四边形的性质及证明

四边形的性质及证明
四边形的性质及证明

儒洋教育学科教师辅导讲义

一、多边形

多边形的内角和:

多边形内角和等于0180)2n (- 多边形的外角和: 多边形外角和等于3600

过n 边形的一个顶点共有(n -3)条对角线,n 边形共有2

)

3(-n n 条对角线.

过n 边形的一个顶点将n 边形分成(n -2)个三角形.

二、平行四边形

1.平行四边形的定义:两组对边分别平行的四边形是平行四边形,平行四边形的定义要抓住两点,即“四边形”和“两组对边分别平行”.

2.两条平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线间的距离.

两条平行线间的距离是一个定值,不随垂线段位置改变而改变,两条平行线间的距离处处相等.

3.平行四边形的性质:

文字表达:①平行四边形的两组对边分别平行; ②平行四边形的两组对边分别相等;

③平行四边形的两组对角分别相等; ④平行四边形的对角线互相平分.

符号语言表达:

四边形ABCD 是平行四边形

4.平行四边形的判定:

文字表达:

①两组对边分别平行的四边形是平行四边形.②两组对边分别相等的四边形是平行四边形.

③一组对边平行且相等的四边形是平行四边形.④两组对角分别相等的四边形是平行四边形.

⑤对角线互相平分的四边形是平行四边形.

符号语言表达:

AB∥CD,BC∥AD?四边形ABCD是平行四边形

AB=CD,BC=AD?四边形ABCD是平行四边形.

AB平行且相等CD或BC平行且相等AD?四边形ABCD是平行四边形.

OA=OC,OB=OD?四边形ABCD是平行四边形.

∠ABC=∠ADC,∠DAB=∠DCB?四边形ABCD是平行四边形.

三、矩形、菱形、正方形

1、菱形的性质:①菱形的四条边都相等.②菱形的对角线互相垂直,并且每条对角线平分一组对角.③

具有平行四边形所有性质.

2.菱形的判定:①对角线互相垂直的平行四边形是菱形.②一组邻边相等的平行四边形是菱形.

③四条边都相等的四边形是菱形.

3.矩形的性质:①矩形的四个角都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性质.

4.矩形的判定:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形.③有三个角是直角的四边形是矩形.

5.正方形的性质:①正方形的四个角都是直角,四条边都相等.②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.

6.正方形的判定:①有一个角是直角的柳是正方形.②有一组邻边相等的矩形是正方形.③对角线相等的菱形是正方形.④对角线互相垂直的矩形是正方形.

四、梯形

1.定义:一组对边平行,另一组对进不平行的四边形叫梯形.两腰相等的梯形叫等腰梯形.一腰和底垂直的梯形叫做直角梯形.

2、等腰梯形的性质:等腰梯形同一底上的两个角相等;等腰梯形的对角线相等.

3.等腰梯形的判定:①同一底上的两个角相等的梯形是等腰梯形.②对角线相等的梯形是等腰梯形.4.等腰梯形常见的作辅助线的方法.

(1)作等腰梯形的两条高,将等腰梯形分成一个矩形和两个全等直角三角形。

(2)平移一腰,将等腰梯形化成一个平行四边形和一个等腰三角形.

(3)平移对角线,将等腰梯形转化为等腰三角形。

(4)如果题中有一腰的中点,则可连结上底的一个顶点和一腰的中点并延长交下底一点。

五、中位线

定义;

几何证明中经常用到中位线。

六、平面向量

定义:要素

加减法则。

七、常见辅助线用语:

1、连结XX

延长XX至X,使XX=XX

延长XX与XX,交于点X

2、过点X作XX∥XX

3、过点X作XX⊥XX于X

巩固练习:

一、填空题

1.六边形共有()条对角线.

2.一个多边形内角和为540°,则其边数为().

3.一个多边形每一个外角都是30°,则这个多边形是()边形.

4.从凸n边形一个顶点出发,有()条对角线.

5.一个多边形的边数正好等于这个多边形对角线的条数,则边数为().

6.任意多边形的外角和为()度.

二、选择题(把正确答案的序号字母填入括号中)

1.一个凸n边形的n个角中,至多有几个角是锐角.结论应该是至多有()个.

(A)4个(B)3个(C)2个(D)不能确定

2.一个凸多边形内角和900°,则这个多边形边数为()条.

(A)8 (B)5 (C)7 (D)10

3.如果从一个凸多边形的一个顶点出发,一共有17条对角线,则这个多边形内角和为().

(A)1800°(B)2400°(C)3240°(D)4206°

4.平行四边形对角线将其分成全等三角形()对.

(A)2 (B)3 (C)4 (D)5

三、求解题

1.一个多边形的内角和是其外角和的2倍,求边数.

2.多边形每一个内角都是150°,求对角线的条数.

3.两个角的两边分别垂直,且一个角是另一个角的4倍还少30°,求这两个角的度数.

4.一个多边形的各内角都相等,且内外角之差的绝对值为60°,求边数.

5.一个多边形的内角和与其一个外角的总和为1350°,求边数.

6.多边形的一个外角与其余各内角和为600°,求边数.

提高练习:

一、选择题

1.能判定四边形ABCD为平行四边形的题设是().

