活塞式压缩机惯性力平衡分析与计算

活塞式压缩机惯性力平衡分析与计算
活塞式压缩机惯性力平衡分析与计算

机械原理题库第九章机械的平衡

02401、研究机械平衡的目的是部分或完全消除构件在运动时所产生的 ,减少或消除在机构各运动副中所引起的 力,减轻有害的机械振动,改善机械工作性能和延长使用寿命。 02402、回转构件的直径D 和轴向宽度b 之比b D 符合 条件或有重要作用的回转构件,必须满足动平衡条件方能平稳地运转。如不平衡,必须至少在 个校正平面上各自适当地加上或去除平衡质量,方能获得平衡。 02403、只使刚性转子的 得到平衡称静平衡,此时只需在 平衡平面中增减平衡质量;使 同时达到平衡称动平衡,此时至少要在 个选定的平衡平面中增减平衡质量,方能解决转子的不平衡问题。 02404、刚性转子静平衡的力学条件是 ,而动平衡的 力学条件 是 。 02405、图示两个转子,已知2211r m r m ,转子a 是 不平衡的,转子b 是 不平衡的。 a)b) 02406、符合静平衡条件的回转构件,其质心位置 在 。静不平衡的回转构件,由于重力矩的作用,必定在 位置静止,由此可确定应加上或去除平衡质量的方向。 02407、回转构件的直径D 和轴向宽度b 之比b D 符合 条件的回转构件,只需满 足静平衡条件就能平稳地回转。如不平衡,可在 个校正平面上适当地加上或去除平衡质量就能获得平衡。

02408、图a 、b 、c 中,S 为总质心,图 中的转子具有静不平衡,图 中的转子是动不平衡。 02409、当回转构件的转速较低,不超过 范围,回转构件可以看作刚性物体,这类平衡称为刚性回转件的平衡。随着转速上升并超越上述范围,回转构件出现明显变形,这类回转件的平衡问题称为 回转件的平衡。 02410、机构总惯性力在机架上平衡的条件是 。 02411、在图示a 、b 、c 三根曲轴中,已知44332211r m r m r m r m ===,并作轴向等间隔布置,且都在曲轴的同一含轴平面内,则其中 轴已达静平衡, 轴已达动平衡。 02412 、 连 杆 机 构 总 惯 性 力 平 衡 的 条 件 是 ,它可以采用附加平衡质量或者附加 等方法来达到。 02413、对于绕固定轴回转的构件,可以采用 的方法使构件上所有质量的惯性力形成平衡力系,达到回转构件的平衡。若机构中存 在作往复运动或平面复合运动的构件应采用 方法,方能使作用于机架上的总惯性力得到平衡。 02414、若刚性转子满足动平衡条件,这时我们可以说该转子也满足静平衡条件。( ) 02415、不论刚性回转体上有多少个平衡质量,也不论它们如何分布,只

土石坝地震永久变形计算方法_李湛

土石坝地震永久变形计算方法 李 湛1,3,栾茂田2,3 (11中国建筑科学研究院,北京 100013; 21大连理工大学海岸和近海工程国家重点实验室,辽宁大连 116024; 31大连理工大学土木水利学院岩土工程研究所,辽宁大连 116024) 摘 要:对于土石坝的地震永久变形,本文提出等效结点力-逐步软化有限元计算模型。首先根据坝体地震动力响应的 非线性有限元分析确定各时段坝体单元可能发生的残余应变、振动孔隙水压力增量及累积振动孔隙水压力,以此对静变 形模量和强度及静应力-应变关系进行修正,并应用于下一时段计算中;同时基于所确定的与上一时段地震作用所产生 的潜在残余应变增量和静应力-应变关系确定地震作用相应的等效结点力。在每一时段末根据上述所确定的等效结点 力和应力-应变关系,运用整体有限元分析确定坝休的残余变形增量,将各个时段计算所确定的残余位移累加得到地震 作用后坝体的残余变形量。这种方法能够同时考虑地震惯性力效应和土的软化效应对土石坝地震永久变形的影响。 关键词:水工结构;地震永久变形;等效结点力-逐步软化有限元模型;土石坝;抗震稳定性 中图分类号:TV312文献标识码:A 收稿日期:2008-03-03 基金项目:国家自然科学基金(50179006),教育部跨世纪优秀人才培养计划研究基金和中国科学院武汉岩土力学研究所前沿领域基础研究基金 (Q110305) 作者简介:李湛(1975)),男,博士.E -mail:lz -xj@https://www.360docs.net/doc/7113685478.html, Computation method for seismically -induced permanent deformation of earth -rock dams LI Zhan 1,3,LUAN Maotian 2,3 (1.China Academy o f Building Research ,Beijing 100013; 2.State Key Laboratory o f Coastal and O ffshore Engineering ,Dalian University o f Technology ,Dalian 116024; 3.Institute o f Geotechnical Engineering ,School o f Civil and Hydraulic Engineering , Dalian University o f Technology ,Dalian 116024) Abstract :This paper presents a finite element procedure for evaluating seismically -induced permanent deformation of earth -rock da ms.In the proposed procedure,both concepts of equivalent nodal forces and step -by -step gradually softening moduli are integrated together.The earthquake duration is divided into a certain number of time incre ments.And for each time increment the residual strain and dyna mic pore water pressure which is likely induced during previous time increments under undrained condition are estimated on the basis of the stress condition obtained by the dyna mic analysis and the empirical patterns of both residual strain and pore water pressure achieved e xperimentally.Then,the computed accumulative pore -water pressure at the end o f each time increment is used directly to modify the static hyperbolic relationship between stress and strain which is to be used for the next time period.And at the same time,the equivalent nodal forces equivalent to incremental residual strain potential are defined.B y using the modified stress -strain relationship,the incremental deformations are computed when the nodal forces equivalent to earthquake effect on the dam defined as above are imposed on the earth -rock dam.The computed incremental displacements of the earth -rock dam for each time incre ment are accumulated and the accumulative displacements can be regarded as approximation of the residual deformation which is to be initiated by earthquake shaking.In fact,the proposed numerical procedure has taken into c onsideration both the inertia effect 第28卷第4期 2009年8月水 力 发 电 学 报JOURNAL OF HYDROELEC TRIC ENGINEERING Vol.28 No.4Aug.,2009

