对最大全零子矩阵的研究

对最大全零子矩阵的研究
对最大全零子矩阵的研究

对最大全0子矩阵问题的研究

【摘要】

最大全0子矩阵问题是信息奥赛中的一个经典问题。本文主要介绍最大全0子矩阵问题的多种求解方法。

【关键字】

枚举单调队列构造

目录

正文 (2)

问题描述 (2)

算法分析 (2)

算法1 (2)

算法2 (2)

算法3 (2)

算法4 (2)

算法5 (2)

算法6 (3)

算法总结 (4)

总结 (4)

附录 (4)

问题描述

给定一个n*m的0、1矩阵,求一个最大的全0子矩阵。

算法分析

对于这个问题,首先想到的就是枚举算法。

1、先枚举左上角顶点和右下角顶点,再依次检验每个矩阵是否合法,这个算法的时间复杂度为O(n ^ 6)(参考程序见附件1)。

2、检验一个矩阵是否合法可以用部分和在O(1)的时间内完成,通过这个优化可以将时间复杂度降到O(n ^ 4)(参考程序见附件2)。

上述枚举算法的时间复杂度太高不能解决问题。一个问题的解法,往往可以由一个简单问题的解法推广而来,这个问题也不例外,我们

不妨另辟蹊径将问题简化。

我们可以先令n = 1,那么这个问题就可以

在O(n)时间内扫描出解。将这个算法推广到二维,

我们就得出了如下算法:

3、枚举上下边界,将二维矩阵压缩成一维

而后扫描出解(参考程序见附件7),时间复杂

度为O(n ^ 3)。

回到最朴素的枚举算法进行思考,我们发现朴素算法之所以时间复杂度高是因为它对决定一个矩形的所有量进行枚举。我们可不可以枚举一部分再计算一部分呢?答案显然是肯定的。

对于一个子矩阵而言,只要确定了底边,高度就可

以计算出来,它的高度就是底边上各个点向上延伸的高

度的最小值,而对于一个点向上延伸的高度可以用一个

数组H动态的维护:

H[i][j] = H[i - 1][j] + 1 (A[i][j] == 0 && i != 1)

= 0 (Else)

基于这个思想,我们就得出了如下算法:

4、枚举子矩阵的底边(右下角顶点、高度),逐个求解更新最优值,时间复杂度:O(n ^ 3)(参考程序见附件3)。

仔细整理和观察算法4中枚举到的矩形,不难发现,

其中很多矩形明显可以向左右拓展形成更优的解。算法4

中,我们枚举了很多这样的矩形。其实,我们完全可以避

免枚举这些矩形,这可以用单调队列来实现。基于这个思

想,我们就得出了如下算法:

5、每个元素依次进队,并在该元素退队的时候将以该

元素的值为高度、以该元素的插入位置与扫描列之间的线

段为宽度构成的子矩阵更新答案,在这个算法中每个元素

进队一次出队一次,这样就把时间复杂度降到了O(n ^ 2)(参

考程序见附件4)。

具体操作如下图所示:

上述算法都是基于枚举的思想。那么可不可以构造呢?

一个点要想构造出一个矩形就要向四周延伸。我们可以先将点向上延伸,再将延伸出的部分向左右延伸。这样就可以构造出一个矩形。下面就是要证明最优解可以通过这种方法构造出来。

假定一个矩形是一个最优解,那么这个矩形就不能再向外拓展,那么在紧靠这个矩形的四边的点上必然存在一些黑点(即a[i][j] == 1),我们称这些点为限制点。那么由在矩形底边上并且上方有限制点的那些点经上述方法拓展后一定能拓展出这个最优矩形。

在这个方法中,我们要维护一个点向左延伸的最大距离

L与一个点向右延伸的最大距离R。维护方法如下:

L[i][j] = min(L[i - 1][j],tl)

R[i][j] = min(R[i - 1][j],tr)

(其中tl、tr是当列能向左、右方向延伸的距离)

于是我们就得出了如下算法:

6、依次扫描每一个点,对于每一个点按照上述方法维护

L、R、H三个量,用每个点的(R + L - 1) * H更新答案即可(参

考程序见附件5)。

现在,我们比较一下以上六种算法。

问题拓展

给定一个n * m * p 的0、1立方体,求最大全0子立方体。

通过枚举高度和起点将三维立方体压缩成二维矩阵再通过上述方法求解,时间复杂度:O(n ^ 4)(参考程序见附件6)。

【总结】

在面对一道较为简单的题目时,许多选手常常在想到一种AC算法后就不去深入思考。殊不知,一题多解不仅是对题目本质的深入挖掘和探讨,也是对自己分析与思考能力的极大锻炼。求解一个问题不能浅尝辄止,而应该从各个角度进行思考,尝试一题多解,从而实现对问题的彻底解决。

【附录】

附件1:2D[1].cpp

附件2:2D[2].cpp

附件3:2D[3].cpp

附件4:2D[4].cpp

附件5:2D[5].cpp

附件6:3D.cpp

附件7:2D[6].cpp

线性代数知识点总结

线性代数知识点总结 第一章 行列式 1. n 阶行列式()() 12 1212 11121212221212 1= = -∑ n n n n t p p p n p p np p p p n n nn a a a a a a D a a a a a a 2.特殊行列式 () () 1112 11222211221122010 n t n n nn nn nn a a a a a D a a a a a a a = =-= 1 2 12 n n λλλλλλ=, () ()1 12 2 121n n n n λλλλλλ-=- 3.行列式的性质 定义 记 11121212221 2 n n n n nn a a a a a a D a a a =,11211 1222212n n T n n nn a a a a a a D a a a = ,行列式T D 称为行列式D 的转置行列式。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行() ?i j r r 或列() ?i j c c ,行列式变号。 推论 如果行列式有两行(列)完全相同(成比例),则此行列式为零。 性质3 行列式某一行(列)中所有的元素都乘以同一数()?j k r k ,等于用数k 乘此行列式; 推论1 D 的某一行(列)中所有元素的公因子可以提到D 的外面; 推论2 D 中某一行(列)所有元素为零,则=0D 。 性质4 若行列式的某一列(行)的元素都是两数之和,则 1112111212222212 () ()()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+11121111121121222221222212 12 i n i n i n i n n n ni nn n n ni nn a a a a a a a a a a a a a a a a a a a a a a a a ''=+ ' 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,

线性代数知识点归纳同济第五版

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1. 行列式的计算: ① (定义法)12 1212 11 12121222() 121 2 ()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.

④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==**=-1 例 计算 2-100-1 300001100-25 解 2-100 -1 30000110 -2 5 =2-1115735-13-25?=?= ⑤ 关于副对角线: (1) 2 1121 21 1211 1()n n n n n n n n n n n a O a a a a a a a O a O ---* = =-1 ⑥ 范德蒙德行列式:()1 2 2 22 12 11 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏111 例 计算行列式

⑦ a b - 型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-

旋转矩阵公式法

旋转矩阵公式法!一,选11个号,中了5个号,100%能组合到4个号。假设你选了01、02、03、04、05、06、07、08、09、10、11,则可以组合成以下22注,需投入44元: (1)01、05、07、09、11 (2)01、05、06、08、10 (3)01、04、06、08、09 (4)01、04、05、07、10 (5)01、03、07、08、11 (6)01、03、04、09、10 (7)01、02、06、10、11 (8)01、02、04、08、11 (9)01、02、03、06、07 (10)01、02、03、05、09 (11)02、07、08、09、10 (12)02、05、06、07、08 (13)02、04、07、09、11 (14)02、04、05、06、09 (15)02、03、05、10、11 (16)02、03、04、08、10 (17)03、06、08、09、11 (18)03、06、07、09、10 (19)03、04、05、07、08 (20)03、04、05、06、11 (21)04、06、07、10、11 (22)05、08、09、10、11 二,选11个号,中了4个号,100%能组合到4个号。假设你选了01、02、03、04、05、06、07、08、09、10、11,则可以组合成以下66注,只要132元就能搞定: (1)01、07、08、09、10 (2)01、06、07、09、11 (3)01、05、08、09、11 (4)01、05、07、10、11 (5)01、05、06、08、10 (6)01、04、09、10、11 (7)01、04、06、08、11 (8)01、04、06、07、10 (9)01、04、05、07、08 (10)01、04、05、06、09 (11)01、03、08、10、11 (12)01、03、06、09、10 (13)01、03、06、07、08 (14)01、03、05、07、09 (15)01、03、05、06、11 (16)01、03、04、08、09 (17)01、03、04、07、11 (18)01、03、04、05、10