(A)AB∥CD,AD=BC; (B)∠A=∠B,∠C=∠D;

(C)AB=CD,AD=BC; (D)AB=AD,CB=CD

2.在□ABCD中,∠A、∠B的度数之比为5∶4,则∠C等于()

A.60°

B.80°

C.100°

D.120°

3.平行四边行的两条对角线把它分成全等三角形的对数是()

A.2

B.4

C.6

D.8

4.平行四边形具有,而一般四边形不具有的性质是()

A.外角和等于360° B.对角线互相平分

C.内角和等于360° D.有两条对角线

5.用两块完全相同的直角三角形拼下列图形:①平行四边形②矩形③菱形④正方形⑤等腰三角形⑥等边三角形,一定能拼成的图形是()

A、①④⑤

B、②⑤⑥

C、①②③

D、①②⑤

6.小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形。小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是()

A、小明、小亮都正确

B、小明正确,小亮错误

C、小明错误,小亮正确

D、小明、小亮都错误

7.下面性质中菱形有而矩形没有的是()

(A)邻角互补(B)内角和为360°(C)对角线相等(D)对角线互相垂直

图10D

C

B A

8.正方形具有而菱形不一定具有的性质是()

(A)四条边相等(B)对角线互相垂直平分

(C)对角线平分一组对角(D)对角线相等

9.下列命题中,真命题是()

A、有两边相等的平行四边形是菱形

B、有一个角是直角的四边形是直角梯形

C、四个角相等的菱形是正方形

D、两条对角线相等的四边形是矩形

10.如图10,在梯形ABCD中,AD∥BC,AB=CD,那么它的四个内角按一定顺序的度数比可能为()

A、3:4:5:6

B、4:5:4:5

C、2:3:3:2

D、2:4:3:3

二.填空题

1

.在中,,则度.

2

.在中,两邻边的差为4cm,周长为32cm,则两邻边长分别为________.

3.

在中,,

则的周长为________cm.4.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是______cm.

5.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为______cm.

6.对角线长为10 cm的正方形的边长是______cm,面积是______ cm2。

7.若菱形的周长为24 cm,一个内角为60°,则菱形的面积为______ cm2。

8.如图,已知AD∥BC,要使四边形ABCD为平行,

四边形需要增加一个条件是:_______。

三.解答题

1.在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm?的两条线段,求该平行四边形的周长是多少?

2

.如图,中,E 为BC 上一点,

于,求的度数.

3.已知:如图,梯形ABCD 中,AD ∥BC ,∠B=60°,∠C=30°,AD=2,BC=8。 求:梯形两腰AB 、CD 的长。

4. 如图,在四边形A B C D 中,点E 是线段A D 上的任意一点(E 与A D ,不重合),G F H ,,分别是B E B C C E ,,的中点.

(1)证明四边形E G F H 是平行四边形; (2)在(1)的条件下,若EF BC ⊥,且12

E F B C =

,证明平行四边形E G F H 是正方形.

5. 已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .

(1)求证:BE = DF ;

(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么

特殊四边形?并证明你的结论.

B G

A E

F

H

D

C

A

B

C

D

A

D F

6.已知:如图,ABCD 中,点E 、F 分别在CD 、AB 上,DF ∥BE ,EF 交BD 于点O .求证:EO=OF .

7.如图,已知四边形ABCD 中,AC=BD ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形EFGH 是菱形.

8.如图,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F . 求证:BE =CF .

9. 如图,ABM ∠为直角,点C 为线段B A 的中点,点D 是射线BM 上的一个动点(不与点B 重合),连结A D ,作BE AD ⊥,垂足为E ,连结C E ,过点E 作E F C E ⊥,交B D 于F . (1)求证:BF FD =;

A B

B E

C

(2)A ∠在什么范围内变化时,四边形A C F E 是梯形,并说明理由; (3)A ∠在什么范围内变化时,线段D E 上存在点G ,满足条件14

D G D A =,并说明理由.

10. 如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .

求证:CE =CF .

11. 如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF.

课后练习

一、填空(每题3分,计15分)

1.若n 边形的每一个内角都是120°,则边数n 为_______。

2.平行四边形的周长为100cm ,两邻边之差为30cm ,则平行四边形较短的边长为________。 3.菱形两邻角之比为1∶5,高为1.5cm ,则菱形的周长为________。

4.一直角梯形ABCD ,AD ∥BC ,∠B=90°,AB=5,两底差为12,则另一腰为CD=_____。 5.菱形两对角线长分别为24cm 和10cm ,则菱形的高为______。

A

B

C D F

E

M

二、选择题(每题3分,计15分)

1.下列各条件中,能判断四边形是平行四边形的是()

A.一组对角相等B.两条对角线互相平分

C.一组对边相等D.两条对角线互相垂直

2.下列命题中正确的是()

A.对角线相等的四边形是矩形;B.对角线互相平分且相等的四边形是矩形

C.对角线垂直的四边形是矩形;D.对角线相等且垂直的四边形是矩形

3.下列图形中,是轴对称图形图形,而不是中心对称图形是()

A.等边三角形B.平行四边形C.矩形D.菱形

4.下列命题中,真命题是()

