,b]={f(x)|f(x)是定义在[a,b]上的连续实函数}. C[a,b]是R上的向量空间. 对任意的正整数n,可证得线性无关: 设,使( 3 ) 取n+1个实数,使 a b. 由(3)知 . 即 其中

而 . 用左乘(4)两端,得 这说明线性无关. 故C[a,b]是R上无限维向量空间. 引理设V是F上向量空间,是V的子空间,V,i=1,2,…,s. 试证明 证对s作数学归纳. 当s=1 时,结论显然成立. 设,且对个V的不等于V的子空间结论成立. 下考虑V的子空间,,. 由归纳假设知故存在 1) 当时,,故; 2) 当时,由于,因此显然,,…,.且存在, 使(否则,如果,,…,,, , ,使,,所以,即有,这与矛盾).这样 ,故 例3 设.存在集合, 使S含无穷多个向量,且S中任意n个不同的向量都是V 的一个基. 证取V的一个基,令. 对任意从中删 去后剩下的个向量生成的V的子空间记为,则 由引理知, 故存在 令, 中任n个不同的向量线性无关,是V的基. 设,有,且中任意n个不同的向量构成V的一个基. 对任意,有 .

线性空间与子空间

第一讲 线性空间 一、 线性空间的定义及性质 [知识预备] ★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(),交() 另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。 ★数域:一种数集,对四则运算封闭(除数不为零)。比如有理数域、实数域(R )和复数域(C )。实数域和复数域是工程上较常用的两个数域。 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。线性空间的概念是某类事物从量的方面的一个抽象。 1. 线性空间的定义: 设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。如果V 满足[如下8条性质,分两类] (I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和 x y V +∈(封闭性),且加法运算满足下列性质 (1)结合律 ()()x y z x y z ++=++; (2)交换律 x y y x +=+;

(3)零元律 存在零元素o ,使x +o x =; (4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -) 。则有()x x +-= o 。 (II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。 注意:1)线性空间不能离开某一数域来定义,因为同一个集合, 如果数域不同,该集合构成的线性空间也不同。 (2)两种运算、八条性质 数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。 (3)除了两种运算和八条性质外,还应注意唯一性、封闭 性。唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。 当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。 例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为

01 线性空间与子空间

第一讲 线性空间 一、 线性空间的定义及性质 [知识预备] ★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(U ),交(I ) 另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。 ★数域:一种数集,对四则运算封闭(除数不为零)。比如有理数域、实数域(R )和复数域(C )。实数域和复数域是工程上较常用的两个数域。 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。线性空间的概念是某类事物从量的方面的一个抽象。 1. 线性空间的定义: 设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。如果V 满足[如下8条性质,分两类] (I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和x y V +∈(封闭性),且加法运算满足下列性质 (1)结合律 ()()x y z x y z ++=++; (2)交换律 x y y x +=+; (3)零元律 存在零元素o ,使x +o x =; (4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使

x y +=o ,且称y 为x 的负元素,记为(x -) 。则有()x x +-= o 。 (II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。 注意:1)线性空间不能离开某一数域来定义,因为同一个集合, 如果数域不同,该集合构成的线性空间也不同。 (2)两种运算、八条性质 数域K 中的运算是具体的四则运算,而V 中所定义的加法运 算和数乘运算则可以十分抽象。 (3)除了两种运算和八条性质外,还应注意唯一性、封闭 性。唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。 当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。 例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为 x y=xy , k k x x =o 证明:R +是实数域R 上的线性空间。 [证明] 首先需要证明两种运算的唯一性和封闭性

线性空间--子空间

线性空间子空间 子空间就是线性空间的非空集合对于其中的运算也构成一个空间,而span{ v1,v2...,vn }表示由v1,v2...,vn 张成的子空间,即v1,v2...,vn 所有可能的线性组合构成的子空间。子空间是空间,从而子空间存在着基底,子空间的任何一个基底张成的空间就是这个子空间本身。综上:子空间可以看成一些向量张成的空间,而由一些向量v1,v2...,vn 张成的空间span{ v1,v2...,vn }一定是一个子空间。 2、R3中的一条通过原点的直线是R3的子空间。按照子空间的判断方法,只需要验证对其加法和数乘运算封闭即可。这里的加法是向量加法,数乘是数和向量的数乘。 易知,对于过原点的直线来说,其上任意两点对应的两个向量(原点为起点,直线上的点为终点对应的向量)必共线,从而可知相加之后,起点仍选为原点,终点必落在原来的直线上,因此,对加法封闭。其次,对于数乘,很容易验证也封闭。 故,R3中的一条通过原点的直线是R3的子空间。 对于不过原点的直线,构不成子空间。 3、请用Rn空间为例子解释下子空间的定义或者是说概念。 这里关键是理解子空间的概念以及其判定方法: 只需要所给线性空间的非空子集合对于线性空间本身的两个运算:加法和数乘封闭即可! 比如:向量(0,0,。。。,0)本身构成Rn的一个零维子空间, 因为这个集合只有一个元素0,0+0=0,k0=0,所以对加法和数乘封闭。 向量(1,0,。。。,0)的倍数的全体就构成Rn的一个一维子空间, 因为这个集合的元素都是(1,0,。。。,0),易知 (1,0,。。。,0)的倍数相加仍是它的倍数,且任何一个数k乘以它的倍数仍是它的倍数, 即k*d(1,0,...,0)=kd*(1,0, 0 所以对加法数乘封闭。 向量(1,0,...,0)和(0,1,0,...,0)的所有线性组合构成Rn的一个2维子空间等。 同样道理,可知对加法数乘都封闭。

第三章线性方程组与线性子空间

第三章 线性方程组 §1 §2消元法和线性方程组解的情况 1 线性方程组的初等变换 现在讨论一般线性方程组 11112211211222221122,,n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????++ += ? 其中n x x x ,,,21 代表n 个未知量,m 是方程的个数,(1,2,,;1,2,,)ij a i m j n ==称为 线性方程组的系数,(1,2, ,)j b j m =称为常数项.方程组中未知量的个数n 与方程的个数 m 不一定相等.系数ij a 的第一个指标i 表示它在第i 个方程,第二个指标j 表示它是j x 的系 数. 所谓方程组的一个解就是指由n 个数n k k k ,,,21 组成的有序数组),,,(21n k k k ,当 n x x x ,,,21 分别用n k k k ,,,21 代入后,方程组中每个等式都变成恒等式. 方程组解的全 体称为解集合. 解方程组实际上就是找出它全部的解,即:求出它的解集合. 如果两个方程组有相同的解集合,它们就称为同解的. 如果知道了一个线性方程组的全部系数和常数项,那么这个线性方程组就基本上确定了.确切地说,线性方程组(1)可以用下面的矩阵 11121121222212 n n m m mn m a a a b a a a b a a a b ?? ? ? ? ??? 来表示. 例如,解方程组 ??? ??=++=++=+-. 522,4524,132321 321321x x x x x x x x x 第二个方程组减去第一个方程的2倍,第三个方程减去第一个方程,就变成

相关文档
最新文档