一般矩阵可逆的判定

一般矩阵可逆的判定 Good (11统计数学与统计学院 1111060231) 摘要:作为一张表,矩阵的运算规则具有特殊性。在运算的过程中,逆矩阵则是作为矩阵乘法的逆运算而存在的。由于矩阵乘法的逆运算仅限于方阵,故而逆矩阵又作为一项特殊的矩阵除法运算而存在。对于矩阵的运算来说,逆矩阵是不可缺少的一部分。在以线性代数为基础的研究中,逆矩阵是解决实际问题的一个最直观,最实用的工具。然而在实际研究中,并不是所有方阵都存在逆矩阵,那么对于矩阵可逆的判定就显得极其重要了。 关键字:n阶方阵A;A≠0;r A=n;?λn≠0;AB=BA=I n 0 引言 逆矩阵是矩阵乘法逆运算的结果。这个逆运算的过程被作为矩阵运算的一部分而不可或缺。对于所有矩阵而言,只有方阵中可逆的那部分才存在逆矩阵;就好像四边形一样,只有当矩形的四边相等才能被叫做正方形。然而也就是这很特殊的一小部分,它的运用却充斥着所有与线性代数相关的领域。比如:物理学,经济学,统计学,数学,社会管理学等等。对于矩阵的运算来说,逆矩阵的运算至关重要。由于矩阵在实际运用中具有的重要作用,而逆矩阵对于矩阵来说又具有重要的作用。在以矩阵为研究对象的研究过程中,研究逆矩阵也就有了很重要的意义。 对于研究逆矩阵的过程中,“什么样的矩阵才可逆?”是值得深讨的问题。就像求四边形中的正方形一样,要求正方形,最基本的前提就是:四边形必须是矩形。只有四边形满足四个内角都是90度的时候,四边形才称的上是矩形。而对于矩形来说,只有满足矩形的四条边都相等时,这样的矩形才能被称为正方形。对于矩阵可逆来说,一个矩阵要可逆,最基本的前提:必须满足矩阵的行列相等,矩阵必须是一个方阵才行。研究方阵的可逆,对于实际应用才存在实际意义。那么对于方阵来说,又需要满足什么样的条件,方阵才可逆呢?本文也就是从可逆矩阵的判定条件入手,着重分析可逆判定的充要条件。最后介绍几种常用的求解逆矩阵的方法。 1 矩阵的概念 1.0矩阵的定义 定义1:令F是一个数域,用F上的m×n个数a ij(i=1,2,?,m;j=1,2,?,n)排成m行n列的矩阵列,则称为m×n阵,也称为一个F上的矩阵,简记为A mn。 A=a11a12 a21a22 ?a1n ?a2n ?? a m1a m2 ?? ?a mn 1.1逆矩阵的定义 定义2:设A是数域F上的n阶方阵,若数域F上同时存在一个n阶方阵B,使得 AB=BA=I n 则称B是A的逆矩阵,记作:B=A?1。

矩阵知识点归纳

矩阵知识点归纳 (一)二阶矩阵与变换 1.线性变换与二阶矩阵 在平面直角坐标系xOy 中,由? ?? ?? x ′=ax +by , y ′=cx +dy ,(其中a ,b ,c ,d 是常数)构成的变换 称为线性变换.由四个数a ,b ,c ,d 排成的正方形数表?? ?? ?? a b c d 称为二阶矩阵,其中a ,b ,c ,d 称为矩阵的元素,矩阵通常用大写字母A ,B ,C ,…或(a ij )表示(其中i ,j 分别为元素a ij 所在的行和列). 2.矩阵的乘法 行矩阵[a 11a 12]与列矩阵??????b 11b 21的乘法规则为[a 11a 12]??????b 11b 21=[a 11b 11+a 12b 21],二阶矩阵???? ? ? a b c d 与列矩阵??????x y 的乘法规则为??????a b c d ??????x y =???? ?? ax +by cx +dy .矩阵乘法满足结合律, 不满足交换律和消去律. 3.几种常见的线性变换 (1)恒等变换矩阵M =???? ?? 1 00 1; (2)旋转变换R θ对应的矩阵是M =?? ?? ?? cos θ -sin θsin θ cos θ; (3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M 1=??????1 00 -1;若关于y 轴对称,则变换对应矩阵为M 2=???? ?? -1 0 0 1;若关于坐标原点对称,则变 换对应矩阵M 3=???? ?? -1 0 0 -1; (4)伸压变换对应的二阶矩阵M =???? ?? k 1 00 k 2,表示将每个点的横坐标变为原来的k 1倍,纵 坐标变为原来的k 2倍,k 1,k 2均为非零常数; (5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M =?????? 1 00 0; (6)切变变换要看沿什么方向平移,若沿x 轴平移|ky |个单位,则对应矩阵M =???? ?? 1 k 0 1, 若沿y 轴平移|kx |个单位,则对应矩阵M =???? ?? 1 0k 1.(其中k 为非零常数). 4.线性变换的基本性质 设向量α=??????x y ,规定实数λ与向量α的乘积λα=??????λx λy ;设向量α=??????x 1y 1,β=???? ?? x 2y 2,规定 向量α与β的和α+β=???? ?? x 1+x 2y 1+y 2. (1)设M 是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M (λα)=λM α,②M (α+β)=M α+M β. (2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).