A.四边相等的四边形是正方形;B.四角相等的四边形是正方形

C.对角线相等的菱形是正方形;D.对角线垂

5.在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是()

A.5 B.10 C.15 D.20

三、解答题(第1、2题11分,其余各12分,计70分)

1.如图,在平行四边形ABCD中,AE⊥BC,AF⊥CD点E、F为垂足,∠EAF=30°,AE=3cm,AF=2cm,求平行四边形ABCD的周长。

2.已知:如图,在平行四边形ABCD中,DM=BN,BE=DF,求证:四边形MENF是平行四边形。

3.在等腰梯形ABCD中,M、N分别为上、下两底AD.BC的中点,E、F分别为MB.CM的中点,求证:四边形MENF是菱形。

4.如图,已知:两条等宽的长纸条倾斜地重叠着,求证重叠部分为菱形。

27.命题、证明及平行线的判定定理(提高)知识讲解

命题、证明及平行线的判定定理(提高)知识讲解 【学习目标】 1.了解定义、命题的含义,会区分命题的条件(题设)和结论; 2.体会检验数学结论的常用方法:实验验证、举出反例、推理; 4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式; 5.掌握平行线的判定方法,并能简单应用这些结论. 【要点梳理】 要点一、定义与命题 1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义. 要点诠释: (1)定义实际上就是一种规定. (2)定义的条件和结论互换后的命题仍是真命题. 2.命题:判断一件事情的句子叫做命题. 真命题:正确的命题叫做真命题. 假命题:不正确的命题叫做假命题. 要点诠释: (1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果……那么……”的形式,其中“如果”开始的部分是条件,“那么”后面是结论. (2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立. 要点二、证明的必要性 要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理.推理的过程叫做证明. 要点三、公理与定理 1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理. 要点诠释:欧几里得将“两点确定一条直线”等基本事实作为公理. 2.定理:通过推理得到证实的真命题叫做定理. 要点诠释: 证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程. 要点四、平行公理及平行线的判定定理 1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 要点诠释: (1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质. (2)公理中“有”说明存在;“只有”说明唯一. (3)“平行公理的推论”也叫平行线的传递性. 2.平行线的判定定理

平行四边形的证明题

平行四边形的证明题 一.解答题(共30小题) 1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F. (1)求证:BE=DF; (2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由). — 2.如图所示,?AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D. 求证:四边形ABCD是平行四边形. $ 3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F. (1)求证:△ABE≌△CDF; (2)若AC与BD交于点O,求证:AO=CO. #

4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD. ~ 5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明. : 6.如图,已知,?ABCD中,AE=CF,M、N分别是DE、BF的中点. 求证:四边形MFNE是平行四边形. ! 7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA. 求证:四边形AECF是平行四边形.

8.在?ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形. ! 9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE. 10.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形? ; 11.如图:已知D、E、F分别是△ABC各边的中点,

相交线与平行线知识点及练习

相交线与平行线知识点 1.相交线 同一平面中,两条直线的位置有两种情况: 相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角:∠1,∠2,∠3,∠4; 邻补角:其中∠1和∠2有一条公共边,且他们的另一边互为反向延长线。像∠1和∠2这样的角我们称他们互为邻补角; 对顶角:∠1和∠3有一个公共的顶点O,并且∠1 的两边分别是∠3两边的反向延长线,具有这种位置 关系的两个角,互为对顶角; ∠1和∠2互补,∠2和∠3互补,因为同角的补角 相等,所以∠1=∠3。 所以,对顶角相等 例题: 1.如图,3∠1=2∠3,求∠1,∠2,∠3,∠4的度数。 2.如图,直线AB、CD、EF相交于O,且AB CD ⊥, FOB__________。 2_______,∠= 127,则∠= ∠=? C E A 2 O B 1 F D 垂直:垂直是相交的一种特殊情况两条直线相互垂直,其中一条叫做另一条的垂 线,它们的交点叫做垂足。如图所示,图中AB⊥CD,垂足 为O。垂直的两条直线共形成四个直角,每个直角都是90?。 例题: 如图,AB⊥CD,垂足为O,EF经过点O,∠1=26?,求∠EOD,∠2,∠3的度数。(思考:∠EOD可否用途中所示的∠4表示?) 垂线相关的基本性质:

(1)经过一点有且只有一条直线垂直于已知直线; (2)连接直线外一点与直线上各点的所有线段中,垂线段最短; (3)从直线外一点到直线的垂线段的长度,叫做点到直线的距离。 例题:假设你在游泳池中的P点游泳,AC是泳池的岸,如果此时你的腿抽筋了,你会选择那条路线游向岸边?为什么? *线段的垂直平分线:垂直且平分一条线段的直线,叫做这条线段的垂直平分线。如何作下图线段的垂直平分线? 2.平行线:在同一个平面内永不相交的两条直线叫做平行线。 平行线公理:经过直线外一点,有且只有一条直线和已知直线平行。 如上图,直线a与直线b平行,记作a//b 3.同一个平面中的三条直线关系: 三条直线在一个平面中的位置关系有4中情况:有一 个交点,有两个交点,有三个交点,没有交点。 (1)有一个交点:三条直线相交于同一个点,如 图所示,以交点为顶点形成各个角,可以用角的相关 知识解决; 例题: 如图,直线AB,CD,EF相交于O点,∠DOB是它的余角的两倍,∠AOE=2∠DOF,且有OG⊥OA,求∠EOG的度数。 (2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。)如 图所示,直线AB,CD平行,被第三条直线EF所截。这三条直线形成了两个顶点,围绕两个顶点的8个角之间有三种特殊关系: *同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF 的同旁(即位置相同),这样的一对角叫做同位角;

