射极输出器课堂精准练

射极输出器课堂精准练
射极输出器课堂精准练

课堂精准练:射极输出器

一、填空题

1.射极输出器作输入级,主要是利用它的输入电阻大的特点;放在输出级是利用它的输出电阻小的特点;放在中间级是兼用它的输入电阻大和输出电阻小的特点起阻抗变换作用。

2.射极输出器的特性归纳为:电压放大倍数略小于1 ,电压跟随性好,输入阻抗高,输出阻抗低,而且具有一定的电流放大能力和功率放大能力。

3.射极输出器AVF≈_______,输入电阻较_________,输出阻抗___________。

二、判断题

1.射极输出器虽电压放大倍数略小于1,但仍有一定的电流放大和功率放大,还能减轻信号源的负担和稳定输出电流。(×)

2.射极跟随器的输出极性与输入极性同相位.

3.共发射极电路也就是射极输出器,它具有很高的输入阻抗和很低的输出阻抗。( × )

三、选择题

1.关于射极输出器的错误叙述是()

A.电压放大倍数略小于1,电压跟随性好

B.输入阻抗低,输出阻抗高

C.具有一定的电流放大能力和功率放大能力

D.一般不采用分压式偏置是为了提高输入电阻

2.射极输出器作为放大器的中间级使用时,主要作用是( )。

A.放大信号

B.改变输入、输出电阻

C.隔离前、后级直流联系

3.对于射极输出器,下列说法正确的是( )。

A.它是一种共射放大电路

B.它是一种共集放大电路

C.它是一种共基放大电路。

4.射极输出器是一种(C )负反馈放大器。

A . 电压并联 B. 电流串联 C .电压串联 D .电流并联

射极跟随器实验报告

实验二射极跟随器实验报告 姓名:班级:学号: 指导老师:实验日期:实验成绩: 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验原理 射极跟随器的原理图如图5-1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 图5-1 射极跟随器 射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R i 图5-1电路 R i=r be+(1+β)R E 如考虑偏置电阻R B 和负载R L 的影响,则 R i=R B∥[r be+(1+β)(R E∥R L)] 由上式可知射极跟随器的输入电阻R i比共射极单管放大器的输入电阻R B∥rbe要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。 输入电阻的测试方法同单管放大器,实验线路如图5-2所示。Ri= 图5-2 射极跟随器实验电路

即只要测得A 、B 两点的对地电位即可计算出R i 。 2、输出电阻R O 图5-1电路 如考虑信号源内阻R S ,则 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。三极管的β愈高,输出电阻愈小。 输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 即可求出 R O 3、电压放大倍数 图5-1电路 上式说明射极跟随器的电压放大倍数小于近于1,且为正值。 这是深度电压负反馈的结果。但它的射极电流仍比基流大(1+β)倍, 所以它具有一定的电流和功率放大作用。 4、电压跟随范围 电压跟随范围是指射极跟随器输出电压u O 跟随输入电压u i 作线性变化的区域。当u i 超过一定范围时,u O 便不能跟随u i 作线性变化,即u O 波形产生了失真。为了使输出电压u O 正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取u O 的峰峰值,即电压跟随范围;或用交流毫伏表读取u O 的有效值,则电压跟随范围 U 0P -P =2 U O 三、实验设备与器件 1、+12V 直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、频率计 1 ) //)(1() //)(1(≤+++= L E be L E V R R r R R A β β

输入输出阻抗以及阻抗匹配

输入、输出阻抗以及阻抗匹配 在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。阻抗的单位是欧。在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。输入阻抗是用来衡量放大器对信号源的影响的一个性能指标: 对于电压驱动的电路,输入阻抗越大,表明放大器从信号源取的电流越小,放大器输入端得到的信号电压也越大,即信号源电压衰减的少,对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响。理论基础:Us=(Rs+Ri)×I。Rs为信号源内阻,Ri为放大器输入电阻。因此作为测量信号电压的示波器、电压表等仪器的放大电路应当具有较大的输入电阻。对于一般的放大电路来说,输入电阻当然是越大越好。如果想从信号源取得较大的电流,则应该使放大器具有较小的输入电阻 而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要