三维旋转矩阵的计算

三维旋转矩阵的计算 旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。 在三维空间中,旋转变换是最基本的变换类型之一,有多种描述方式,如Euler 角、旋转矩阵、旋转轴/旋转角度、四元数等。本文将介绍各种描述方式以及它们之间的转换。 1. 旋转矩阵 用一个3阶正交矩阵来表示旋转变换,是一种最常用的表示方法。容易证明,3阶正交阵的自由度为3。注意,它的行列式必须等于1,当等于-1的时候相当于还做了一个镜像变换。 2. Euler角 根据Euler定理,在三维空间中,任意一种旋转变换都可以归结为若干个沿着坐标轴旋转的组合,组合的个数不超过三个并且两个相邻的旋转必须沿着不同的坐标轴。因此,可以用三个沿着坐标轴旋转的角度来表示一个变换,称为Euler角。旋转变换是不可交换的,根据旋转顺序的不同,有12种表示方式,分别为:XYZ、XZY、XYX、XZX、YXZ、YZX、YXY、YZY、ZXY、ZYX、ZXZ、ZYZ,可以自由选择其中的一种。对于同一个变换,旋转顺序不同,Euler角也不同,在指定Euler角时应当首先约定旋转顺序。 2.1 Euler角转化为旋转矩阵 不妨设先绕Z轴旋转γ,再绕Y轴旋转β,最后绕X轴旋转α,即旋转顺序为XYZ,旋转矩阵

3. 旋转轴/旋转角度 用旋转轴的方向向量n和旋转角度θ来表示一个旋转,其中 θ>0表示逆时针旋转。 3.1 旋转轴/旋转角度转化为旋转矩阵 设v是任意一个向量,定义

矩阵图基本知识

矩阵图基本知识 (一)矩阵图的概念 所谓矩阵图是一种利用多维思考去逐步明确问题的方法。其工具是矩阵图。就是从问题的各种关系中找出成对要素L1,L2,…,L i,…,L n和R1,R2,…,R j,…,R n,用数学上矩阵的形式排成行和列,在其交点上标示出L和R各因素之间的相互关系,从中确定关键点的方法。 在分析质量问题的原因、整理顾客需求、分解质量目标时,将问题、顾客需求、质量目标(设为L)放在矩阵图的左边,将问题的原因、顾客需求转化来的质量目标或针对质量目标提出的质量措施(设为R)列在矩阵图的上方,用不同的符号表示它们之间关系的强弱,通常用◎表示关系密切,○表示有关系,△表示可能有关系,如图6.4-16所示。通过在交点处给出行与列对应要素的关系及关系程度,可以从二元关系中探讨问题所在和问题的形态,并得到解决问题的设想。 在寻求问题的解决手段时,若目的(或结果)能够展开为一元性手段(或原因),则可用树图法。然而,若有两种以上的目的(或结果),则其展开用矩阵图法较为合适。 (二)矩阵图的种类 在矩阵图法中,按矩阵图的型式可将矩阵图分为L型、T型、X型和Y 型四种。如图6.4-17所示。 (1)L型矩阵图是一种最基本的矩阵图,如图6.4-17(a)所示,它是由A类因素和B类因素二元配置组成的矩阵图。这种矩阵图适用于把若干个目的和为了实现这些目的的手段,或若干个结果及其原因之间的关联。 (2)T型矩阵图是由C类因素和B类因素组成的L型矩阵图和由C类因素和A类因素组成的L型矩阵图组合在一起的矩阵图,如图6.4-17(b)所示。即表示C类因素分别与B类因素和A类因素相对应的矩阵图。 (3)Y型矩阵图是由A类因素和B类因素、B类因素和C类因素、C类因