平行四边形证明题

平行四边形证明题 第一篇:特殊平行四边形:证明题 特殊四边形之证明题 1、如图8,在abcd中,e,f分别为边ab,cd的中点,连接de,bf,bd.? (1)求证:△ade≌△cbf. (2)若ad?bd,则四边形bfde是什么特殊四边形?请证明你的结论. fc aeb 2、如图,四边形abcd中,ab∥cd,ac平分?bad,ce∥ad交ab 于e. (1)求证:四边形aecd是菱形; (2)若点e是ab的中点,试判断△abc的形状,并说明理由. 3.如图,△abc中,ac的垂直平分线mn交ab于点d,交ac于点o,ce∥ab交mn于e,连结ae、cd. (1)求证:ad=ce; (2)填空:四边形adce的形状是. a dmn

4.如图,在△abc中,ab=ac,d是bc的中点,连结ad,在ad的延长线上取一点e,连结be, (1)求证: (2)当ae与ad满足什么数量关系时,四边形abec是菱形?并说明理由 5.如图,在△abc和△dcb中,ab=dc,ac=db,ac与db交于点m. (1)求证:△abc≌△dcb; (2)过点c作cn∥bd,过点b作bn∥ac,cn与bn交于点n,试判断线段bn与cn的数量关系,并证明你的结论. 6、如图,矩形abcd中,o是ac与bd的交点,过o点的直线ef 与ab,cd的延长线分别交于e,f. (1)求证:△boe≌△dof; (2)当ef与ac满足什么关系时,以a,e,c,f为顶点的四边形是菱形?证明你的结论. f a b e

7. 600,它的两底分别是16cm、30cm。求它的腰长。 (两种添线方法) c 8.如图(七),在梯形abcd中,ad∥bc,ab?ad?dc,ac?ab,将cb延长至点f,使bf?cd. (1)求?abc的度数; (2)求证:△caf为等腰三角形. c b图七f 第二篇:平行四边形证明题 由条件可知,这是通过三角形的中位线定理来判断fg平行da,同理he平行da,ge平行cb,fh平行cb!~ 我这一化解,楼主应该明白了吧!~ 希望楼主采纳,谢谢~!不懂再问!!! 此题关键就是对于三角形的中位线定理熟不!~!~· 已知:f,g是△cda的中点,所以fg是△cda的中位线,所以fg 平行da 同理he是△bad的中位线,所以he平行da,所以fg平行he

方差的性质

由方差的定义,可以得到方差的基本性质(假定所遇到的方差都存在, 其中c, k为常数). 性质1.D(c)=0; 性质2.D(cξ)=c2D(ξ); 特别地,当c =-1时D(-ξ)=D(ξ); 性质3.D(ξ+c)= D(ξ); 性质4.D(kξ+c)= k2D(ξ); 性质5.若ξ, η相互独立, 则 D(ξ+η)=D(ξ)+D(η). 注.若一个随机变量的取值不影响另一随机变量的取值,则称两个随机变量是相互独立的.本课程略去了关于随机变量相互独立的严格数学描述. 例3.5.13. 设离散型随机变量X具有概率分布律 X-2 -1 0 1 2 3 P(X=x k) 0.1 0.2 0.2 0.3 0.1 0.1 求E(X), D(X), D(2X+3). 解.由离散型随机变量的数学期望的定义得 E(X)=(-2)×0.1+(-1)×0.2+0×0.2+1×0.3+2×0.1+3×0.1 =0.4; E(X2)=(-2)2×0.1+(-1)2×0.2+02×0.2+12×0.3+22×0.1+32×0.1 =2.2; 再由方差计算公式 D(X)=E(X2)-(E(X))2 =2.2-0.42=2.04; ∴D(2X+3)=4D(X)=4×2.04=8.16 . 例3.5.14 设连续型随机变量X具有概率密度: 求(1)常数A;(2)D(-X-2). 解. (1)根据密度函数的性质

∴ 计算上述积分,可得A=e/2. (2)要求方差,首先要求数学期望. ∴D(X)=E(X2)-(E(X))2 =11/4-16/9=35/36 ; D(-X-2)=D(X)=35/36

北师版八年级上第七章平行线的证明知识点总结及习题

八年级上册第七章平行线的证明 【要点梳理】 要点一、定义、命题及证明 1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义. 2.命题:判断一件事情的句子,叫做命题. 要点诠释: (1)每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项. (2)正确的命题称为真命题,不正确的命题称为假命题. (3)公认的真命题叫做公理. (4) 经过证明的真命题称为定理. 3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这种演绎推理的过程称为证明.要点诠释: (1)实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论. (2)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等. (3)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点二、平行线的判定与性质 1.平行线的判定 判定方法1:同位角相等,两直线平行. 判定方法2:内错角相等,两直线平行. 判定方法3:同旁内角互补,两直线平行. 要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有: (1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线平行. (4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 2.平行线的性质 性质1:两直线平行,同位角相等; 性质2:两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补. 要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有: (1)若两条直线平行,则这两条直线在同一平面内,且没有公共点. (2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直. 要点三、三角形的内角和定理及推论 三角形的内角和定理:三角形的内角和等于180°. 推论:(1)三角形的一个外角等于和它不相邻的两个内角的和. (2)三角形的一个外角大于任何一个和它不相邻的内角. 要点诠释: (1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.