一射极输出器电路如图所示,设VCC=12VRb=510kΩR

自测试卷二 一、填空:(18分) 1.为了放大从热电偶取得的反映温度变化的微弱信号,放大电路应采用 耦合方式,为了实现阻抗变换,使信号与负载间有较好的配合,放大电路应采用 耦合方式。 2.在三极管多级放大电路中,201=u A &、102-=u A &、13=u A &,总的电压增益u A &= ;A u 1是 放大器;A u 2是 放大器;A u 3是 放大器。 3.单相桥式整流电路中,若输入电压U 2 = 30V ,则输出电压U o = V ;若负载电阻R L = 100 Ω,整流二极管I D(AV) = A 。 4.文氏桥正弦波振荡器用 网络选频,当这种电路产生正弦波振荡时,该选频网络的反馈系数(即传输系数)= ||F & 、?F = 。 5.在信号处理电路中,当有用信号频率低于10 Hz 时,可选用 滤波器;有用信号频率高于10 kHz 时,可选用 滤波器;希望抑制50 Hz 的交流电源干扰时,可 选用 滤波器;有用信号频率为某一固定频率,可选用 滤波器。 6.甲类放大电路是指放大管的导通角为 ;乙类放大电路则其放大管的导通角 为 ;在甲乙类放大电路中,放大管的导通角为 。 二、选择正确答案填空(9分) 1.图示电路中二极管是理想的,电阻R 为6 Ω。当普通指针式万用表置于R ? 1 Ω 档时,用黑表笔(通常带正电)接A 点,红表笔(通常带负电)接B 点,则万用表的指示值为 。 a .18 Ω ; b .9 Ω ; c .3 Ω ; d .2 Ω ; e .0 Ω 。 2.有两个放大倍数相同、输入和输出电阻不同的放大电路A 和B ,对同一个具有内阻的信号源电压进行放大。在负载开路的条件下测得A 的输出电压小。这说明A 的 。 a .输入电阻大 ; b .输入电阻小 ; c .输出电阻大 ; d .输出电阻小 3.某放大电路在负载开路时的输出电压为4 V ,接入3 k Ω 的负载电阻后输出电压降为3 V 。这说明放大电路的输出电阻为 。 a .10 k Ω ; b .2 k Ω ; c .1 k Ω ; d .0.5 k Ω 。 三、判断下列管子的工作状态(10分) 1.测得各三极管静态时三个电极对地的电位如图所示,试判断它们分别工作在什么状态(饱和、截止、倒置)。设所有的三极管和二极管均为硅管。 2.电路如图所示,分别指出它们工作在下列三个区中的哪一个区(饱和区、夹断区、可变电阻区)。 R A B R

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

第5章 含有运算放大器的电阻电路总结

第五章 含有运算放大器的电阻电路 ◆ 重点: 1、运放的传输特性 2、比例器、加法器、减法器、跟随器等运算电路 3、含理想运放的运算电路的分析计算 ◆ 难点: 熟练计算含理想运放的电路 5.1 运放的电路模型 5.1.1 运放的符号 运放是具有高放大倍数的直接耦合放大电路组成的半导体多端实际元件。而在本章中,所讲到“运放”,是指实际运放的电路模型——一种四端元件。其符号为 + u- _ o + _ 图5-1 运放的符号 在新国标中,运放及理想运放的符号分别为 图5-2 运放的新国标符号 5.1.2 运放的简介 一、同相与反相输入端 运放符号中的“+”、“-”表示运放的同相输入端和反相输入端,即当输入电压加在同相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相同;反之,当输入电压加在反相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相反。其意义并不是电压的参考方向。 二、公共端 在运放中,公共端往往取定为接地端——电位为零,实际中,电子线路中的接地端常常取多条支路的汇合点、仪器的底座或机壳等,输入电压、输出电压都以之为参考点。有时,电路中并不画出该接地端,但计算时要注意它始终存在。

5.1.3 运放的输入输出关系 一、运放输入输出关系曲线 在运放的输入端分别同时加上输入电压+ u 和- u (即差动输入电压为d u )时,则其输 出电压u o 为 d u u o u A u u A u =-=-+)( d 图5-3 运放输入输出关系曲线 实际上,运放是一种单向器件,即输出电压受输入电压的控制,而输入电压并不受输出电压的控制。由其输入输出关系可以看出,运放的线性放大部分很窄,当输入电压很小时,运放的工作状态就已经进入了饱和区,输出值开始保持不变。 二、运放的模型 a u - u o u 图5-4 运放的电路模型 由运放的这一模型,我们可以通过将运放等效为一个含有受控源的电路,从而进行分析计算。 例:参见书中P140所示的反相比例器。(学生自学) 5.1.4 有关的说明 在电子技术中,运放可以用于 1.信号的运算——如比例、加法、减法、积分、微分等 2.信号的处理——如有源滤波、采样保持、电压比较等 3.波形的产生——矩形波、锯齿波、三角波等 4.信号的测量——主要用于测量信号的放大 5.2 具理想运放的电路分析 5.2.1 含理想运放的电路分析基础 所谓“理想运放”,是指图中模型的电阻R in 、R 0为零,A 为无穷大的情况。由此我们可以得出含有理想运放的电路的分析方法。根据输入输出特性,我们可以得出含有理想运放器件的电路的分析原则:

射极跟随器实验报告

射极跟随器实验报告 班级: 姓名: 学号: 一、实验目的 (1)掌握射极跟随器的特性及测试方法。 (2)进一步学习放大器各项参数的测试方法。 二、实验原理 射极跟随器的原理图如图(1)所示。它是一个电压串联负反馈放大电路,具有输入电阻高、输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 由于射极跟随器的输出取自发射极,故也称其为射极输出器。 1、输入电阻i R 根据图(1)电路所示,有 R r R E be i )1(β++= 如考虑偏置电阻B R 和负载L R 的影响,则 ]//)(1(//[R R r R R L E be B i β++= 图 (1) 射极跟随器 由上式可知,射极跟随器的输入电阻 i R 比共射极单管放大器的输入电阻 be B i r R R //=的阻值要高的多。但由于偏置电阻B R 的分流作用,输入电阻的阻值难以 进一步提高。

输入电阻的测试方法与单管放大器的相同,试验线路如图(2)所示。 R U U U I U R i s i i i i -= = 即只要测得A 、B 两点的对地电位即可计算出i R 。 2、输出电阻O R 根据图(1)电路所示,有 β β r R r R be E be O ≈ = // 如考虑信号源内阻S R ,则 β β ) //(//) //(R R r R R R r R B S be E B S be O +≈ += 由上式可知,射极跟随器的输出电阻O R 比共射极单管放大器的输出电阻C O R R ≈低得多。三极管的β值愈高。

求解输入输出电阻

戴维宁定理指出:“一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电压源和电阻的串联组合等效置换,此电压源的激励电压等于一端口的开路电压,电阻等于一端口内全部独立源置零后的输入电阻。 Req=0 无伴电压源只存在戴维南等效电路 Req=∞无伴电流源只存在诺顿等效电路 2.1 等效变换化法: 不含受控源的二端网络除源后,其电路可以看成由电阻按不同方式连接而成的纯电阻电路。求解该二端网络的等效电阻可采用电阻的串并联等效变化或△一Y 变化法直接求取。 例l:求图1所示电路的戴维南等效电阻,其中:Us1=Us2=40V, R1=R2= R4=4ΩR3= 2Ω,R5=8Ω 解:分析图l电路知:不含受控源,将所有电源置零后,电路变成纯电阻电路,可以直接通过串并联等效变化求端口等效电阻。 Req=[(R1∥R2 )+R3)]∥R4+ R5=10Ω a. 等效变换法适用于不含控制源且结构比较简单的二端网络,对于结构复杂的网络也适用,只是计算过程步骤繁琐. 2.2开路短路法: 开路短路法指二端网络的等效电阻等于该端口的开路电压u oc与该端口的短路电流i sc之比。注意:短路电流由开路电压正极流向负极。 开路电压: u oc=10V 短路电流: i+0.5i=10

i sc=20/3A Req= u oc / i sc=1.5Ω a.(受控)独立源处理方法: (受控)电流源不等于短路。其有压降。 (受控)电压源不等于开路。其有电流。 处理方法有2中: 1.避开 如:回路电流法和节点电压法中让(受控)电流源,(受控)电压源做单独回路。 2.设出(受控)电流源上压降。(受控)电压源上电流。 b.开路短路法是依据戴维南和诺顿定理。当二端网络的开路电压为零时(不含独立源是其中一种情况),不能利用此法。因为开路电压为零,等效电阻不能够确定。 2.1输入电阻法: 戴维南定理指出一个含独立电源、线性电阻和受控源的一端口对外电路,其等效电阻等于一端口的全部独立电源置零后的输入电阻。输入电阻等于端口外加电压源与端口的输入电流之比。 例3:利用输入电阻法求解例2所示戴维南等效电阻。 解:根据输入电阻法原则,端口内电源置零,外加电压源,可以得出电路图3。 u=i+0.5i Req= u/ i=1.5Ω 2.4外特性法: 线性二端网络外特性指其端口电压和端口电流之间的关系。(不需将独立源置零)由戴维南定理知,线性二端网络等效电路如图4、图5所示。在不同端口电压和电流参考方下, 其端口外特性可由公式(1)和(2)分别来描述。

射极跟随器性能

实验六 射极跟随器性能 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验原理 射极跟随器的原理图如(图1)所示。它是一个电压串联负反馈放大电路,它具有输入阻抗高,输出阻抗低,输出电压能够在较大范围内跟随输入电压作线性变化以及输入输出信号同相等特点。 图1 射极跟随器原理图 图2 射极跟随器实验电路 射极跟随器的输出取自发射极,故称其为射极输出器。其特点是: 1、 输入电阻i R 高:如(图1)电路 E be i R r R )1(β++= 如考虑偏置电阻B R 和负载L R 的影响,则 )]//)(1(//[L E be B i R R r R R β++= 由上式可知射极跟随器的输入电阻R i 比共射极单管放大嚣的输入电阻be B i r R R //=要高的多。 输入电阻的测试方法同单管放大器实验线路如图2所示。 R U U U I U R i b i i i ir -==,即只要测得A 、B 两点的对地电位即可。

