学高中数学三角恒等变形同角三角函数的基本关系教师用书教案北师大版必修

学高中数学三角恒等变形同角三角函数的基本关系教师用书教案北师大版必修
学高中数学三角恒等变形同角三角函数的基本关系教师用书教案北师大版必修

§1同角三角函数的基本关系

学习目标核

心素养

1.理解同角三角函数的基本关系式:sin2α+cos 2α=1,错误!=tan α.(重点)

2.会利用这两个公式求三角函数式的值,化简三角函数式或证明三角恒等式.(难点)1.通过学习同角三角函数基本关系式,提升数学抽象素养.

2.通过运用同角三角函数基本关系化简或证明三角恒等式,培养逻辑推理素养.

同角三角函数基本关系式

(1)关系式

1平方关系:sin2α+cos2α=__1__;

2商数关系:错误!=tan α.

(2)文字叙述

同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.(3)变形形式

11=sin2α+cos2α;

2sin2α=1—cos2α;cos2α=1—sin2α;

3sinα=±_错误!;cosα=±_错误!;

4sinα=cos αtan α;

5(sin α±cos α)2=1±2sin αcos α.

思考:sin230°+cos245°等于1吗?

错误!有意义吗?

[提示] 不等于1,错误!分母为0,无意义.

1.已知sin α=—错误!,α是第三象限角,则tan α等于()A.错误!B.—错误!C.错误!D.—错误!

C[因为sin α=—错误!,且α是第三象限角.所以cos α=—错误!=—错误!.

所以tanα=错误!=错误!.]

2.已知3sin α+cos α=0,则tan α=________.

—错误![因为3sin α+cos α=0,

所以cos α=—3sin α,

所以tan α=错误!=错误!=—错误!.]

3.已知sin θ=错误!,cos θ=错误!,则m=________.

0或8 [由sin2θ+cos2θ=1得,m=0或8.]

4.错误!cos2x=()

A.tan xB.sin x

C.cos xD.错误!

D[原式=错误!cos2x

=错误!·cos2x=错误!.]

利用同角基本关系式求值

【例1】已知cos α=—错误!,求sin α,tan α的值.

[解] ∵cos α=—错误!<0,∴α是第二或第三象限的角.

如果α是第二象限角,那么

sin α=错误!=错误!=错误!,

tan α=错误!=错误!=—错误!.

如果α是第三象限角,同理可得

sin α=—错误!=—错误!,tanα=错误!.

已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择,一般是先选用平方关系,再用商数关系.另外也要注意“1”的代换,如“1=sin2α+cos2α”.本题没有指出α

是第几象限的角,则必须由cosα的值推断出α所在的象限,再分类求解.

1.已知tan α=错误!且α为第三象限角,求sin α,cos α的值.

[解] 由tan α=错误!=错误!,

得sin α=错误!cos α. 1

又sin2α+cos2α=1,2

由12得错误!cos2α+cos2α=1,

即cos2α=错误!,

又α是第三象限角,

∴cosα=—错误!,sin α=—错误!.

利用sin α±cos α,sin α,cos α之间的关系求值

【例2】已知0<α<π,sin α+cos α=错误!,求tan α的值.

[解] 由sin α+cos α=错误!,1

得sin α·cos α=—错误!<0,

又0<α<π,

∴sin α>0,cos α<0,则sin α—cos α>0,

∴sin α—cos α=错误!=错误!

=错误!=错误!,2

由12解得sin α=错误!,cos α=—错误!,

∴tan α=错误!=—错误!.

sin α+cos α,sin α—cos α,sin αcos α三个式子中,已知其中一个,可以求其他两个,即“知一求二”,它们之间的关系是:(sin α±cos α)2=1±2sin αcos α,利用此关系求sin α+cos α或sin α—cos α的值时,要注意判断它们的符号.

2.sin αcos α=错误!,且错误!<α<错误!,则cos α—sin α的值为()A.错误!B.—错误!

C.错误!D.—错误!

B[∵(cos α—sin α)2=sin2α—2sinαcos α+cos2α=1—2×错误!=错误!,∴cosα—sin α=±错误!.

又错误!<α<错误!,sin α>cos α,

∴cos α—sin α=—错误!.]