平行四边形经典证明题例题讲解

1 / 1 经纬教育 平行四边形证明题 经典例题(附带详细答案) 1.如图,E F 、是平行四边形 ABCD 对角线AC 上两点,BE DF ∥, 求证:AF CE =. 【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠. 又BE DF ∥, BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF = 2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D , , 求四边形ABCD 的周长. 【答案】20、 解法一: ∵ ∴ 又∵ ∴ ∴∥即得是平行四边形 ∴ ∴四边形的周长 解法二: 3 ,6==AB BC AB CD ∥?=∠+∠180C B B D ∠=∠?=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=D C A B E F A D C B

连接 ∵ ∴ 又∵ ∴≌ ∴ ∴四边形的周长解法三: 连接 ∵ ∴ 又∵ ∴ ∴∥即是平行四边形 ∴ ∴四边形的周长 3.(在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C 的大小. 【关键词】多边形的内角和 【答案】设x A= ∠(度),则20 + = ∠x B,x C2 = ∠. 根据四边形内角和定理得,360 60 2 ) 20 (= + + + +x x x. 解得,70 = x. ∴? = ∠70 A,? = ∠90 B,? = ∠140 C. 4.(如图,E F ,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE == ,,∥. AC AB CD ∥ DCA BAC∠ = ∠ B D A C CA ∠=∠= , ABC △CDA △ 36 AB CD BC AD ==== , ABCD18 3 2 6 2= ? + ? = BD AB CD ∥ CDB ABD∠ = ∠ ABC CDA ∠=∠ ADB CBD∠ = ∠ AD BC ABCD 36 AB CD BC AD ==== , ABCD18 3 2 6 2= ? + ? = A D C B A D C B 1 / 1

第七章平行线的证明知识点复习

平行线的证明 平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行. 判定定理2:_______________,两直线平行.定理:平行于同一直线的两直线___________. 2、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD 3.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。 4、如图,某湖上风景区有两个观望点A ,C 和两个度假村B ,D .度假村D 在C 的正西方向,度假村B 在C 的南偏东30°方向,度假村B 到两个观望点的距离都等于2km . (1)求道路CD 与CB 的夹角; (2)如果度假村D 到C 是直公路,长为1km ,D 到A 是环湖路,度假村B 到两个观望点的总路程等于度假村D 到两个观望点的总路程.求出环湖路的长; (3)根据题目中的条件,能够判定DC ∥AB 吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC ∥AB . 5.小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠A ED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗? 知识点3:平行线的性质 性质定理1:两直线平行,同位角___________. 性质定理2:两直线平行,内错角_________. 性质定理3:两直线平行,同旁内角__________. 练习:6、已知:如图,AB//CD ,BC//DE ,∠B=70°,求∠D 的度数。 专题 与平行线有关的探究题 A B E D C A B E P D C F

关于平行四边形的证明题例析

关于平行四边形的证明题例析 平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的证明与研究上有着广泛的应用.例1如图所示.在ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:EF与MN互相平分. 分析只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手. 证明因为ABCD是平行四边形,所以 AD BC,AB CD,∠B=∠D. 又AE⊥BC,CF⊥AD,所以AECF是矩形,从而 AE=CF. 所以 Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以 △BEM≌△DFN(SAS), ME=NF.① 又因为AF=CE,AM=CN,∠MAF=∠NCE,所以 △MAF≌△NCE(SAS), 所以MF=NF.② 由①,②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分. 例2如图所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF. 分析AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解. 证明作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而 △ABG≌△HBG(AAS), 所以AB=HB.① 在△ABE及△HBE中, ∠ABE=∠CBE,BE=BE,

北师大版八年级数学上册《平行线的证明》知识点归纳

北师大版八年级数学上册《平行线的证明》 知识点归纳 第七章平行线的证明 为什么要证明?实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有理有据的证明。 定义与命题 定义:对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义。 命题:判断一件事情的句子,叫做命题。一般地,每个命题都由条件和结论两部分组成。条件是已知的事项,结论是由已知事项推断出的事项。命题可以写成“如果......那么......”的形式,其中如果引出的部分是条件,那么引出的部分是结论。 真命题:正确的命题称为真命题。 假命题:不正确的命题称为假命题。要说明一低点命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具备命题的结论,这种例子称为反例, 公理、定理 公理:公认的真命题称为公理。 证明:演绎推理的过程称为证明。