2、输出电阻0R 低:如(图1)电路 β β be E be r R r R ≈ = //0 如考虑信号源内阻s R 则 β β ) //(//) //(0B s be E B s be R R r R R R r R +≈ += 由上式可知射极跟随器的输出电阻R 。比共射极单管放大器的输出电阻c R R =0低得多。三极管的β愈高,输出电阻愈小。 输出电阻0R 的测试方法亦同单管放大器,即先测出空载输出电压0U , 再测接入负载L R 后的输出电压L U ,根据L L o o L R R R U U += ,即可求出R 。 L L R U U R )1( 0-= 3、电压放大倍数近似等于1:如(图1)电路 1) //)(1() //)(1(<+++= L E be L E v R R r R R A ββ 上式说明射极跟随器的电压放大倍数小于近于1,且为正值。这是深度电压负反馈的结果。但它的射极电流仍比基极电流大)1(β+倍,所以它具有一定的电流和功率放大作用。 三、实验仪器: 1、 双通道毫伏表(DF2170B) 2、 信号发生器(SG1630) 3、 双踪示波器(YB4320) 4、 模拟电路实验箱(THM.4) 5、 万用表(MF47) 四、实验内容 1、按图2连接电路 2、静态工作点的调整 接通+12V 电源,在B 点加入KHz f 1=正弦信号i U ,输出端用示波器观察波形,反复调整R w 及信号源的输出幅度。使在示波器的屏幕上得到一个最大不失真的输出波形,然后置0=i u ,用直流电压表测量晶体管各电极对地电位,将测得数据记入表6-1

实验二放大器输入、输出电阻和频响特性的测量

实验二 放大器输入、输出电阻和频响特性的测量 一、实验目的 掌握放大器输入电阻、输出电阻和频率特性的测量原理和方法。 二、实验原理 1.放大器输入电阻R i 的测试 最简单的测试方法是“串联电阻法”。其原理如图2-1所示,在被测放大器与信号源之间串入一个已知标准电阻R i ,只要分别测出放大器的输入电压U i 和输入电流I i ,就可以求出: R i =V i /I i = n R i R U U /=R i U U ?Rn 但是,要直接用交流毫伏表或示波器测试Rn 两端的电压U R 是有困难的,因U R 两端不接地。使得测试仪器和放大器没有公共地线,干扰太大,不能准确测试。为此,通常是直接测出U S 和U i 来计算R i ,由图不难求出: R i = i S i U U U -? Rn 注:测R i 时输出端应该接上R L ,并监视输出波形,保证在波形不失真的条件下进行上述测量。 S U 图2-1放大电路输入端模型 2.放大器输出电阻R o 的测试 放大器输出端可以等效成一个理想电压源U o 和R o 相串联,如图2-3所示。 在放大器输入端加入U S 电压,分别测出未接和接入R L 时放大器的输出电压U o 和U L 值,则 L L R U U R )1( 0-= 注意:要求在接入负载R L (或R W )的前后,放大器的输出波形都无失真。

501mA β==CQ ,I , 212*c B b p E R V R R R = ++12*5.1 1.7,10 5.1 p V R ==++ 20.9p R K =Ω 2626200(1) 200(1) 1.526,1be EQ mv mv r K I mA ββ=++=++=Ω 12()//// 1.13,i b p b be R R R R r K =+=Ω 3o c R R K ==Ω

输入电阻和输出电阻(纠结了好长时间,看完就懂了)

输入电阻和输出电阻(纠结了好长时间,看完就懂了) 关于输入电阻和输出电阻,纠结了好长时间,现在终于明白了,拿出来给大家看一下,呵呵输入电阻是用来衡量放大器对信号源的影响的一个性能指标。输入电阻越大,表明放大器从信号源取的电流越小,放大器输入端得到的信号电压也越大,即信号源电压衰减的少。理论基础:Us=(Rs Ri)×I。Rs为信号源内阻,Ri为放大器输入电阻。因此作为测量信号电压的示波器、电压表等仪器的放大电路应当具有较大的输入电阻。对于一般的放大电路来说,输入电阻当然是越大越好。如果想从信号源取得较大的电流,则应该使放大器具有较小的输入电阻。输出电阻用来衡量放大器在不同负载条件下维持输出信号电压(或电流)恒定能力的强弱,称为其带负载能力。当放大器将放大了的信号输出给负载电阻RL时,对负载RL来说,放大器可以等效为具有内阻Ro的信号源,由这个信号源向RL提供输出信号电压和输出信号电流。Ro称为放大器的输出电阻,它是从放大器输出端向放大器本身看入的交流等效电阻。如果输出电阻Ro很小,满足Ro<条件,则当RL在较大范围内变化时,就可基本维持输出信号电压的恒定。反之,如果输出电阻Ro很大,满足Ro>>RL条件,则当RL在较大范围内变化时,就可维持输出信号电流的恒定。如手机电池,它的内阻可以等效