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

矩阵秩重要知识点总结_考研必看

一. 矩阵等价 行等价:矩阵A 经若干次初等行变换变为矩阵B 列等价:矩阵A 经若干次初等列变换变为矩阵B 矩阵等价:矩阵A 经若干次初等行变换可以变为矩阵B ,矩阵B 经若干次初等行变换可以变成矩阵A ,则成矩阵A 和B 等价 矩阵等价的充要条件 1. 存在可逆矩阵P 和Q,PAQ=B 2. R(A)=R(B) 二. 向量的线性表示 Case1:向量b r 能由向量组A 线 性表示: 充要条件: 1.线性方程组A x r =b 有解 (A)=R(A,b) Case2:向量组B 能由向量组A 线性表示 充要条件: R(A)=R(A,B) 推论 ∵R(A)=R(A,B),R(B) ≤R(A,B) ∴R(B) ≤R(A) Case3:向量组A 能由向量组B 线性表示 充要条件: R(B)=R(B,A) 推论 ∵R(B)=R(A,B),R(A) ≤R(A,B) ∴R(A) ≤R(B) Case4:向量组A 和B 能相互表示,即向量组A 和向量组B 等价 充要条件: R(A)=R(B)=R(A,B)=R(B,A) Case5:n 维单位坐标向量组能由矩阵A 的列向量组线性表示 充要条件是: R(A)=R(A,E)

n=R(E)<=R(A),又R(A)>=n ,所以R(A)=n=R(A,E) 三. 线性方程组的解 1. 非齐次线性方程组 (1) R(A)=R(A,B),方程有解. (2) R(A)=R(A,B)=n ,解唯一. (3) R(A)=R(A,B)

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

矩阵可逆的条件以及特征值,特征向量与可对角化条件

矩阵可逆的条件: 1 秩等于行数 2 行列式不为0,即|A|≠0 3 行向量(或列向量)是线性无关组 4 存在一个矩阵,与它的乘积是单位阵 5 齐次线性方程组AX=0 仅有零解 6 非齐次线性方程组AX=b 有唯一解 7 可以经过初等行变换化为单位矩阵,即该矩阵等价于n阶单位矩阵 8 它去左(右)乘另一个矩阵,秩不变 特征值、特征向量与可对角化条件: 定义:设A 是数域F 上n 阶矩阵,如果存在可逆阵P ,使P -1AP 为对角阵,那么A 称为可对角化矩阵。 并不是所有的n 阶矩阵都可对角化,例如,A= 就一定不可对角化,所以我们要首先讨论可对角化的条件。 数域F 上n 阶矩阵A 可对角化的充分必要条件为存在n 个数λ1 , λ2 , ... , λn F 及n 个线性无关的向量p1,p2,...,pn, 使APi = λiPi i=1,2, ...,n. 。 数域F 上n 阶矩阵A 可对角化的充分必要条件是A 有n 个线性无关的特征向量。

特征值与特征向量的性质: (1 )相似矩阵有相同的特征多项式,从而有相同的特征值、相同的迹和相同的行列式。 (2 )如果λ是矩阵A 的一个特征值,是一个多项式,那么是矩阵多项式的一个特征值 . (3 )如果A 是一个可逆阵,λ是A 的一个特征值,那么, 1 /λ 是A -1 的一个特征值 . (4 )属于不同特征值的特征向量线性无关。 (5 )对矩阵A 的每个特征值,它的几何重数一定不超过代数重数。(6 )如果A 是一个是对称矩阵,那么它的每个特征值的几何重数与代数重数相等,从而它有个线性无关的特征向量,他一定可以对角化。