定理:经过证明的真命题称为定理。 本书认定的真命题: 两点确定一条直线。 两点之间的距离最短。 同一平面内,过一点有且只有一条直线与已知直线垂直。 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 过直线外一点有且只有一条直线玙这条直线平行。 两边及其夹角分别相等的两个三角形全等。 两角及其夹边分别相等的两个三角形全等。 三边分别相等的两个三角形全等。 数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据。 同角的补角相等。同角的余角相等。 三角形的任意两边之和大于第三边。 对顶角相等。 平行线的判定; 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。。 两条直线被第三条直线所载,如果同旁内角互补,那么这两条直线平行。。

初二数学平行四边形压轴:几何证明题

1 / 1 初二数学平行四边形压轴:几何证明题 1.在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,顺次连接EF 、FG 、GH 、HE . (1)请判断四边形EFGH 的形状,并给予证明; (2)试探究当满足什么条件时,使四边形EFGH 是菱形,并说明理由。 2.如图,在直角三角形ABC 中,∠ACB=90°,AC=BC=10,将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1. (1)线段A 1C 1的长度是 ,∠CBA 1的度数是 . (2)连接CC 1,求证:四边形CBA 1C 1是平行四边形. 3. 如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证:OP=OQ ; (2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形. 4.已知:如图,在□ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C 重合,得△GFC. ⑴求证:BE =DG ; ⑵若∠B =60?,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论. 5. 如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC =AD ; (2)AB =BC +AD . 6.如图,在△ABC 中,AB=AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE. (1)求证:△ABE ≌△ACE (2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由. B F C G D H B A 1 C 1A C A D G C B F E A Q C D P B O A B E D A D E F C B

平行四边形证明练习题汇编

平行四边形证明练习题 一.解答题 1.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF. 2.在?ABCD中,E,F分别是BC、AD上的点,且BE=DF.求证:AE=CF. 3.如图,四边形ABCD是平行四边形,E、F分别是BC.AD上的点,∠1=∠2 求证:△ABE≌△CDF. 4.如图,已知:平行四边形ABCD中,E是CD边的中点,连接BE并延长与AD的延长线相交于F点.求证:BC=DF. 5.如图,在?ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论. 6.已知:如图,?ABCD中,E、F是对角线AC上的点,且AE=CF.求证:△ABE≌△CDF.

7.如图,已知在?ABCD中,过AC中点的直线交CD,AB于点E,F.求证:DE=BF. 8.如图,在等腰梯形ABCD中,AD∥BC,AB=CD=AE.四边形AECD是平行四边形吗?为什么? 9.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:DE=BF. 10.如图,四边形ABCD中,AD=BC,AE⊥BD,CF⊥BD,垂足为E、F,AE=CF,求证:四边形ABCD是平行四边形. 11.如图,在△ABC中,AD是中线,点E是AD的中点,过A点作BC的平行线交CE的延长线于点F,连接BF.求证:四边形AFBD是平行四边形. 12.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,DE∥AB,AD+DC=BC. 求证:(1)DE=DC; (2)△DEC是等边三角形. 13.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF. 求证:(1)△ADF≌△CBE;

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

巧用方差的性质解题

巧用方差的性质解题 由方差的计算公式])()()[(1222212 ----+?+-+-=x x x x x x n s n 容易得出方差的两条性质: 性质1 任何一组实数所的方差都是非负实数. 性质2 若一组实数据的方差为零,则该组数据均相等,且都等于该组数据的平均数. 运用这两个性质和方差计算公式,常可帮助我们快捷解决一类与之相关的问题. 例1 已知8=+y x ,162=-z xy ,求z y x ++的值. 解:∵x 、y 的平均数为 2 y x +=4,216z xy +=, ∴x 、y 的方差 ])4()4[(21222-+-=y x s =]32)(8[2 122++-+y x y x =]32)(82)[(2 12++--+y x xy y x =]3264)16(264[2 12+-+-z =2z -. 由性质1,得02≥-z ,∴02 ≤z . ∴2z =0,0=z .∴=2s 0. 由性质2,得y x ==4. ∴z y x ++=4+4+0=8. 例2 已知c b a ++=6,222c b a ++=12,求c b a 32++的值. 解:∵a 、b 、c 的平均数是 3 c b a ++=2, ∴a 、b 、c 的方差 ])2()2()2[(3 12222-+-+-=c b a s =]12)(4)[(3 1222+++-++c b a c b a =)122412(3 1+-=0. 由性质2,得a =b =c =2. ∴c b a 32++=12. 例3 设m 、n 、p 均为正实数,且2m +2n -22p =0,求 n m p +的最小值. 解:m 、n 的平均数-x =2 n m +. m 、n 的方差为