看作输出电阻,用了几年后,内阻高了,也就要报废了,因为带不动外面的东西了。电压放大和互阻放大电路,即输出为电压信号的放大电路,Ro越小,负载RL对的变化对输出信号V o的影响越小。而且只要负载RL足够大,信号输出功率一般较低,能耗也较低。多用于信号的前置放大和中间级放大。对于一般的放大电路来说,输出电阻当然越小越好。电流放大和互导放大电路,即输出为电流信号的放大电路,与受控电流源并联的Ro越大,负载RL的变化对输出电流Io的影响越小。则与前两种相比当供电电源相同时,可得到较大输出电流信号,所以功率可能到达较大的值,对供电电源的能耗较大。通常用于电子系统的输出级,可作为各种输出物理变量变换器(如音响系统的扬声器,动力系统的电动机等)的驱动电路。

射极跟随器实验报告

肇庆学院 实验二射极跟随器实验报告 班别:学号:姓名:指导老师: 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验仪器 DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干 三、实验原理 射极跟随器的原理图如图1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 图1 射极跟随器 射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R i 图1电路 R i=r be+(1+β)R E 如考虑偏置电阻R B和负载R L的影响,则

R i =R B ∥[r be +(1+β)(R E ∥R L )] 由上式可知射极跟随器的输入电阻R i 比共射极单管放大器的输入电阻R i =R B ∥r be 要高得多,但由于偏置电阻R B 的分流作用,输入电阻难以进一步提高。 输入电阻的测试方法同单管放大器,实验线路如图2所示。 图2 射极跟随器实验电路 (其中,R L 的测量值为0.995ΩK ,取1.00ΩK ;R 的测量值为1.98ΩK ) R U U U I U R i s i i i i -== 即只要测得A 、B 两点的对地电位即可计算出R i 。 2、输出电阻R O 图1电路 β r R ∥βr R be E be O ≈= 如考虑信号源内阻R S ,则 β ) R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+= 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。三极管的β愈高,输出电阻愈小。 输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 O L O L L U R R R U += 即可求出 R O

放大器的输出入阻抗

放大器的输出入阻抗 一般我们常耳闻的说法是:扩大机的输入阻抗是愈高愈好,而输出阻抗是愈低愈好。为什么呢? 因为输入阻抗高了,从讯号源来的讯号功率强度就可以不必那么大。 这么说也许还有读者不甚了解,让我们再回想一下欧姆定律;假设讯源输出不甚了解,让我们再回想一下欧姆定律;假设讯源输出一个固定电压,传送往下一级,如果这一级的输入阻抗高,是不是由讯源所提供的讯号电流就可以降低? 如果输入阻抗非常非常的高,则几乎不会消耗讯号电流(当然还是会有)就可以驱动这一级电路工作,换句话说就是几乎只要有讯号电压,电路就可以正常工作;但是对于低输入阻抗的电路呢?就正好相反了,它必须要求讯号能源能提供较为大量的讯号电流,因为在同一个电压下,低输入阻抗会流进较大的讯号电流,如果讯源提供的电流强度不足以满足下一级电路的需求,它就不能完美地驱动下一级电路。而讯源的电压和电流的乘积就是讯源的功率了。 何谓低输出阻抗呢?它有什么好处呢? 通常低输出阻抗被提到地方大半是指前级扩大机的输出阻抗,后级通常是称作输出内阻的。前级的低输出阻抗有几个好处:

一.通常会强调低输出阻抗即表示了它有较大的电流输出能力,容易搭配一些低输入阻抗的器材(后级); 二.低输出阻抗可以驱动长的讯号线及电容量较大的负载,以音响用前级为例;前级的输出阻抗在与讯号线结合后,输出阻抗加上讯号线本身固有的电阻与电容会形成一个R C滤波的网路,当输出阻抗愈高时,则经过讯号线后的讯号,其高频端的滚降点就会越低,反之则愈高。 你应该不会希望高频滚降点移进耳朵听得到的音频范围吧? 所以遇上电容量大的讯号线,你还是选一部输出阻抗低一点的前级较为保险。这也是为什么每一种讯号线会有不同声音部份原因。 有了以上大略的说明,你应该可以明白;所谓扩大机输入阻抗愈高愈好,输出阻抗愈低愈好,其主要理由即在此一在与其它器材互相搭配时,其匹配性比较高。 那么照此说来,我们就把每一部扩大机不论是前级或是后级的输入阻抗都设计得很高,输出阻抗都设计得很低,不是就完美无缺了吗? 让我们再从输入阻抗看起,由于高输入阻抗所需的讯号电流较少,可知连接其上的讯号线中流动的电流必较小,因此对于讯号线品质的要求就可以不必那么高,因为少了一个电流的干扰因素在内,这也是高输入阻抗带来的另一个优点。但是高输入阻抗的优点