压缩机的热力性能和计算

§2.2.1压缩机的热力性能和计算 一、排气压力和进、排气系统 (1)排气压力 ①压缩机的排气压力可变,压缩机铭牌上的排气压力是指额定值,压缩机可以在额定排气压力以内的任意压力下工作,如果条件允许,也可超过额定排气压力工作。 ②压缩机的排气压力是由排气系统的压力(也称背压)所决定,而排气系统的压力又取决于进入排气系统的压力与系统输走的压力是否平衡,如图2-20所示。 ③多级压缩机级间压力变化也服从上述规律。首先是第一级开始建立背压,然后是其后的各级依次建立背压。 (2)进、排气系统 如图所示。

①图a的进气系统有气体连续、稳定产生,进气压力近似恒定;排气压力也近似恒定,运行参数基本恒定。 ②图b的进气系统有气体连续、稳定产生,进气压力近似恒定;排气系统为有限容积,排气压力由低到高逐渐增加,一旦达到额定值,压缩机停止工作。 ③图c的进气系统为有限容积,进气压力逐渐降低;排气系统压力恒定,一旦低于某一值,压缩机停止工作。

④图d的进、排气系统均为有限容积,压缩机工作后,进气压力逐渐降低;排气系统压力不断升高,当进气系统低于某一值或排气系统高于某一值,压缩机停止工作。

二、排气温度和压缩终了温度 (1)定义和计算 压缩机级的排气温度是在该级工作腔排气法兰接管处测得的温度,计算公式如下: 压缩终了温度是工作腔内气体完成压缩机过程,开始排气时的温度,计算公式如下: 排气温度要比压缩终了温度稍低一些。 (2)关于排气温度的限制 ①汽缸用润滑油时,排气温度过高会使润滑油黏度降低及润滑性能恶化;另外,空气压缩机中如果排气温度过高,会导致气体中含油增加,形成积炭现象,因此,一般空气压缩机的排气温度限制在160°C以内,移动式空气压缩机限制在180°C以内。

第10讲 非惯性参照系与惯性力

第10讲 非惯性参照系与惯性力 例1. 在光滑的水平轨道上有两个半径都是r 的小球A 和B ,质量分别为m 和m 2,当两球心的距离大于l 时(l 比r 2大得多)时,两球间无相互作用力,当两球间的距离等于或小于l 时,两球间存在着相互作用的恒定斥力F 。设A 球从远离B 球处以0v 沿两球心连线向原来静止的B 球运动。欲使两球不会发生接触,0v 必须满足什么条件? 例2. 如图所示,质量kg 8=M 的小车放在光滑水平面上,在小车的一端加一水平恒力N 8=F ,当小车向右运动速度达到m/s 5.1时,在小车的前端轻放一大小不计、质量为kg 2=m 的物块,物块与小车的动摩擦因数为2.0,小车足够长,则物块从放上小车开始经过s 5.1=t 通过的位移为多大? 例3. 某人质量kg 60=M ,一重物质量kg 50=m ,分别吊在一个定滑轮的两边。人握住绳子不动,则他落地的时间是t ,人若沿绳子向上攀爬,则他落地时间为t 2。若滑轮、绳子的质量及摩擦可不计,求此人往上爬时相对于绳子的加速度。

例4. 在天花板比地板高出m 2的实验火车的车厢里,悬挂着长为m 1的细线,细线下端连着一个小球,火车缓慢加速且加速度逐渐增大。问: (1)若加速度达到2 m/s 10时,细线恰好被拉断,则细线能承受的最大拉力为小球重力的多少倍? (2)若从细线被拉断的时刻起,火车的加速度保持不变则小球落地点与悬挂点之间的水平距离是多少? 例5. 如图所示,木柜宽l 2,其重心高度为h ,把木柜放于车上,车以加速度a 起动,试分析木柜在车上滑动、翻倒的条件,以防事故的发生。 例6. 如图所示,一质量为m 运动员骑摩托车在水平弯道上以速率v 转弯,车身与地面的夹角为α,其转弯半径为_________=R ,地面对摩托车的静摩擦力___________ =f 。