平行四边形综合证明题

33.(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .求证:CE =CF ; (2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠ECG =45°,请你利用(1)的结论证明:ECG BCE CDG s s s ???=+. (3)运用(1)、(2)解答中所积累的经验和知识,完成下题: 如图3,在直角梯形ABCG 中,AG ∥BC (BC >AG ),∠B =90°,AB =BC=6,E 是AB 上一点,且∠ECG =45°,BE =2.求△ECG 的面积. 【答案】(1)先根据正方形的性质可得BC =CD ,∠B =∠CDF ,BE =DF ,即可证得△CBE ≌△CDF ,从而得到结论;(2)延长AD 至F ,使DF=BE .连接CF .由(1)知△CBE ≌△CDF ,即可得到∠BCE =∠DCF .又∠GCE =45°,可得∠BCE+∠GCD =45°.即可得到∠ECG =∠GCF .又CE =CF ,GC =GC ,即可证得△ECG ≌△FCG ,即可证得结论;(3)15 【解析】 试题分析:(1)先根据正方形的性质可得BC =CD ,∠B =∠CDF ,BE =DF ,即可证得△CBE ≌△CDF ,从而得到结论; (2)延长AD 至F ,使DF=BE .连接CF .由(1)知△CBE ≌△CDF ,即可得到∠BCE =∠DCF .又∠GCE =45°,可得∠BCE+∠GCD =45°.即可得到∠ECG =∠GCF .又CE =CF ,GC =GC ,即可证得△ECG ≌△FCG ,即可证得结论; (3)过C 作CD ⊥AG ,交AG 延长线于D .证得四边形ABCD 为正方形.由(2)中△ECG ≌△FCG ,即得GE =GF .GE =DF +GD =BE +GD ,设DG =x ,可得AE=4,AG =6—x ,EG=2+ x .在Rt △AEG 中,根据勾股定理即可列方程求得x 的值,再根据三角形的面积公式即可求得结果. (1)在正方形ABCD 中, ∵BC =CD ,∠B =∠CDF ,BE =DF , ∴△CBE ≌△CDF . ∴CE =CF . (2)如图2,延长AD 至F ,使DF=BE .连接CF . 由(1)知△CBE ≌△CDF , ∴∠BCE =∠DCF . 又∠GCE =45°, ∴∠BCE+∠GCD =45°. ∴∠DCF +∠GCD =∠GCF =45° A B C D E F A B C G E A B C D E 图1 图2 图3 G A B C D E F 图2 G

平行线知识点+四大模型

平行线四大模型 平行线的判定与性质 l、平行线的判定 根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行. 判定方法l: 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简称:同位角相等,两直线平行. 判定方法2: 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简称:内错角相等,两直线平行, 判定方法3: 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简称:同旁内角互补,两直线平行, 如上图: 若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行); 若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行); 若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行). 另有平行公理推论也能证明两直线平行: 平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 2、平行线的性质 利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同 旁内角也有相应的数量关系,这就是平行线的性质. 性质1: 两条平行线被第三条直线所截,同位角相等. 简称:两直线平行,同位角相等 性质2: 两条平行线被第三条直线所截,内错角相等. 简称:两直线平行,内错角相等 性质3: 两条平行线被第三条直线所截,同旁内角互补. 简称:两直线平行,同旁内角互补

本讲进阶平行线四大模型 结论 结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD. 结论1:若AB∥CD,则∠P=∠AEP+∠CFP; 结论2:若∠P=∠AEP+∠CFP,则AB∥CD. 结论 结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD. 结论

平行四边形常见证明题

1.在□ABCD中,E、F是对角线AC上两点,且AE=CF,四边形DEBF是平行四边形吗?请说明理由 . 2.如图,?ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC. 3、如图,延长平行四边形ABCD的边BC至F、DA至E,使CF=AE,EF与BD交于O. 试说明EF与BD互相平分 4.如图,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE, 求证:(1)△ADF≌△CBE;(2)四边形ABCD是平行四边形. 5.如图,在ABCD中,∠ABC=70 ,∠ABC的平分线交AD于点E,过点D作BE的平行线交BC于 点F,求∠CDF的度数. A E D B A B C D F E

6.已知如图,在□ABCD中,∠ABC的平分线交AD于E,且CE⊥BE。求证:BC=2CD 7.如图,平行四边形ABCD中,AB AC ⊥,1 AB=,.对角线AC BD ,相交于点O,将直线AC绕点O顺时针旋转,分别交BC AD ,于点E F ,. (1)证明:当旋转角为90时,四边形ABEF是平行四边形; (2)试说明在旋转过程中,线段AF与EC总保持相等; 8、如图,四边形ABCD和四边形EBFD都是平行四边形. 试说明△ABE≌△CDF C 9. 已知:如图, 在ABCD中,E、F分别是AB和CD上的点,AE=CF,M、N分别是DE和BF的中点,求证.四边形ENFM是平行四边形. 10. 已知:如图,在ABCD中,E、F分别是CD和AB上的点,AE//CF,BE交CF于点H,DF交AE于点G.求证.EG=FH. A B C D O F E

新北师大版八年级数学上册第七章平行线的证明知识点复习

平行线的证明知识点复习 7.1为什么要证明、7.2定义与命题 知识点1: 1、判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________. 2、公认的真命题称为____________,经过证明的真命题称为_____________. 练习1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例: ①.若a>b ,则b a 11 . ②.两个锐角的和是锐角. ③.同位角相等,两直线平行. (4).一个角的邻补角大于这个角. (5).两个负数的差一定是负数. 专题 推理在实际中的应用 1.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?” 甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.” 丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.” 如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( ) A.甲 B. 乙 C.丙 D.丁 7.3平行线的判定 知识点2: 平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行. 判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________. 专题 平行线的判定的实际应用 2、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD 3.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。 4、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零 件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠ BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平 行的,你知道什么原因吗? A B E P D C F