利用同角三角函数关系化简、证明

[探究问题]

1.平方关系对任意α∈R均成立,对吗?商数关系呢?

[提示] 平方关系中对任意α∈R均成立,而商数关系中α≠kπ+错误!(k∈Z).2.证明三角恒等式常用哪些技巧?

[提示] 切弦互化,整体代换,“1”的代换.

3.证明三角恒等式应遵循什么样的原则?

[提示] 由繁到简.

【例3】(1)化简tan α·错误!,其中α是第二象限角;

(2)求证:错误!=错误!.

[思路探究] (1)先确定sin α,cos α的符号,结合平方关系和商数关系化简.(2)逆用平方关系结合tan α=错误!化简.

[解] (1)因为α是第二象限角,

所以sin α>0,cos α<0.

故tan α·错误!=tanα·错误!

=tanα错误!

=错误!·错误!=错误!·错误!=—1.

(2)证明:左边=错误!

=错误!

=错误!

=错误!=右边.

所以原式成立.

1.将例3(1)变为“错误!”,试对该式进行化简.

[解] 原式=错误!

=错误!

=错误!

=错误!=1.

2.将例3(2)变为试证“错误!=错误!”.

[证明] 左边=错误!=错误!

=错误!=错误!=右边,所以等式成立.

1.化简过程中常用的方法有:

(1)化切为弦,即把非正弦、余弦函数都化为正弦、余弦函数.从而减少函数名称,达到化简的目的.

(2)对于含有根号的,常把根号下化成完全平方式,然后去根号达到化简的目的.

(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin2α+cos2α=1,以降低函数次数,达到化简的目的.

2.证明三角恒等式常用的方法有:

(1)从一边开始,证得它等于另一边;

(2)证明左右两边都等于同一个式子;

(3)变更论证,即通过化除为乘、左右相减等,转化成证明与其等价的等式.

1.“同角”有两层含义:一是“角相同”;二是“任意性”,即关系式恒成立,与角的表达形式无关.如:sin23α+cos23α=1等.

2.已知角α的一个三角函数值,求α的其他两个三角函数值时,要特别注意角所在的象限,以确定三角函数值的符号.

3.计算、化简或证明三角函数式时常用的技巧:

(1)“1”的代换.为了解题的需要,有时可以将1用“sin2α+cos2α”代替.

(2)切化弦.利用商数关系把切函数化为弦函数.

(3)整体代换.将计算式适当变形使条件可以整体代入,或将条件适当变形找出与算式之间的关系.

1.判断(正确的打“√”,错误的打“×”)

(1)sin2α+cos2β=1.()

(2)对任意角α,错误!=tan 错误!. ()

(3)利用平方关系求sin α或cos α时,会得到正负两个值.()

(4)若sin α=错误!,则cos α=错误!. ()

[答案] (1)×(2)×(3)×(4)×

2.若sin α=错误!,且α是第二象限角,则tan α的值等于()

A.—错误!B.错误!

C.±错误!D.±错误!

A[α为第二象限角,sin α=错误!,cos α=—错误!,tan α=—错误!.]

3.已知角A是三角形的一个内角,sin A+cos A=错误!,则这个三角形是()

A.锐角三角形B.钝角三角形

C.直角三角形D.等腰直角三角形

B[∵sin A+cos A=错误!,

∴1+2sin A cos A=错误!,

∴sin A cos A=—错误!<0,

又∵A∈(0,π),sin A>0,

∴cos A<0,A为钝角.故选B.]

4.已知错误!=错误!,求下列各式的值.(1)错误!;

(2)1—4sinθcos θ+2cos2θ.

[解] 由已知错误!=错误!,

∴错误!=错误!,解得tan θ=2.

(1)原式=错误!=错误!=1.

(2)原式=sin2θ—4sinθcos θ+3cos2θ=错误!

=错误!

=—错误!.

高中数学苏教版必修四学案:1.2.2 同角三角函数关系

第2课时三角函数线 学习目标 1.掌握正弦、余弦、正切函数的定义域. 2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切. 3.能利用三角函数线解决一些简单的三角函数问题.