重力坝抗滑稳定与应力计算

项目名称:几内亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段 计算书名称:重力坝抗滑稳定及应力计算 审查: 校核: 计算: 黄河勘测规划设计有限公司 Yellow River Engineering Consulting Co. ,Ltd. 二〇一二年四月

目录 1.计算说明..................................................................................... 错误!未定义书签。 目的与要求 ......................................................................... 错误!未定义书签。 基本数据 ............................................................................. 错误!未定义书签。 2.计算参数和研究方法................................................................. 错误!未定义书签。 荷载组合 ............................................................................. 错误!未定义书签。 计算参数及控制标准 ......................................................... 错误!未定义书签。 计算理论和方法 ................................................................. 错误!未定义书签。 3.计算过程..................................................................................... 错误!未定义书签。 荷载计算 ............................................................................. 错误!未定义书签。 自重 ............................................................................. 错误!未定义书签。 水压力 ......................................................................... 错误!未定义书签。 扬压力 ......................................................................... 错误!未定义书签。 地震荷载 ..................................................................... 错误!未定义书签。 安全系数及应力计算 ......................................................... 错误!未定义书签。 4.结果汇总..................................................................................... 错误!未定义书签。

附录三 用材料力学方法计算坝体应力

附录三 用材料力学方法计算坝体应力 一、说明 混凝土重力坝一般均用材料力学方法计算坝的应力指标并设计断面,所以本附录仍列入该法的有关计算公式,至于电子计算机的程序另见本规范参考资料。 本法假定坝体各水平截面上的垂直正应力σy 呈直线分布, 因此,可以按材料力学中的偏心 受压公式来确定 σy ,然后依次应用平衡条件确定剪应力τ,水平正应力σx 以及主应力σz 1, σz 2和其方向。 作用在计算截面上的扬压力,通常呈折线形分布(附图6a ),这个图形,可分解为一个在全 截面上呈梯形(或三角形)分布的图形(附图6b )和一些在上游部分呈局部三角形或矩形分布的图形,如附图6c 、d 、e 。当扬压力沿全截面呈直线分布时(即附图6b 所示情况),其所产生的应力为: =-==τσσv y x p 附图6 v p 为计算点的扬压力,因此,这种扬压力所产生的应力可以不必专门计算,只须先不考虑扬压力的影响,确定各点上的应力σx , σy 及τ,然后在正应力中扣去扬压力v p 即可,对于仅 作用在截面局部部分上的扬压力(渗透压力),则必须作专门计算,以确定其所产生的应力。 用材料力学方法计算坝体应力时,以压应力为正,拉应力为负,y 为垂直轴,以向下为正,x 为水平轴,以向上游为正,原点取在计算截面与下游坝面的交点上(附图7),其余所用符号如下:

T ——坝体计算截面沿上、下游方向的长度; n ——上游坝坡,n =tg φs ; m ——下游坝坡,m =tg φxi ; γh ——混凝土容重; γ、'γ——上、下游水的容重('γ在数值上常等于γ); p 、'p ——计算截面在上、下游坝面所受的水压力(如有泥沙压力时应计入在内); p y 、'p y ——计算截面在上、下游坝面所受地震动水压力; λ——地震惯性力总系数,λ=k H C z F 以入乘混凝土重量W ,即为地震惯性力,应按《水工建筑物抗震设计规范》计算; vs p 、vxi p ——计算截面在上、下游坝面处的扬压力; ηγH ——在上游的渗透压力(H 为计算截面以上的上游水深,η为扬压力系数); ΣW ——计算截面上全部垂直力的总和(包括坝体自重、水重、泥沙重及计算的扬压力等),以向下为正,对于实体重力坝,均切取单位宽度坝体为准(下同); ΣP ——计算截面上全部水平推力的总和(包括水压力、泥沙压力和地震水压力等),以指向上游为正; ΣM ——计算截面上全部垂直力及水平力对于计算截面形心的力矩的总和,以使上游面产生压应力者为正; 其他符号将在宽缝重力坝计算中再加说明。 二、实体重力坝的计算 1.计算实体重力坝应力的基本公式 (1)实体重力坝坝面应力公式: 上游面垂直正应力 26T M T W s y ∑∑+= σ (附29) 下游面垂直正应力 26T M T W xi y ∑∑-= σ (附30) 上游面剪应力 n p p s y y s )(στ-+= (附31) 下游面剪应力 m p p y xi y xi )('+'-=στ (附32) 上游面水平正应力 σσx s y y y s p p p p n =+-+-()()2