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

旋转矩阵公式表

S=10—13的旋转矩阵公式一览 选10个号码,出7中6型旋转矩阵 A,B,C,D,E,F,G A,B,C,D,H,I,J A,B,C,E,F,H,J A,B,C,E,F,I,J A,B,D,E,F,H,J A,B,D,E,F,I,J A,B,E,F,G,H,I A,C,E,G,H,I,J B,D,F,G,H,I,J C,D,E,F,G,H,I C,D,E,F,G,H,J C,D,E,F,G,I,J 一、10个号码(选6中5 - 12注) 2 3 5 6 7 9 ,1 2 4 7 9 10, 3 4 6 7 8 10 3 4 5 6 9 10 ,1 3 5 6 7 10, 1 2 4 5 6 8 1 2 3 4 8 9 ,1 4 5 7 8 9, 2 3 5 7 8 10 1 2 6 8 9 10 ,1 2 3 4 5 10, 1 3 6 7 8 9 二、11个号码(选6中5 – 19注) 2 3 7 9 10 11,2 4 7 8 10 11,1 3 4 6 7 10

2 3 4 6 8 9,1 4 5 7 8 9,3 5 7 8 9 10 1 2 6 8 9 10,1 2 3 4 5 10,1 2 3 7 8 11 1 2 4 6 7 11,2 4 5 8 9 11,3 4 5 6 7 11 1 2 3 5 6 9,2 5 6 7 8 10,1 3 4 8 9 11 1 6 7 8 9 11, 三、12个号码(选6中5 – 33注) 2 3 9 10 11 12, 4 7 8 10 11 12,1 3 6 7 10 12 1 2 5 8 10 12, 1 5 7 9 11 12,3 5 6 8 11 12 2 3 4 6 8 10, 2 6 7 8 9 12,3 5 8 9 10 12 4 5 6 9 10 12, 1 3 4 5 10 11,2 3 7 8 10 11 1 2 4 7 9 10, 2 4 5 8 9 11,3 4 6 7 9 11 1 2 3 5 6 9, 2 5 6 7 10 11,1 3 4 8 9 12 1 6 8 9 10 11, 1 4 5 6 7 8,1 4 5 6 10 11 2 3 4 5 7 12, 1 3 4 8 11 12,1 2 3 5 7 11 1 3 7 8 9 11, 1 2 4 6 9 12,1 2 4 10 11 12 1 2 6 8 11 12, 1 2 3 4 7 8,2 4 6 7 11 12 1 2 3 6 9 11, 5 6 7 8 9 10,3 4 5 7 9 10 四、13个号码(选6中5 - 56注) 3 9 10 11 12 13, 4 7 8 10 12 13,1 3 6 7 12 13 1 2 5 6 7 10,1 2 5 7 12 13,5 6 8 11 12 13

矩阵可逆性总结

矩阵的可逆性 摘要:本文通过由矩阵的除法引出可逆矩阵,介绍了可逆 矩阵的定义,性质,算法及其判定方法等等,之后对可逆矩阵进行了推广,还有关于广义逆的介绍。 关键词:可逆矩阵;伴随矩阵;三角矩阵;广义逆矩阵 正文: 一、逆矩阵的定义: 因为数的除法a ÷b 是:已知两数的乘积b 及其中一个因数a 求另外一个因数x ,也就是解方程ax =b 。只要能求出除数a 的倒数a ?1使aa ?1=1,则除法b ÷a 可以转化为乘法b ×a ?1。而我们联想到矩阵的运算上,对矩阵A , B ,用B “除以”A 也就是要求一矩阵X 使AX =B 。在之前的学习过程中已经了解了矩阵的乘法不满足交换律,还应考虑求另一矩阵Y 满足YA =B 。如果能找到一个A ?1满足条件A ?1A =I ,在矩阵方程AX =B 两边左乘A ?1就得到A ?1AX =A ?1B 从而X =A ?1B 。如果这个A ?1还满足条件AA ?1=I ,则A (A ?1B )=B ,X =A ?1B 就是AX =B 的唯一解。类似地,如果上述A ?1存在,可知YA =B 有唯一解Y =BA ?1。 所以给逆矩阵下一个定义:对于矩阵A,如果存在矩阵B满足条件AB=且BA=I (表示单位矩阵),就称A可逆,并且称B是A的逆。表示成B=A 1- 二、矩阵可逆的等价条件: 1、A 可逆?F ∈?B ,使得I AB =;(定义法) 2、若A 可逆,则A 是方阵且0≠A ; 3、若0≠A ,则方阵A 可逆; 4、n 级矩阵A 可逆?矩阵A 的秩为n,即r(A )=n ; 5、n 级矩阵A 可逆?A 的行向量组线性无关; 6、n 级矩阵A 可逆?A 的列向量组线性无关; 7、n 级矩阵A 可逆?A 可以表示成一系列初等矩阵的乘积; 8、n 级矩阵A 可逆?A 可以经过一系列初等行变换化为I ; 9、n 级矩阵A 可逆?A 可以经过一系列初等列变换化为I ; 10、n 级矩阵A 可逆?齐次线性方程组A x=0只有唯一零解. 三、逆矩阵的性质: 1、 逆的唯一性: 假如A 可逆,那么A 的逆B 是唯一的。