知识点一有向线段 思考1比如你从学校走到家和你从家走到学校,效果一样吗? 思考2如果你觉得效果不同,怎样直观的表示更好? 梳理有向线段 (1)有向线段:规定了________(即规定了起点和终点)的线段称为有向线段. (2)有向直线:规定了正方向的直线称为有向直线. (3)有向线段的数量:根据有向线段AB与有向直线l的方向相同或相反,分别把它的长度添上______或______,这样所得的数,叫做有向线段的数量,记为AB. (4)单位圆:圆心在________,半径等于____________的圆. 知识点二三角函数线 思考1在平面直角坐标系中,任意角α的终边与单位圆交于点P,过点P作PM⊥x轴,过点A(1,0)作单位圆的切线,交α的终边或其反向延长线于点T,如图所示,结合三角函数的定义,你能得到sin α,cos α,tan α与MP,OM,AT的关系吗?

思考2三角函数线的方向是如何规定的? 思考3三角函数线的长度和方向各表示什么?梳理

知识点三正弦、余弦、正切函数的定义域 思考对于任意角α,sin α,cos α,tan α都有意义吗?梳理三角函数的定义域

类型一 三角函数线 例1 作出-5π 8的正弦线、余弦线和正切线. 反思与感悟 (1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得到正弦线和余弦线. (2)作正切线时,应从点A (1,0)引单位圆的切线交角的终边或终边的反向延长线于一点T ,即可得到正切线AT . 跟踪训练1 在单位圆中画出满足sin α=1 2的角α的终边,并求角α的取值集合.

高中数学必修4三角函数教案

任意角的三角函数 一、教学目标 1、知识目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切) 的定义,根据定义探讨出三角函数值在各个象限的符号,掌握同一个角的不同三角函数之间的关系。 2、能力目标:能应用任意角的三角函数定义求任意角的三角函数值。 3、情感目标:培养数形结合的思想。 二、教材分析 1、教学重点:理解任意角三角函数(正弦、余弦、正切)的定义。 2、教学难点:从函数角度理解三角函数。 3、教学关键:利用数形结合的思想。 三、教学形式:讲练结合法 四、课时计划:2节课 五、教具:圆规、尺子 六、教学过程 (一)引入 我们已经学过锐角三角函数,知道他们都是以锐角为自变量,以比值 为函数值的函数,你能用直角坐标系中的终边上点的坐标来表示锐角 三角函数吗? 设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它 的终边在第一象限,在α的终边上任取一点P (a,b ),它与原点的距离 r=22b a +>0.根据初中学过的三角函数定义,我们有αsin =r b , r a αcos =

a b αtan =,取r=1,则a b tan αa,cos αb,αsin ===,引入单位圆概念。 (二)新课 1、设α是以任意角,它的终边与单位圆交于P (x,y ),那么: (1) y 叫做α的正弦,记作αsin , 即y αsin =; (2) x 叫做α的余弦,记作αcos ,即x αcos =; (3) x y 叫做α的正切,记作αtan ,即x y αtan =)0(≠x . 注:用单位圆定义的好处就在于r=1,点的横坐标表示余弦值,纵坐标 表示正弦值。 2、根据任意角的三角函数定义,得到三种函数值在各象限的符号。 通过观察发现:第一象限全为正,第二象限只有正弦为正,第三象限只有正切为正,第四象限只有余弦为正。总结出一条法则:一全正,二正弦,三正切,四余弦。 注:这有利于培养学生观察和思考的能力,以方便记忆。 3、利用勾股定理可以推出:1cos sin 22=+αα,根据三角函数定义,当)(2z k k ∈+≠π πα时,有αα αtan cos sin =。这就是说同一个角α的正弦、余弦的平方和等于1,商等于角α的正切。 4、例题 例1求 3 5π的正弦、余弦和正切值。 解:在直角坐标系中,作3π5=∠AOB ,易知AOB ∠的终边与单位圆的交点 坐标为)2 3,21 (-,所以

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

三角函数恒等变换(整理)