惯性力讨论

关于惯性力的若干问题: 1.惯性力是在非惯性系中存在的一种力,它没有施力物体,但是作用效果与真实力没有区 别。它等于质量乘以非惯性系的加速度的负值。 2.没有非惯性力的说法。 3.做受力分析,先分析真实力,再分析惯性力,区分的标志是“施力物体”是否存在。 4.与地球自转(近似认为地球是匀速自转)相关的惯性力有2种,惯性离心力和科里奥利 力。 5.对惯性离心力,它是地球上的观察者在考虑到地球的自转后,任何地球上的物体都受到 的一种惯性力。它的矢量表达为: 以地面为参考系(注意不是以地心为参考系)。 如图所示,对通过一个绳子悬挂在地面上空的一个物体,分析其受力,它受到拉力,万 有引力(注意不是重力)的作用,这二个力是真实的力,因为它们有施力物体,其中拉 力沿着绳子的方向向上,是在竖直方向;而万有引力是指向地心, 沿着地球的半径方向。二者并不重合。显然在地面的人看来, 此时物体静止,必须存在一个惯性力加入以达到平衡状态。 这个惯性力就是图中红色箭头表示的惯性离心力。 从我们对重量的感知方式可以知道,绳子受到 的拉力被我们理解为与重力是一对平衡力, 所以 物体的万有引力和惯性离心力的合力是重力。 这就是重力的本质,即重力是在非惯性系下存在的 一种混合力。其含有假想的惯性力成分。 如果在太空中看这个物体,或者在地轴上看这个物体,则看到这个物体的受力如何呢? 拉 力

万有引力 如图所示: 由于此时所在的参考系是惯性系,因此没有惯性力,我们看到 物体受到万有引力和拉力的作用,这时候在我们眼里, 物体不再是静止的,是做匀速圆周运动,而拉力和万有引力 的合力刚好提供向心力。所以说: 物体的万有引力和拉力的合力充当向心力 有很多人一直在说“万有引力是重力和向心力的合力” 这是极其错误的,重力和向心力不可能同时存在。 向心力不是一种单独性质的力,不能作为受力分析的 对象。 6.对科里奥利力,它是地球上任何运动的物体可能受到的一种 惯性力。它的矢量表达为:。所以可以看出,它的方向一般在北半球沿着前进方向的右边(公园前地铁门的方向),南半球则沿着前进方向的左边。不过它的值还和地轴与速度的夹角有关,夹角如果是0,例如在赤道处南北向运动,或者两极处上下运动的话,则科里奥利力为零;而在在赤道处东西向运动,或者赤道处上下运动,或者在两极处水平运动,则科里奥利里最大。 7.与地球的其他加速运动有关的惯性力还有其他的,例如潮汐力,这里不讲了,太长了。

绪论及重力坝习题

第一章绪论习题 1.何谓水利工程? 何谓水工建筑物? 何谓水利枢纽? 何谓蓄水枢纽? 何谓取水枢纽? 2.水工建筑物有哪几类? 3.为什么要对水利枢纽工程分等和对水工建筑物分级? 4.水利工程有哪些特点? 5.学好水工建筑物课程应注意掌握教材的哪些内容? 绪论习题答案 1、何谓水利工程? 何谓水工建筑物? 何谓水利枢纽? 何谓蓄水枢纽? 何谓取水枢纽? 1、答案: 为了对自然界的水进行有效的控制和合理的调配,达到兴利除害目的而修建的各项工 程措施通称为水利工程。 为了达兴利除害目的而采取的工程措施中,修建的各种建筑物称为水工建筑物。 在水域的适当地点,为了一种或多种目标而集中布置若干个水工建筑物,各自发挥不同作用并协调工作,构成的有机综合体,称为水利枢纽。 为了满足防洪、灌溉、发电等各种需要,在河流上修建拦河坝形成水库,抬高水位,调节径流的水利枢纽称为蓄水枢纽。 为了从河流、湖泊等水源取水以满足灌溉和其它用水部门的需要,而在渠首河段修建的对河道来水不起调蓄作用的水利枢纽称为取水枢纽。 2、水工建筑物有哪几类? 2、答案: 按使用期限可分为:永久性建筑物和临时性建筑物。 永久性建筑物——枢纽工程运行期间使用的建筑物; 临时性建筑物——枢纽工程施工期间使用的建筑物; 按永久性建筑物的重要性又可分为:主要建筑物和次要建筑物。 3、为什么要对水利枢纽工程分等和对水工建筑物分级? 3、答案: 安全和经济是水利水电工程建设中必须妥善解决的矛盾。为此,按枢纽工程的规模、效益、重要性等将其分为不同的等别,按重要性对其中的建筑物分为不同的级别,并据此规定不同的技术要求和安全要求,以达到既安全又经济之目的。 4、水利工程有哪些特点? 4、答案: 水利工程的特点:规模大、投资多、建设周期长、受自然条件影响大、涉及的因素多、影响范围广。因此,其设计、施工和运行管理均必须严格按照程序和规定进行。 5、学好水工建筑物课程应注意掌握教材的哪些内容? 5、答案: ①建筑物的形式和特点、适用范围与工作条件、基本尺寸和工程布置、构造及材料; ②作用于建筑物上的荷载及其组合、设计条件的选择; ③水力、渗流计算和建筑物的稳定和强度分析;