相交线与平行线知识点整理1

七年级数学(下)期末复习知识点整理 5.1相交线 1、邻补角与对顶角 注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角; ⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角 ⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。 ⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。 2、垂线 ⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 符号语言记作: 如图所示:AB ⊥CD ,垂足为O ⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记) ⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。 3、垂线的画法: ⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。 注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。 A B C D O

画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。 4、点到直线的距离 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离 记得时候应该结合图形进行记忆。 如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长。PO 是垂线段。PO 是点P 到直线AB 所有线段中最短的一条。 现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。 5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念 分析它们的联系与区别 ⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。 联系:具有垂直于已知直线的共同特征。(垂直的性质) ⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。 ⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。 5.2平行线 1、平行线的概念: 在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 。 2、两条直线的位置关系 在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。 因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线) 判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定: ①有且只有一个公共点,两直线相交; ②无公共点,则两直线平行; ③两个或两个以上公共点,则两直线重合(因为两点确定一条直线) 3、平行公理――平行线的存在性与惟一性 经过直线外一点,有且只有一条直线与这条直线平行 P A B O

总结归纳方差的性质

总结归纳方差的性质 总结归纳方差的性质[1] 在中国古代,数学叫作算术,又称算学,最后才改为数学.以下是精品学习网为大家的高中数学方差公式,希望可以解决您所遇到的相关问题,加油,精品学习网一直陪伴您。 一.方差的概念与计算公式 例1两人的5次测验成绩如下: X:50,100,100,60,50E(X)=72; Y:73,70,75,72,70E(Y)=72。 平均成绩相同,但X不稳定,对平均值的偏离大。 方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X): 直接计算公式分离散型和连续型,具体为: 这里是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”。 其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动 二.方差的性质 1.设C为常数,则D(C)=0(常数无波动); 2.D(CX)=C2D(X)(常数平方提取);

证: 特别地D(-X)=D(X),D(-2X)=4D(X)(方差无负值) 特别地 独立前提的逐项求和,可推广到有限项。 方差公式: 平均数:M=(x1+x2+x3+…+xn)/n(n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值) 方差公式:S?=〈(M-x1)?+(M-x2)?+(M-x3)?+…+(M-xn)?〉╱n 三.常用分布的方差 1.两点分布 2.二项分布 X~B(n,p) 引入随机变量Xi(第i次试验中A出现的次数,服从两点分布), 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) 7.t分布:其中X~T(n),E(X)=0;D(X)=n/(n-2); 8.F分布:其中X~F(m,n),E(X)=n/(n-2); ~

1方差的定义

第二节 方 差 1.方差的定义 数学期望描述了随机变量取值的“平均”.有时仅知道这个平均值还不够.例如,有A ,B 两名射手,他们每次射击命中的环数分别为X ,Y ,已知X ,Y 的分布律为: 表4-7 其他的因素.通常的想法是:在射击的平均环数相等的条件下进一步衡量谁的射击技术更稳定些.也就是看谁命中的环数比较集中于平均值的附近,通常人们会采用命中的环数X 与它的平均值E (X )之间的离差|X -E (X )|的均值E [|X -E (X )|]来度量,E [|X -E (X )|]愈小,表明X 的值愈集中于E (X )的附近,即技术稳定;E [|X -E (X )|]愈大,表明X 的值很分散,技术不稳定.但由于E [|X -E (X )|]带有绝对值,运算不便,故通常采用X 与E (X )的离差|X -E (X )|的平方平均值E [X -E (X )]2来度量随机变量X 取值的分散程度.此例中,由于 E [X -E (X )]2=0.23(8-9)2+0.63(9-9)2+0.2×(10-9)2=0.4, E [Y -E (Y )]2=0.13(8-9)2+0.83(9-9)2+0.1×(10-9)2=0.2. 由此可见B 的技术更稳定些. 定义4.2 设X 是一个随机变量,若E [X -E (X )]2存在,则称E [X -E (X )]2为X 的方差(Variance ),记为D (X ),即 D (X )= E [X -E (X )]2. (4.7) 称)(X D 为随机变量X 的标准差(Standard deviation )或均方差(Mean square deviation),记为σ(X ). 根据定义可知,随机变量X 的方差反映了随机变量的取值与其数学期望的偏离程度.若X 取值比较集中,则D (X )较小,反之,若X 取值比较分散,则D (X )较大. 由于方差是随机变量X 的函数g (X )=[X -E (X )]2的数学期望.若离散型随机变量X 的分布律为P {X =x k }=p k ,k =1,2,…,则 D (X )=k k k p X E x ∑∞ =-12)]([. (4.8) 若连续型随机变量X 的概率密度为f (x ),则 D (X )=?+∞ ∞--.)()]([2x x f X E x d (4.9) 由此可见,方差D (X )是一个常数,它由随机变量的分布惟一确定. 根据数学期望的性质可得: D (X )= E [X -E (X )]2=E [X 2-2X 2E (X )+[E (X )]2] =E (X 2)-2E (X )2E (X )+[E (X )]2=E (X 2)-[E (X )]2.

相关文档
最新文档