输入电阻和输出电阻

输入电阻是用来衡量放大器对信号源的影响的一个性能指标。输入电阻越大,表明放大器从信号源取的电流越小,放大器输入端得到的信号电压也越大,即信号源电压衰减的少。因此作为测量信号电压的示波器、电压表等仪器的放大电路应当具有较大的输入电阻。如果想从信号源取得较大的电流,则应该使放大器具有较小的输入电阻。 关键点是输入电阻是和信号源电阻是并联的关系,给信号源并联上一个非常大的电阻,假设信号源电压不变,则通过输入电阻的电流非常小,即上面所说的从信号源取得的电流非常小,与信号源并联上此输入电阻后,二者差的越大,则二者的等效并联电阻值越接近信号源电阻,从而信号源上的电压虽然有所降低,但越接近最初的值,假设输入电阻无穷大,即断路,则相当于没有给信号源并联电阻,电压就是初值,不会衰减,这就是上面所说的信号源电压衰减的少。 输出电阻用来衡量放大器带负载能力的强弱。当放大器将放大了的信号输出给负载电阻RL时,对负载RL来说,放大器可以等效为具有内阻Ro的信号源,由这个信号源向RL提供输出信号电压和输出信号电流。Ro称为放大器的输出电阻,它是从放大器输出端向放大器本身看入的交流等效电阻。如果输出电阻Ro很小,满足R0<>RL条件,则当RL在较大范围内变化时,就可维持输出信号电流的恒定。放大器在不同负载条件瞎维持输出信号电压(或电流)恒定的能力称为带负载能力。而输出电阻Ro就是表征这种能力的一个性能指标。

关键点是把放大器等效为了具有内阻的信号源,而将负载并联到了信号源内阻上,这样分析同输入电阻方法相同。 共集电极放大器又称为射极跟随器,具有很大的输入电阻和较小的输出电阻(一般为几欧或几百欧)。为了降低输出电阻值,可选用B值大的管子,较小的输出电阻,说明具有很强的带负载能力,负载在较大范围内变化时,基本可以维持输出信号电压的恒定。共集电极电路不能放大电压信号(总是小于1),但可以放大电流信号,放大功率。该电路常应用于多级放大电路中高输入阻抗的输入级,低输出阻抗的输出级,或者作为实现阻抗变换的缓冲级。比如在线阵CCD输出后进行相关双采样前需接一级射极跟随器来增大电流,提高驱动后级电路的能力。因为信号源电阻会影响电路的输出电阻,所以应考虑信号源内阻Rs的影响。此外,负载电阻RL会影响输入电阻Ri的,这在放大电路的分析和设计计算时应予以注意。 共发射极放大电路的电压放大倍数较大,而且输出信号电压与输入信号电压反相。他的电流放大倍数也比较大。他的输入电阻和输出电阻大潇合适。这种电路常应用于对输入电阻、输出电阻无特殊要求的地方,作为一般低频多级放大电路的输入级、中间级或输出级。 共基级放大电路的电压放大倍数也比较大,而且输出信号与输入信号电压同相。他的电流放大倍数小于1,不能放大电流。这种电路的输入电阻小,输出电阻适中。由于他的频率特性较好,常用于宽频带放大器和高频带放大器。

射极输出器教案

教案

教案 清点学生人数,稳定课堂秩序, 检查学生上课准备情况。 (3分钟) 提问: 1、什么叫做静态工作点? 2、负反馈有哪四种基本类型? (2分钟) 提 问:按三极管在电路中的接发不同,电路可分为哪三种类型? 学生回答:共发射极电路、共基极电路、共集电极电路三 种 提 问:我们前面学过的都是那种电路? 学生回答:共发射极电路 引入新课:这一次课我们学习另一种电路——共集电极电 路,射极输出器。 (35分钟) 课题 射极输出器 一、 电路组成 图2—38 稳定学生情绪,准备上 课 请学生回答,把握学习的连贯性,温故知新 。 结合前面所学知识点提出问题,激发学生学习新知识的兴趣。 导 入 新 课 新 课 讲 授 复 习 提 问 组 织 教 学

教案 上图所示电路,输出信号是从发射极取的,故称该电路为“射极输出 器”。 画出该电路的直流通路。 图2—39 二、静态工作点的计算 =++(1+?) =(Ucc—)/[+(1+?)] = ? = Ucc— [课堂练习] P48 图2—38 已知:=300K,=1K,?=50,Ucc=10V 求:静态工作点? 解:=(Ucc—)/[+(1+?)] =(10—0.7)/[300+(1+50)×1] =26.5uA = ?=50×26.5=1.32mA = Ucc— =10—1.32×1=8.68V 由熟悉的概念入手,引出问题,得出结论,使学生易接受,易掌握。 口述结论。 布置任务: 集体画图并请同学上黑板画图 提示: 画直流通路时,电容相对于直流为断路。 布置; 让同学们自己推出 、的计算。 设计任务