计算书

1非溢流坝段设计计算 1.1设计校核洪水位的确定 由堰流公式 相应洪水位= 堰顶高程+ H0 H0=1.05H d B=Q/q n=B/b 式中:Q--流量m3/s B--溢流堰孔口宽m H0--堰顶以上作用水头 G--重力加速度9.8m3/s m—流量系数 n—孔口数 H d—堰面曲线定型设计水头 B—溢流孔的净宽 b—孔口净宽 q—单宽流量 --侧收循系数,根据闸墩厚度及墩头形状而定, =1, =0.95,m=0.502,q=60㎡/s,b=5m,堰顶高程=1057.00m 计算成果见表: 表5.2 堰顶高程 1.2坝顶高程的确定 坝顶高程分别按设计和校核两种情况,用以下公式进行计算:

波浪要素按官厅公式计算。公式如下: 1/3 1/121022000.0076gh gD v v v -??= ???...............................① 1/3.75 1/2.15022000.331gL gD v v v -??= ??? ...............................② 2 12z h H h cth L L ππ= ...............................③ 库水位以上的超高h ?: 1c z h h h h ?=++ 式中1h --波浪高度,m z h --波浪中心线超出静水位的高度,m c h --安全超高,m(查规范得,设计情况取0.3m,校核情况取0.2m) o v --计算风速。水库为正常蓄水位和设计洪水位时,宜用相应洪水期多年 平均最大风速的1.5~2.0倍,取19m/s ,校核洪水位时,宜用相应洪水期多年平均最大风速,15 m/s D-风区长度;取800m L--波长;M H--坝前水深 1.2.1.1 设计情况下 gD/v 02=9.8×800/192=21.72,在20—250之间,故h 的累积频率为5%的波高,带入①中, 9.8×h 5%/192=0.0076×19-1/12×(9.81×800/192)1/3 得h 5%=0.55m 查《混凝土重力坝设计规范》表B.6.3得 h 5%/hm=1.95 hm=0.55/1.95=0.282m h 1%/hm=2.42 h 1%=0.282×2.42=0.682m 将各值带入②得

D~5.72~3~250天然气压缩机~计算书

第一部分热力计算 一、初始条件 1.排气量:Q N=20Nm3/min 2.压缩介质:天然气 (气体组分:CH4:94%;CO2:0.467%;N2:4.019%;C2H6:1.514%) 3.相对湿度:ψ=100% 4.吸入压力:P S0=0.4 MPa(绝对压力) 5.排出压力:P d 0=25.1 MPa(绝对压力) 6.大气压力:P0 =0.1 MPa(绝对压力) 7.吸入温度:t S0=35℃(T S0=308°K) 8.排气温度:t d0=45℃(T d0=318°K) 9.压缩机转速:n=740rpm 10.压缩机行程:S=120mm 11.压缩机结构型式:D型 12.压缩级数:4级 13.原动机:低压隔爆异步电机,与压缩机直联 14.一级排气温度:≤130℃ 二、初步结构方案 三、初始条件换算(以下计算压力均为绝对压力) Q= Q N×[P0×T S0/(P S0-ψ×P sa)×T0]

进气温度状态下的饱和蒸汽压为P sa =0.005622 MPa P 0 =0.1MPa T 0=273°K 其余参数详见初始条件。 Q= 20×[0.1×308/(0.4-1×0.005622)×273]=5.72m 3/min 四、 级数的选择和各级压力 要求为四级压缩 总压缩比ε0=01 4S d P P =0.425.1 =62.75 ε10=ε20=ε30=ε40=4 75.62=2.8145 求出各级名义压力如下表 五、 计算各级排气温度 查各组分气体绝热指数如下: CH 4: 94% K=1.308; CO 2: 0.467% K=1.30 N 2: 4.019% K= 1.40; C 2H 6: 1.514% K=1.193 11-K =∑1r i -Ki =11.3080.94- +1.310.00467- +11.40.04019- +1 1.1930.01514 - =3.2464

坝体地震惯性力计算

坝体地震惯性力计算 采用拟静力法计算,由《水工建筑物抗震设计规范》知,一般情况下,水工建筑物可只考虑水平向地震作用。沿水平面的地震惯性力代表值: g a G a F i Ei h i ξ= (1) 式中:i F ——作用在质点i 的水平向地震惯性力代表值,KN ; h a ——水平向设计地震加速度代表值,m/s 2; ξ——地震作用的效应折减系数; Ei G ——集中在质点i 的重力作用标准值,KN ; i a ——质点i 的动态分布系数,由下式计算: ∑=++=n j j E Ej i i H h G G H h a 14 4 )/(41)/(414.1 (2) 式中:n ——坝体计算质点总数; H ——坝高,m ; i h 、j h ——分别为质点i 、j 相对坝基面的高度,m ; E G ——产生地震惯性力的建筑物总重力作用标准值,KN 由《水工建筑物抗震设计规范,DL5073-2000》知,一般情况下,水工建筑物可只考虑水平向地震作用。根据设计资料,本设计可取设计烈度等于基本烈度,即为7度,由《水工建筑物抗震设计规范,DL5073-2000》表4.3.1查得:水平向设计地震加速度代表值h a =0.1g ,地震作用的效应折减系数ξ=0.25,则i Ei i a G F 025.0= 关于分块,可以参照下图分成3块,n=3,H=坝高, 第一块:坝顶至1-1剖面为矩形;GE1,h1为第一块矩形形心至坝基面(3-3)的高度。 第二块:1-1剖面至2-2剖面为梯形;GE2, h2为第二块梯形形心至坝基面(3-3)的高度。 第三块:2-2剖面至3-3剖面为梯形;GE3, h3为第三块梯形形心至坝基面(3-3)的高度。 i a ——质点i 的动态分布系数,由下式计算: 43134 114(/)1.414(/)Ej j j E h H a G h H G =+=+∑