高考数学(文)难题专项训练:三角函数及三角恒等变换 1.已知O 是锐角三角形△ABC 的外接圆的圆心,且θ=∠A 若 AO m AC B C AB C B 2sin cos sin cos =+则=m ( ) A .θsin B. θcos C. θtan D. 不能确定 2.设函数)(x f 的定义域为D ,若存在非零实数l 使得对于任意)(D M M x ?∈,有 D l x ∈+,且)()(x f l x f ≥+,则称)(x f 为M 上的高调函数. 现给出下列命题: ①函数x x f -=2 )(为R 上的1高调函数; ②函数x x f 2sin )(=为R 上的高调函数; ③如果定义域为),1[+∞-的函数2 )(x x f =为),1[+∞-上m 高调函数,那么实数m 的取值范围是),2[+∞; ④函数)12lg()(+-=x x f 为),1[+∞上的2高调函数. 其中真命题的个数为( ) A .0 B .1 C .2 D .3 3. 已知)(x f 是定义在)3,3(-上的奇函数,当30<

4. 在ABC ?中,角C B A ,,所对的边分别为c b a ,,且c b a b 2sin 2sin log log ,22<>, bc a c b 3222+=+,若0

【2019A新教材高中数学必修第一册】5.2.1 三角函数的概念 导学案

5.2.1 三角函数的概念 1.借助单位圆理解任意角三角函数的定义; 2.根据定义认识函数值的符号。理解诱导公式一; 3.能初步运用定义分析和解决与三角函数值有关的一些简单问题。 1.教学重点:任意角的三角函数(正弦函数、余弦函数、正切函数)的定义; 2.教学难点:任意角的三角函数概念的建构过程,解决与三角函数值有关的一些简单问题。 一、设角, 是一个任意角,R ∈αα它的终边与单位圆交于点),(P y x 。 那么(1) 的正弦函数。叫做α记作 ,;sin α=y 即 (2) 的余弦函数。叫做α记作 ,;cos α=x 即 (3) 的正切。叫做α记作 ;tan α=x y 即 )0(tan ≠=x x y α是 以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,称为 (tangent function)。 二、三角函数的定义域。 三角函数 定义域 αsin =y αcos =y αtan =y 三、诱导公式 =+)2sin(παk ;=+)2(cos παk ; =+)2(tan παk 。Z k ∈ 一、探索新知 探究一.角α的始边在x 轴非负半轴,终边与单位圆交于点P 。当πα=时,点P 的坐标是什么?当

322ππα或= 时,点P 的坐标又是什么?它们唯一确定吗? 探究二 :一般地,任意给定一个角α,它的终边OP 与单位圆交点P 的坐标能唯一确定吗? 1.任意角的三角函数定义 设角, 是一个任意角,R ∈αα它的终边与单位圆交于点),(P y x 。 那么(1) 的正弦函数。叫做α记作 ,;sin α=y 即 (2) 的余弦函数。 叫做α记作 ,;cos α=x 即 (3) 的正切。叫做α记作 ;tan α=x y 即 )0(tan ≠=x x y α是 以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,称为 (tangent function)。 正弦函数,余弦函数,正切函数都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将他们称为三角函数. 通常将它们记为:正弦函数 R x x y ∈=,sin 余弦函数 R x x y ∈=,cos 正切函数 )(2,tan Z k k x x y ∈+≠=ππ 探究三:在初中我们学了锐角三角函数,知道它们都是以锐角为自变量。以比值为函数值的函数,设)2 ,0(π ∈x ,把按锐角三角函数定义求得的锐角x 的正弦记为1z ,并把按本节三角函数定义求得的 x 的正弦记为1y 。1z 与1y 相等吗?对于余弦、正切也有相同的结论吗?

高三数学一轮复习第11讲三角函数的图像与性质教案

三角函数的图像与性质

π??