20个号码中6保5旋转矩阵

20个号码中6保5旋转矩阵 共计:1073注(金额:¥2146元) 01,06,08,10,11,12 01,02,03,04,05,06 02,07,08,11,15,17 04,06,09,11,12,19 01,06,08,10,14,17 01,02,03,04,05,07 02,07,08,11,16,18 04,06,09,14,17,19 01,06,08,12,13,15 01,02,03,04,09,14 02,07,08,13,14,15 04,06,09,15,19,20 01,06,08,15,16,18 01,02,03,04,18,20 02,07,08,16,19,20 04,06,09,16,18,20 01,06,09,10,11,17 01,02,03,05,08,15 02,07,09,10,11,14 04,06,10,11,13,19 01,06,09,10,12,19 01,02,03,05,10,19 02,07,09,10,19,20 04,06,10,11,14,19 01,06,09,12,16,17 01,02,03,05,12,17 02,07,09,12,13,18 04,06,11,12,16,20 01,06,09,13,14,18 01,02,03,06,09,10 02,07,09,12,15,16 04,06,11,12,19,20 01,06,09,15,17,18 01,02,03,06,15,17 02,07,09,17,18,19 04,06,11,13,16,17 01,06,10,14,15,17 01,02,03,07,08,09 02,07,10,11,19,20 04,06,11,14,15,17 01,06,10,17,19,20 01,02,03,07,16,19 02,07,10,14,16,19 04,06,13,15,16,18 01,06,11,12,14,16 01,02,03,07,17,18 02,07,10,15,18,20 04,07,08,09,10,14 01,06,11,13,17,20 01,02,03,08,12,16 02,07,11,12,14,20 04,07,08,09,12,18 01,06,11,15,18,19 01,02,03,08,16,19 02,07,12,13,16,19 04,07,08,11,15,19 01,06,12,13,14,16 01,02,03,09,13,18 02,07,12,13,17,18 04,07,08,12,13,18 01,06,12,14,15,20 01,02,03,09,19,20 02,07,13,14,16,17 04,07,08,13,17,19 01,06,14,16,19,20 01,02,03,10,11,12 02,07,13,15,18,19 04,07,08,14,18,19 01,07,08,09,11,18 01,02,03,10,13,17 02,07,13,16,18,20 04,07,09,10,11,12 01,07,08,10,11,20 01,02,03,11,12,13 02,08,09,10,11,15 04,07,09,11,19,20 01,07,08,10,12,19 01,02,03,13,14,15 02,08,09,10,11,19 04,07,09,13,17,18 01,07,08,10,18,20 01,02,03,15,18,19 02,08,09,10,13,18 04,07,09,15,18,19 01,07,08,13,15,16 01,02,03,16,17,18 02,08,09,11,12,20 04,07,10,11,12,15 01,07,08,14,16,17 01,02,03,17,18,20 02,08,09,12,14,16 04,07,10,11,14,16 01,07,09,10,13,14 01,02,04,05,12,19 02,08,09,15,16,18 04,07,10,12,14,17 01,07,09,10,15,17 01,02,04,06,07,14 02,08,09,15,17,19 04,07,10,13,19,20 01,07,09,10,17,19 01,02,04,06,11,20 02,08,09,16,17,18 04,07,10,14,16,18 01,07,09,10,18,19 01,02,04,06,15,18 02,08,10,12,16,19 04,07,10,17,18,19 01,07,09,11,12,13 01,02,04,07,08,17 02,08,10,13,14,20 04,07,11,12,13,17 01,07,09,11,15,17 01,02,04,07,09,17 02,08,10,15,16,20 04,07,11,13,16,18 01,07,09,12,14,19 01,02,04,07,10,13 02,08,11,12,13,19 04,07,11,15,17,18 01,07,09,13,15,20 01,02,04,07,11,18 02,08,11,13,18,19 04,07,12,13,16,20 01,07,09,13,17,20 01,02,04,07,13,16 02,08,12,18,19,20 04,07,14,15,16,19 01,07,09,14,15,17 01,02,04,07,17,19 02,08,13,16,17,20 04,07,15,16,17,18 01,07,09,14,16,18 01,02,04,08,09,14 02,09,10,15,17,20 04,08,09,10,14,16 01,07,10,15,16,20 01,02,04,08,11,14 02,09,10,16,19,20 04,08,09,11,17,20 01,07,11,13,14,19 01,02,04,08,12,13 02,09,11,13,15,18 04,08,09,12,15,17 01,07,11,13,15,19 01,02,04,09,12,15 02,09,11,13,15,19 04,08,09,13,19,20 01,07,11,13,17,19 01,02,04,10,16,17 02,09,11,14,17,20 04,08,10,11,12,16 01,07,11,14,15,20 01,02,04,13,14,17 02,09,12,14,17,20 04,08,10,11,13,18 01,07,11,16,17,19 01,02,04,13,15,17 02,09,13,14,15,20 04,08,10,11,18,20 01,07,12,14,16,20 01,02,04,16,18,19 02,09,14,16,18,19 04,08,10,12,17,19 01,07,13,14,18,20 01,02,04,16,19,20 02,09,15,16,17,19 04,08,10,15,17,18 01,08,09,10,13,19 01,02,05,06,07,16 02,10,13,14,16,19 04,08,11,12,16,17 01,08,09,10,15,19 01,02,05,06,09,20 02,10,14,15,17,19 04,08,11,17,19,20 01,08,09,11,12,15 01,02,05,06,10,14 02,11,12,13,15,20 04,08,12,14,19,20 01,08,09,11,13,15 01,02,05,07,11,15 02,11,12,14,15,19 04,08,13,14,15,18 01,08,09,12,14,20 01,02,05,07,12,20 02,11,12,15,16,18 04,08,14,15,17,20 01,08,09,12,17,18 01,02,05,07,15,19 02,11,12,16,17,19 04,09,10,13,14,17 01,08,09,14,15,19 01,02,05,08,09,10 02,11,13,14,17,18 04,09,10,13,15,16 01,08,10,12,14,15 01,02,05,08,09,19 02,12,13,15,17,18 04,09,10,18,19,20