大学物理(2.2.2)--常见力非惯性系惯性力

一、几种常见的力 1.万有引力(Law of Gravitation ) 1)文字叙述:在两个相距为r ,质量分别为m 1,m 2的质点间有万有引力,其方向沿着它们的连线,其大小与它们的质量的乘积成正比,与它们之间的距离的平方成反比,即2)数学表示 0221 r r m m G F = ——引力质量Gravitational Mass 其中 211..1067.6--?=kg m N G ——引力常量。 2.重力(Gravity )——本质上归结于万有引力。 1)文字叙述:物体重力就是指忽略地球的自转效 应时,地球表明附近物体所受的地球的引力,即物体与 地球之间的万有引力。其方向指向地心。 2)数学表示 G=mg g=9.8m.s -2——重力加速度。 3)思考题: 赤道的重力加速度大还是两极的重力加速度大?为什么? 3.弹性力(Elastic Force ) 大家知道,两个物体相互接触,彼此将产生形变,使其内部产生反抗力——形变恢复力(弹性力)。形变是产生弹性力的条件之一。例如:板擦和桌子相互接触,彼此有了一定的形变,在各自的接触部分产生弹性力。所以,弹性力是一种与物体的形变有关的接触力。即发生形变的物体,由于要恢复原状,对与它接触的物体会产生力的作用,这种物体因形变而产生欲使其恢复原来形状的力叫做弹性力。常见的弹性力有:1)弹簧中的弹性力:弹簧被拉伸或压缩时产生的弹性力。 胡克定律(Hooke Law ):在弹性限度内,弹性力的大小与弹簧的伸长量成正比,方向指向平 衡位置。 数学表示 f=-kx—— k 为弹簧的劲度系数(Stiffness )。 k 的值决定于弹簧本身的性质。而弹簧弹性力的方向总是指向平衡位置。 2)绳子被拉紧时所产生的张力 绳的张力:即绳内部各段之间的弹 性作用力。下面以AB 段为研究对象,设 其质量为m A 点和B 点的张力:'A A T T -=、'B B T T -=由牛顿第二定律:a m T T B A =+(1)当a =0或者m →0时,F T T B A =-=',绳子上各点张力相同而且拉力相等。 (2)当a ≠0,而且m ≠0 (绳子质量不能忽略时),绳子上各点的张力不F 图2-2 弹簧的弹力 m

汽车行驶中的惯性力问题分析

汽车行驶中的惯性力问题分析 当代,人们的物质生活日益丰富,家庭轿车也相对普遍。接下来将讨论汽车在平地行驶时的惯性力的问题。 我们不妨先假设汽车为一刚体系,其质量为m ,质心C 距离地面h ,每个轮子所受恒定的摩擦力为F s ,与质心水平距离均为d ,根据汽车行驶的状态不同,可以 分三个阶段讨论: 1、汽车处于启动阶段; 选取整辆车为研究对象,受力分析如右图(1), 汽车发动机所提供的拉力为F ,若忽略车轮的转动,则易知整个刚体系作匀加速的平移运动,加速度为a 1,对车加惯性力F I1,其大小为 F I1=ma 1 根据达朗贝尔原理,列平衡方程 ∑F x =0,F - F I1 - 4F s =0 ∑F y =0,4F N – mg =0 ∑M C =0,-4M 1 + 2F N d –2F N d –4F s h =0 可以求得 a 1=(F-F s )/m ;F N =mg/4 ;M 1=-F s h . 2、汽车处于平稳行驶阶段; 此时汽车处于匀速运动阶段,整个刚体系的加速度a =0,故其附加惯性力亦为零,汽车处于平衡状态。 3、汽车处于减速阶段; 同样,选取整辆车为研究对象,受力分析如图(2), 此时汽车开始制动,发动机不提供动力,若忽略车轮的转动,则整个刚体系作匀减速的平移运动,加速度为a 2,对 车加惯性力F I2,其大小为 F I2=ma 2 根据达朗贝尔原理,列平衡方程 ∑F x =0,F I2 - 4F s =0 ∑F y =0,4F N – mg=0 ∑M C =0,-4M 2 + 2F N d –2F N d –4F s h =0 可以求得 a 2=4F s /m ;M 2=-F s h =M 1 . 若要求出某个瞬时汽车行驶的速度,则可以结合汽车在一段时间内行驶的路程,利用动能定理便可求出。 F I1 a 1 m g F s F s F N F N v 1 图(1) F C A B M 1M 1y F I2 m g a 2 v 2 C B A F N F s F s 图(2) M 2 M 2 F N