据正弦函数单调性写出函数的值域(如本例以题试法(2)); (3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)). 以题试法 1. (1)函数y = 2+log 1 2 x +tan x 的定义域为________. (2)(2012·山西考前适应性训练)函数f (x )=3sin ? ????2x -π6在区间??????0,π2上的值域为( ) A.??????-32,32 B.??????-32,3 C.??????-332,332 D.???? ??-332,3 解析:(1)要使函数有意义 则????? 2+log 1 2 x ≥0, x >0,tan x ≥0, x ≠k π+π2 ,k ∈Z ?? ???? 0

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

三角函数及恒等变换高考题大全

三角函数题型分类总结 一.求值 1、sin330?= tan690° = o 585sin = 2、(1)(07全国Ⅰ) α是第四象限角,12 cos 13 α= ,则sin α= (2)(09北京文)若4 sin ,tan 05 θθ=->,则cos θ= . (3)(09全国卷Ⅱ文)已知△ABC 中,12 cot 5 A =- ,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) (07陕西) 已知sin ,5 α= 则44sin cos αα-= . (2)(04全国文)设(0,)2 π α∈,若3sin 5α= )4 π α+= . (3)(06福建)已知3( ,),sin ,25π απα∈=则tan()4 π α+= 4(07重庆)下列各式中,值为 2 3 的是( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5. (1)(07福建) sin15cos75cos15sin105+o o o o = (2)(06陕西)cos 43cos77sin 43cos167o o o o += 。 (3)sin163sin 223sin 253sin 313+=o o o o 。 6.(1) 若sin θ+cos θ= 1 5 ,则sin 2θ= (2)已知3 sin()45 x π-=,则sin 2x 的值为 (3) 若2tan =α ,则 α αα αcos sin cos sin -+= 7. (08北京)若角α的终边经过点(12)P -,,则αcos = tan 2α= 8.(07浙江) 已知cos( )2 π ?+= ,且||2 π ?<,则tan ?= 9. 若 cos 2π2sin 4αα=- ?? - ? ? ?cos sin αα+=

高中数学三角函数模型的简单应用学案苏教版必修

§1.6三角函数模型的简单应用 【学习目标 细解考纲】 1、会用三角函数解决一些简单的问题,体会三角函数是描述周期变化现象的重要函数模型. 2通过对三角函数的应用,发展数学应用意识,求对现实世界中蕴涵的一些数学模型进行思考和作出判断. 【知识梳理 双基再现】 1、三角函数可以作为描述现实世界中_________现象的一种数学模型. 2、|sin |y x =是以____________为周期的波浪型曲线. 3、如图所示,有一广告气球,直径为6m ,放在公司大楼上空,当行人仰望气球中心的仰角030BAC ∠=时,测得气球的视角01β=,若θ很小时,可取sin θθ≈,试估算该气球离地高度BC 的值约为( ). A .72cm B .86cm C .102cm 【小试身手 轻松过关】 1、设()y f t =是某港口水的深度关于时间t (时)的函数,其中024t ≤≤,下表是该港口某一天从0至24时记录的时间与水深的关系. 经长期观察,函数()y f t =的图象可以近似地看成函数sin()y k A t ω?=++的图象. 根据上述数据,函数()y f t =的解析式为( ) A .123sin ,[0,24]6t y t π=+∈ B .123sin(),[0,24]6 t y t ππ=++∈ C .123sin ,[0,24]12t y t π=+∈ D .123sin(),[0,24]122 t y t ππ=++∈ 2、如图,是一弹簧振子作简谐运动的图象,横轴表示振动的时间,纵轴表示振子的位移,则这个振子振动的函数解析式是____________. 3、如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过 12 周期后,乙点的位置将移至( ) A .甲 B .乙 C .丙 D .丁

高中数学三角函数教案

高中数学三角函数教案 一、教学目标 1.掌握任意角的正弦、余弦、正切函数的定义包括定义域、正负符号判断;了解任意 角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概 念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的 辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 二、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、正负符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性α确定,比值也随之确定与依赖性比值随着α的变化而变化. 三、教学理念和方法 教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模 仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、 讲练结合”的方法组织教学. 四、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义锐角三角形边角关系——问题情境:能推广 到任意角吗?——它山之石:建立直角坐标系为何?——优化认知:用直角坐标系研究锐角三 角函数——探索发展:对任意角研究六个比值与角之间的关系:确定性、依赖性,满足函数 定义吗?——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析对应法则、定义域、值域与正负符号判定——例题与练习——回顾小结——布置作业]

三角函数恒等变换

§6.3 两 角 和 与 差 的 三 角 函 数 【复习目标】 1.掌握两角和与差的三角函数公式,掌握二倍角公式; 2.能正确地运用三角函数的有关公式进行三角函数式的求值. 3.能正确地运用三角公式进行三角函数式的化简与恒等式证明. 【双基诊断】 (以下巩固公式) 1、163°223°253°313°等于 ( ) A.-2 1 B.2 1 C.- 2 3 D. 2 3 2、在△中,已知2,那么△一定是 ( ) A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形 3、??-?70sin 20sin 10cos 2的值是 ( ) A.2 1 B. 2 3 C. 3 D.2 4、已知α-β=2 1,α-β=3 1,则(α-β).