实验二放大器输入输出电阻和频响特性的测量

实验二放大器输入、输出电阻和频响特性的测量 一、实验目的 掌握放大器输入电阻、输出电阻和频率特性的测量原理和方法。 二、实验原理 1. 放大器输入电阻R的测试 最简单的测试方法是串联电阻法”其原理如图2-1所示,在被测放大器与信号源之间串入一个已知标准电阻R i,只要分别测出放大器的输入电压U和输入电流I i,就可以求出:R i=V i/|i= Ui=U L ?Rn U R/R n U R 但是,要直接用交流毫伏表或示波器测试Rn两端的电压U R是有困难的,因U R两端不接地。使得测试仪器和放大器没有公共地线,干扰太大,不能准确测试。为此,通常是直接测出U S和U来计算R i,由图不难求出: U S U i 对阻容耦合放大器,由于耦合电容及射极电容的存在,使A V随信号频率的降低而降低;又因分布电容的存在及受晶体管截止频率的限制,使A V随信号频率的升高而降低。 仅中频段,这些电容的影响才可忽略。描述A V与f关系的曲线称为RC耦合放大器的幅频特性曲线,如图2-4所示。 图中,A V=0.707A V时所对应的f H和f L分别称为上限频率和下限频率,B称为放大器的通频带,其值为B=f H-f L。 -B ----------- ---------------------- 图2-4幅频特性曲线 R i= U i Rn 注:测R i时输出端应该接上R L,并监视输出波形,保证在波形不失真的条件下进行 上述测量。 3?放大器幅频特性的测试

、实验内容分析: _____ 1 _____ f _______ 1— 2 2 (R c R L )C 2 2 r be C 1 图2-4高频等效电路 四、实验内容、方法及结果: 1. 调整静态工作点 (1) 按图2-5所示电路,接好并检查无误后,接通直流电源 +12V ,在无信号输入情 况下,调整偏置可变电阻 R P ,使I C 1mA,(即U RC =3V ) (2) 测量 U CQ 、U CEQ 、U EQ 、U BEQ 和 U BQ 的值。 图2-5共射极放大电路 2 ?测量输入电阻 在静态工作点不变的情况下,将开关 K 打开,用函数信号发生器在输入端加入 Us=10mV 、f=1KHZ 的正弦信号,用毫伏表测量出此时的U S , U i 值。测量结果记入表1-2 中,按“串联电阻法”测量原理,计算出输入电阻的大小。 开关K 闭合保持静态工作点不变,输入信号的频率、电压不变,分别测出不接和接 时的输出电压U 。、U L ,测量结果记入表2-2中,计算出输出电阻的大小 表2-1 开关K 闭合,保持输入信号幅度不变,在输出信号不失真的前提下,改变输入信号 的频率, 测出输出电压的大小,找出 f L ,f H 计算出B 值,结果记入表2-3中。 表 2-3 五、 实验结果分析、小结: f l2 1 2 r be C i 3 2 *1.526*10 *0.84*10 12 4 Hz ,

了解运放的输入输出阻抗

了解运放的输入输出阻抗 一、概念 1.1输入阻抗(Input Resistance)也被称为差模输入阻抗:Z ID。差模输入阻抗的定义为:运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。 差模输入阻抗中包含输入电阻和输入电容。在低频时它仅指输入电阻。一般产品的数据手册也仅仅给出输入电阻。采用双极型晶体管做输入级的运放的输入电阻不大于10兆欧;场效应管做输入级的运放的输入电阻一般大于109欧。Z ID愈大,从信号源索取的电流愈小,放大电路所得到的输入电压Ui就越接近信号源电压Us。 在TI的数据手册中,运放TLC27L4的输入电阻为:“”,但并未给出输入电容的值。 1.2输出阻抗定义为,运放工作在线性区时,在运放的输出端加信号电压,这个电压变化量与对应的电流变化量的比值。在低频时仅指运放的输出电阻。 二、仿真 2.1输入电阻的仿真 图一输入电阻的仿真 根据:R=U/I,可得:Ri≈1×109Ω。较手册给出的典型值(1012Ω)差了好多。

首先测试100Hz时运放的输出值,Vo1=42.426mV。如图二示: 图二输入电容的仿真1 然后测试输出-3dB(0.707Vo1=29.995182mV)时的频率值:119.4608kHz。 图三输入电容的仿真2 根据:C=(2πRf)-1,将R=2MΩ、f=119.4608kHz代入,则得Ci≈0.666pF。

图四输出电阻的仿真 在图四中,运放不接负载电阻R2时的输出电压为:V1=141.419mV,接上负载电阻后的输出为:V2=141.413mV。则:Ro=(V1-V2)×R2÷V2≈4.6mΩ。 三、实测 3.1输入电阻的测试 根据图一电路原理,对TLC27L4CN进行输入电阻的实测。其输入、输出波形如下图:

实验报告纸格式

实验报告纸格式

肇庆学院 肇庆学院学院电子电工课实验报告 12 年级机械4 班组实验日期 姓名老师评定 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 实验题目实验二射极跟随器 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验原理 射极跟随器的原理图如图5-1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随 输入电压作线性变化以及输入、输出信号同相等特点。 图5-1 射极跟随器 射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R i 图5-1电路 R i =r be +(1+β)R E 如考虑偏置电阻R B 和负载R L 的影响,则 R i =R B ∥[r be +(1+β)(R E ∥R L )] 由上式可知射极跟随器的输入电阻R i 比共射极单管放大器的输入电阻R i =R B ∥r be 要高得多,但由于偏置电阻R B 的分流作用,输入电阻难以进一步提高。

输入电阻的测试方法同单管放大器,实验线路如图5-2所示。 图5-2 射极跟随器实验电路 R U U U I U R i s i i i i -== 即只要测得A 、B 两点的对地电位即可计算出R i 。 2、输出电阻R O 图5-1电路 β r R ∥βr R be E be O ≈= 如考虑信号源内阻R S ,则 β ) R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+= 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。三极管的β愈高,输出电阻愈小。 输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 O L O L L U R R R U += 即可求出 R O L L O O 1)R U U ( R -= 3、电压放大倍数 图5-1电路

实验三:电子实做实验(射极跟随器)

实验三 射极跟随器实验 1. 实验目的 (1)熟悉射极跟随器的工程估算,掌握射极跟随器静态工作点的调整与测试方法。 (2)熟悉电路参数变化对静态工作点的影响;熟悉静态工作点对放大器性能的影响。 (3)掌握放大器电压放大倍数、输入电阻、输出电阻及频率特性的测试方法。 (4)了解自举电路在提高射极跟随器的输入电阻中的作用。 2. 实验仪表及器材 (1)双踪示波器 (2)双路直流稳压电源 (3)函数信号发生器 (4)数字万用表 (5)双路晶体管毫伏表 3. 实验电路图 4. 知识准备 (1)复习共集电极放大器的相关理论知识。 (2)根据理论知识对实验电路的静态工作点、电压增益、输入电阻、输出电阻进行工程估算。 5. 实验原理 (1)基本原理 共集放大器又称射极输出器,它的输出信号取自于发射极,其电压放大倍数小于且接近于1 , 图1-1 射极跟随器

输入信号与输出信号是同相的,即输出信号基本上是随输入信号变化而变化,因此它又称为射极跟随器。由于射极跟随器的输入电阻高,向信号源索取的电流小;输出电阻小,有较强的带负载能力;因此它可以作为信号源或低阻负载的缓冲级,也可以在多级放大电路中作为输入级,以提高输入电阻,向信号源索取较小的电流,保证放大精度;同时也可以作为多级放大电路的输出级,用以增大带负载的能力。但由于基极偏置电阻的存在使输入电阻降低,从而发挥不出输入电阻高的优点;通常采用自举电路来起到大大提高输入电阻的作用;在使用射极跟随器的时候,要注意最大不失真输出电压的幅度,即跟踪范围。为了尽可能增大跟踪范围,应当把静态工作点安排在交流负载线的中点。 (2)静态工作点的调整 实验电路通过调节电位器R p 来调节静态工作点。 (3)静态工作点的测量 放大器的静态工作点是指当放大器的输入端短路时,流过三极管的直流电流I CQ 、I EQ 及三极管极间直流电压V CEQ 、V BEQ 。 静态工作点的测量就是测出三极管各电极对地直流电压V BQ 、V EQ 、V CQ ,从而计算得到V CEQ 和V BEQ 。而测量直流电流时,通常采用间接测量法测量,即通过直流电压来换算得到直流电流;这样即可以避免更动电路,同时操作也简单。 EQ CQ CEQ V V V -= EQ BQ BEQ V V V -= e EQ EQ R V I = C CQ CC CQ )(R V V I -= (4)电压放大倍数的测量 电压放大倍数A u 是指输出电压U o 与输入电压U i 之比,即A u =U o /U i 。 测量电压放大倍数时需用示波器观察输出波形;在输出波形不失真的条件下,给定输入信号值(有效值U i 或峰值U ip 或峰峰值U ipp ),测量相应的输出信号值(有效值U o 或峰值U op 或峰峰值U opp ),则: ipp opp ip op i o u U U U U U U A === (5)输入电阻的测量 输入电阻是指输入信号的电压与电流之比,即R i =U i /I i 。 由于实验电路的输入电阻较大,测量仪表的内阻引入则产生的分流作用不能忽略;所以采用图1-2所示的测试方法。 当开关K 合上时(即R 不接入),测量输出电压为U 01,并且U 01 = A u ×U s 当开关K 打开时(即R 接入时),测量输出电压为U 02,并且U 02 = A u ×U i 所以有: R U U U R U U U I U R 02 0102i S i i i i )(-=-== 可以证明,只有在0102012 1U U U =-时测量误差最小;同电阻R 的准确度直接影响测量的准确度,电阻R 不宜取得过大,否则易引入干扰;也不宜取得过小,否则易引起较大的测量误差。

相关文档
最新文档