如何根据压缩机的制冷量计算冷凝器及蒸发器的面积

如何根据压缩机的制冷量配冷凝器散热面积? 帖子创建时间: 2013年03月04日08:34评论:1浏览:2520投稿 1)风冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 2)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 3)制冷量的计算方法:=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1)库温-35℃ 2)速冻量1T/H 3)时间2/H内 4)速冻物质(鲜鱼) 5)环境温度27℃ 6)设备维护机构保温板计算:62℃×1000/2/H×0.82×1.23=31266 kcal/n 可以查压缩机蒸发温度CT =40 CE-40℃制冷量=31266 kcal/n 冷凝器换热面积大于蒸发器换热面积有什么缺点 如果通过加大冷凝风扇的风量可以吗 rainbowyincai |浏览1306 次 发布于2015-06-07 10:19 最佳答案 冷凝器换热面积大于蒸发器换热面积的缺点: 1、高压压力过低;

2、压机走湿行程,易液击,通过加大蒸发器风扇的风量。风冷

冷凝器和蒸发器换热面积计算方法: 1、风冷凝器换热面积计算方法:制冷量+压缩机电机功率/200~250=冷凝器换热面积 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527 W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2。 2、水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2,蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

有关惯性力的论述

20406080一月 二月 三月四月 亚洲区欧洲区北美区

20406080一月 二月 三月四月 亚洲区欧洲区北美区 有关惯性力以及科里奥利力的论述 【摘要】: 惯性力是指当物体加速时,惯性会使物体有保持原有运动状态的倾向,若是以该物体为坐标原点,看起来就仿佛有一股方向相反的力作用在该物体上,因此称之为惯性力,而科里奥利力也不存在,是惯性的结果。 【关键词】: 惯性,惯性力,科里奥利力,惯性参考系,非惯性参考性。 【引言】: 惯性力实际上并不存在,实际存在的只有原本将该物体加速的力,因此惯性力又称为假想力。它概念的提出是因为非惯性系中,牛顿运动定律并不适用。但是为了思维上的方便,可以假象在这个非惯性系中,除了相互作用所引起的力之外还受到一种由于非惯性系而引起的力——惯性力。 如果物体相对于匀角速度转动的参考系而言,不是静止的,而是在做相对运动,那么在该转动参考系中的观测者看来,物体除了受到惯性离心力的作用外,还将受到另外一种附加的力——科里奥利力的作用。 【内容】: 一、首先论述一下惯性力 1、 举个例子,当我们乘坐汽车时,如果汽车急刹车,我们会不自主的向前倾,感觉仿佛有一个力把你向前推,但是这个力并不真正存在,人们把这个力认为是惯性力。

20406080一月 二月 三月四月 亚洲区欧洲区北美区 事实是:汽车刹车时轮胎与地面摩擦而使汽车减速,实际上并没有力推乘 客,这只是惯性在不同坐标系统下的现象。 2、 假如这里脱离了任何天体的引力,飞船在靠惯性飞行。那么飞船里的人和一切物体都处于“失重”状态,可以飘在空中,从手里松开的任何东西也不会往下落。如果飞船又开动了火箭,以一定的加速度 向前飞行,那么飞船里的人又感到有了“重量”,原来在空中漂浮的东西又纷纷加速下落,这说的是物体受到惯性力加速下落的情形。 3、 惯性力的引入是牛顿力学的一大耻辱,它是为了弥补在非惯性参考系中物体的运动不满足牛顿运动定律而引入的假想力。 4、 设想有一静止的火车,车厢内一光滑桌子上放有一个小球,小球本来是静止的;现在火车开始加速启动,在地面上的人(显然他选用了一个惯性参考系——地面)看来,小球并没有运动,但是在火车上的人看

非惯性系中的力学

非惯性系中的力学 牛顿运动定律只适用于惯性系,在非惯性系中,为了能得到形式上与牛顿第二定律一致的动力学方程,就需要引入惯性力的概念. 一.直线加速系中的惯性力 设非惯性参考系的加速度为a 参,物体相对于参考系的加速度为a 相 ,物体实际的加速度为a 绝, 则有: a绝= a参+a相.那么,物体”受到”的惯性力F惯=-m a参,其方向与a参的方向相反. 惯性力是虚构的力,不是真实力,因此,惯性力不是自然界中物体间的相互作用,因此不属于牛顿第 三定律涉及的范围之内,它没有施力物体,不存在与之对应的反作用力. 在非惯性系中,考虑到惯性力后的动力学方程为: 式中, F 合 为物体实际受到的合力. 二,匀速转动系中的惯性力 圆盘以角速度ω绕铅直轴转动,在圆盘上用长为r的轻线将质量为m的小球系于盘心且小不球相对于圆盘静止,即随盘一起作匀速圆周运动.从惯性系观察,小球在线拉力T的作用一下作圆周运动,符合牛顿第二定律.以圆盘为参考系,小球受到拉力T的作用,却保持静止,没有加速度,不符合牛顿第二定律.所以,相对于惯性系作匀速转动的参考系也是非惯性系,要在这种参考系中保持牛顿第二定律 形式不变,在质点静止于此参考系的情况下,应引入惯性力:F 惯 =mω2r.这个力叫做惯性离心力.若质点静止于匀速转动的参考系中,则作用于此物体所有相互作用力与惯性离心力的合力等于零,即: 例1.在火车车厢内有一长l,倾角为的斜面,当车厢以恒定加速度a0从静止开始运动时,物体自倾角为θ的斜面顶部A点由静止开始下滑,已知斜面的静摩因数为μ,求物体滑至斜面底部B点时,物体相对于车厢的速度,并讨论当a0与μ一定时,倾角θ为多大时,物体可静止于A点? 例2.如图所示,定滑轮A的一侧持有m1=5kg的物体,另一侧挂有轻滑轮B,滑轮B两侧挂着民m2=3kg,m3=2kg的物体,求每个物体的加速度。