5、已知5 3sin ),,2 (=∈αππα,则=+)4 tan(πα 。 6、若 t =+)sin(απ,其中α是第二象限的角,则 =-)cos(απ 。 7、化简 1tan151tan15 +-等于 ( ) ()A () B () C 3 () D 1 8、(1tan 20)(1tan 21)(1tan 24)(1tan 25)++++= ( ) ()A 2 ()B 4 ()C 8 ()D 16 9、已知α和(4 π-α)是方程2 0的两个根,则a 、b 、c 的关系是 ( ) B.2 10、0015tan 75tan += 。 11、设14°14°,16°16°, 6 6,则a 、b 、c 的大小关系是 ( ) <b <c <c <b <c <a <a <c 12、△中,若2a ,60°,则.

13、f (x )= x x x x cos sin 1cos sin ++的值域为 ( ) A.(-3 -1,-1)∪(-1, 3 -1) B. (21 3-- ,2 13-) C.[2 1 2--,-1]∪(-1, 2 12-) D. [21 2-- ,2 12-] 14、已知∈(0,2 π),β∈(2 π,π),(α+β)=65 33,β=- 13 5 ,则α. 15、下列各式中,值为2 1的是 ( ) 15°15° B.2 2 12 π- 1 C. 2 30cos 1? + D. ? -?5.22tan 15.22tan 2 16、已知2θ 2θ3 32,那么θ的值为,2θ的值为. 17、=000080cos 60cos 40cos 20cos 。

高中数学学案:三角函数的最值问题

高中数学学案:三角函数的最值问题 1. 会通过三角恒等变形、利用三角函数的有界性、结合三角函数的图象,求三角函数的最值和值域. 2. 掌握求三角函数最值的常见方法,能运用三角函数最值解决一些实际问题. 1. 阅读:必修4第24~33页、第103~116页、第119~122页. 2. 解悟:①正弦、余弦、正切函数的图象和性质是什么?②三角函数y =A sin (ωx +φ)(A>0,ω>0)的最值及对应条件;③两角和与差的正弦、余弦、正切公式是什么?辅助角公式是否熟练?④二倍角公式是什么?由倍角公式得到的降幂扩角公式是什么?必修4第123页练习第4题怎么解? 3. 践习:在教材空白处,完成必修4第131页复习题第9、10、16题. 基础诊断 1. 函数f(x)=sin x,x ∈? ????π6,2π3的值域为? ?? ??12,1__. 2. 函数f(x)=sin x -cos ? ?? ??x +π6的值域为3]__. 解析:因为f(x)=sin x -cos (x +π6)=sin x -32cos x +12sin x =32sin x -32cos x =3sin (x -π6), 所以函数f(x)=sin x -cos (x +π6)的值域为[-3,3]. 3. 若函数f(x)=(1+3tan x)cos x,0≤x<π2,则f(x)的最大值为__2__. 解析:f(x)=(1+3tan x)cos x =cos x +3sin x =2sin ? ????x +π6.因为0≤x<π2,所以π6≤x +π6<2π3,所以sin ? ????x +π6∈???? ??12,1, 所以当sin ? ?? ??x +π6=1时,f(x)有最大值2. 4. 函数y =2sin 2x -3sin 2x 范例导航 考向? 形如y =a sin 2x +b cos x +c 的三角函数的最值

高中数学任意角的三角函数教案

§1.2.1 任意角的三角函数 教学目标 <一> 知识目标 1、掌握任意角的三角函数的定义。 2、已知角α终边上一点,会求角α的各三角函数值。 3、记住三角函数的定义域和诱导公式(一)。 <二> 能力目标 1、理解并掌握任意角的三角函数的定义。 2、树立映射观点,正确理解三角函数是以实数为自变量的函数。 3、通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。 <三> 德育目标 1、使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式。 2、学习转化的思想,培养学生严谨治学、一丝不苟的科学精神。 教学重难点 任意角的正弦、余弦、正切的定义 (包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。 教学过程 问题1:你能回忆一下初中里学过的锐角三角函数(正弦,余弦,正切)的定义吗? 锐角三角函数定义