非惯性力问题

运用非惯性系的观点求解复杂的动力学竞赛题例析 湖北省监利县朱河中学黄尚鹏 摘要:牛顿运动定律只在惯性系中成立。但有时需要考察质点相对非惯性系的运动,如何处理这种问题呢?当然可以先在惯性系中用牛顿运动定律考察质点的运动,然后用相对运动的公式把它变换到非惯性系中,求得质点在非惯性系中的运动。但这样做有时很麻烦,其实只要引进适当的虚拟力即惯性力,就可以在非惯性系中用牛顿运动定律求解质点的运动。 关键词:惯性系非惯性系惯性力速度合成公式加速度合成公式 一、非惯性系与惯性力 牛顿运动定律成立的参照系叫做惯性系。实验表明:地球上的物体相对于地球的运动并不完全遵守牛顿运动定律,所以地球不是惯性系,不过这种偏差一般是比较微小的。因此,我们常常把地球看做近似程度相当好的惯性系。一般情况下,相对地面静止或做匀速运动的参照系都可作为惯性系。 牛顿运动定律不成立的参照系叫做非惯性系,非惯性系相对惯性系必然做加速运动或旋转运动。为了使牛顿运动定律在非惯性系中也能使用,可以人为地引进一个虚拟的惯性力 。如果非惯性系相对惯性系有平动加速度,那么只要认为非惯性系中的所有物体都受 到一个大小为、方向与的方向相反的惯性力,牛顿运动定律即可照用,证明如下: 设非惯性系相对惯性系有平动加速度(牵连加速度),质点相对于系的加速度为(绝对加速度),质点相对于系的加速度为(相对加速度),根据加速度合成公式,有(1) 在惯性系中牛顿运动定律成立,即(2) 是作用在质点上的合外力,是质点的质量。 在非惯性系中,为使牛顿运动定律成立,引入虚拟的惯性力,使(3) 联立(1)(2)(3)知惯性力,证毕。 二、竞赛题例析 例题1.如图1所示,质量为的汽车在水平地面上向左做匀加速直线运动,其重心 离开前轮和后轮的水平距离分别为和(),重心离地面的高度为,假设车轮和地面之间不打滑,求:汽车以多大的加速度前进时其前、后轮对地面的压力相等?

坝体稳定计算书

1坝顶高程及护坡计算 根据《碾压式土石坝设计规范》(SL274-2001),坝顶高程等于水库静水位与坝顶超高之和,应分别按以下运用条件计算,取其最大值:①正常蓄水位加正常运用条件的坝顶超高;②设计洪水位加正常运用条件的坝顶超高; ③校核洪水位加非常运用条件的坝顶超高。考虑坝前水深、风区长度、坝坡等因素的不同,分别计算安全加固前后主坝及一、二、三副坝的坝顶高程。 计算波浪要素所用的设计风速的取值:正常运用条件下,采用多年平均年最大风速的1.5倍;对于非常运用条件下,采用多年平均年最大风速。根据水库所处的地理位置,多年平均年最大风速值采用15.2m/s计算。主坝风区长度为886m,西营副坝风区长度为200m,马尾副坝风区长度为330m 采用公式法进行计算。 1.1坝顶超高计算 根据《碾压式土石坝设计规范》SL274—2001,坝顶在水库静水位的超高应按下式计算: y=R+e+A 式中:R——最大波浪在坝坡上的爬高(m); e ——最大风壅水面高度(m); A——安全超高(m),对于3级土石坝,设计工况时A=0.7m,校核工况时A=0.4m; 1.2加固前坝顶超高的计算 1.2.1计算参数 各大坝计算采用的参数见表1.2.1.1~2。

表1.2.1.1 主坝加固前波浪护坡计算参数表 表1.2.1.2 西营副坝加固前波浪护坡计算参数表 1.2.2加固前坝顶高程复核 各坝坝顶高程计算成果见表1.2.2.1~2 表1.2.2.1 主坝加固前坝顶高程计算成果表 从表1.2.2.1可以看出,校核工况下主坝坝顶高程最大,所以坝顶高程取17.39m,小于现状防浪墙顶高程17.41~17.63m ,现坝顶高程满足现行规

相关文档
最新文档