问题2:在终边上移动点P的位置,这三个比值会改变吗? 在直角坐标系中,以原点O为圆心,以单位长度为半径的圆叫单位圆 即:锐角三角函数可以用单位圆上的点的坐标来表示 推广: 我们也可以利用单位圆定义任意角三角函数(正弦,余弦,正切) 任意角的三角函数定义: 设α是一个任意角,它的终边与单位圆交于点P(x,y),则: 正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数. (由于角的集合与实数集之间可以建立一一对应关系,因此三角函数可以看成是自变量为实数的函数.)

所以三角函数可以记为: 我们把角X的正弦、余弦、正切统称为三角函数 问题3:如何求α角的三角函数值? 求α角的三角函数值即求α终边与单位圆交点的纵、横坐标或坐标的比值。例1: 解: 例2: 事实上: 三角函数也可定义为: 设α是一个任意角,它的终边经过点P(x,y),则

三角函数恒等变换

三角函数恒等变换 一、三角函数的诱导公式 1、下列各角的终边与角α的终边的关系 角 2k π+α(k ∈Z) π+α -α 图示 与α角终边的关系 相同 关于原点对称 关于x 轴对称 角 π-α 2π -α 2 π +α 图示 与α角终边的关系 关于y 轴对称 关于直线y=x 对称 2、六组诱导公式 组数 一 二 三 四 五 六 角 2k π+α (k ∈Z) π+α -α π-α 2 π -α 2 π +α 正弦 sin α -sin α -sin α sin α cos α cos α 余弦 cos α - cos α cos α - cos α sin α -sin α 正切 tan α tan α - tan α - tan α 口诀 函数名不变 符号看象限 函数名改变 符号看象限 注:诱导公式可概括为的各三角函数值的化简公式。记忆规律是:奇变偶不变,

符号看象限。其中的奇、偶是指的奇数倍和偶数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号。 二、两角和与差的正弦、余弦和正切公式 1、两角和与差的正弦、余弦和正切公式 2、二倍角的正弦、余弦、正切公式 . sinα= 2 2tan 2 1tan 2 α α + , cosα= 2 2 1tan 2 1tan 2 α α - + 3、形如asinα+bcosα的化简 asinα+bcosα=22 a b +sin(α+β).其中cosβ= 22 a a b + ,sinβ= 22 b a b +三、简单的三角恒等变换

2018版高中数学三角函数1.2.1任意角的三角函数一导学案新人教A版

1.2.1 任意角的三角函数(一) 学习目标 1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终边相同的角的同一三角函数值相等. 知识点一 任意角的三角函数 使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在终边上任取一点P ,作PM ⊥x 轴于M ,设P (x ,y ),|OP |=r . 思考1 角α的正弦、余弦、正切分别等于什么? 答案 sin α=y r ,cos α=x r ,tan α=y x . 思考2 对确定的锐角α,sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变? 答案 不会.因为三角函数值是比值,其大小与点P (x ,y )在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关. 思考3 在思考1中,当取|OP |=1时,sin α,cos α,tan α的值怎样表示? 答案 sin α=y ,cos α=x ,tan α=y x . 梳理 (1)单位圆 在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. (2)定义 在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的正弦,记作sin α, 即sin α=y ; ②x 叫做α的余弦,记作cos α,即cos α=x ; ③y x 叫做α的正切,记作tan α,即tan α=y x (x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.

高一数学三角函数教案

高一数学三角函数教案 高一数学《三角函数》教案如下: 已知三角函数值求角反正弦,反余弦函数 目的:要求学生初步了解理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。 过程: 一、简单理解反正弦,反余弦函数的意义。 由 1在R上无反函数。 2在上, x与y是一一对应的,且区间比较简单 在上,的反函数称作反正弦函数, 记作,奇函数。 同理,由 在上,的反函数称作反余弦函数, 记作 二、已知三角函数求角 首先应弄清:已知角求三角函数值是单值的。 已知三角函数值求角是多值的。 例一、1、已知,求x 解:在上正弦函数是单调递增的,且符合条件的角只有一个 ∴ 即 2、已知 解:,是第一或第二象限角。 即。 3、已知

解: x是第三或第四象限角。 即或 这里用到是奇函数。 例二、1、已知,求 解:在上余弦函数是单调递减的, 且符合条件的角只有一个 2、已知,且,求x的值。 解:, x是第二或第三象限角。 3、已知,求x的值。 解:由上题:。 介绍:∵ ∴上题 例三、见课本P74-P75略。 三、小结:求角的多值性 法则:1、先决定角的象限。 2、如果函数值是正值,则先求出对应的锐角x; 如果函数值是负值,则先求出与其绝对值对应的锐角x, 3、由诱导公式,求出符合条件的其它象限的角。 四、作业:P76-77 练习 3 习题4.11 1,2,3,4中有关部分。 高一数学《三角函数的周期性》教案如下: 一、学习目标与自我评估 1 掌握利用单位圆的几何方法作函数的图象 2 结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3 会用代数方法求等函数的周期

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

高中数学三角函数恒等变形公式

三角函数恒等变形公式 以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)辅助角公式: Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中 sint=B/(A2+B2)^(1/2) cost=A/(A2+B2)^(1/2) tant=B/A Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B 倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α) tan(2α)=2tanα/[1-tan2(α)] 三倍角公式: sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α) cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α) tan(3α)=tan a · tan(π/3+a)· tan(π/3-a) 半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα 降幂公式 sin2(α)=(1-cos(2α))/2=versin(2α)/2 cos2(α)=(1+cos(2α))/2=covers(2α)/2 tan2(α)=(1-cos(2α))/(1+cos(2α)) 万能公式: sinα=2tan(α/2)/[1+tan2(α/2)] cosα=[1-tan2(α/2)]/[1+tan2(α/2)] tanα=2tan(α/2)/[1-tan2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

高中数学第一章三角函数1.1.1任意角学案(含解析)新人教A版必修4

高中数学第一章三角函数1.1.1任意角学案(含解析)新人教A 版必修4 考试标准 课标要点学考要求高考要求 任意角的概念 a a 终边相同的角的表示 b b 象限角的概念 b b 注:“a”表示“了解”,“b”表示“理解”,“c”表示“掌握”. 知识导图 学法指导 1.结合实例明确任意角的概念. 2.本节的重点是理解并掌握正角、负角、零角的概念,掌握用集合的形式表示终边相同的角,并会判断角的终边所在的象限. 1.角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 2.角的表示 顶点:用O表示; 始边:用OA表示,用语言可表示为起始位置; 终边:用OB表示,用语言可表示为终止位置. 状元随笔(1)在画图时,常用带箭头的弧来表示旋转的方向.

(2)为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可以简记成“α”. 3.角的分类 类型定义图示 正角按逆时针方向旋转形成的角 负角按顺时针方向旋转形成的角 零角一条射线没有作任何旋转,称它形成了一个零角 在直角坐标系中研究角时,当角的顶点与原点重合,角的始边与x轴的非负半轴重合时,角的终边在第几象限,就说这个角是第几象限角,如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 5.终边相同的角 所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.状元随笔(1)α为任意角,“k∈Z”这一条件不能漏. (2)k·360 °与α中间用“+”连接,k·360 °-α可理解成k·360 °+(-α). (3)当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差360 °的整数倍.终边不同则表示的角一定不同. [小试身手] 1.判断下列命题是否正确. (正确的打“√”,错误的打“×”) (1)角的始边、终边是确定的,角的大小是确定的.( ) (2)第一象限的角一定是锐角.( ) (3)终边相同的角是相等的角.( ) 答案:(1)×(2)×(3)× 2.下列各角:-60°,126°,-63°,0°,99°,其中正角的个数是( ) A.1 B.2 C.3 D.4 解析:结合正角、负角和零角的概念可知,126°,99°是正角,-60°,-63°是负角,0°是零角,故选B. 答案:B

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

相关文档
最新文档