矩阵理论知识点整理资料

三、矩阵的若方标准型及分解 λ-矩阵及其标准型定理1 λ-矩阵()λ A可逆的充分必要条件是行列式()λ A是非零常数 引理2 λ-矩阵()λ A=() () n m ij? λ a的左上角元素()λ 11 a不为0,并且()λ A中至少有一个元素不 能被它整除,那么一定可以找到一个与()λ A等价的()() () n m ij? =λ λb B使得()0 b 11 ≠ λ且 ()λ 11 b的次数小于()λ 11 a的次数。 引理3 任何非零的λ-矩阵()λ A=() () n m ij? λ a等价于对角阵 () () () ? ? ? ? ? ? ? ? ? ? ? ? ... ..... d 2 1 λ λ λ r d d ()()()λ λ λ r 2 1 d ,.... d, d是首项系数为1的多项式,且 ()()1 ...... 3,2,,1 , / d 1 - = + r i d i i λ λ 引理4 等价的λ-矩阵有相同的秩和相同的各阶行列式因子 推论5 λ-矩阵的施密斯标准型是唯一的由施密斯标准型可以得到行列式因子推论6 两个λ-矩阵等价,当且仅当它们有相同的行列式因子,或者相同的不变因子 推论7 λ-矩阵()λ A可逆,当且仅当它可以表示为初等矩阵的乘积 推论8 两个()()λ λ λB A m与 矩阵 的- ?n等价当且仅当存在一个m阶的可逆λ-矩阵()λ P和 一个n阶的λ-矩阵()λ Q使得()()()()λ λ λ λQ A P = B 推论9 两个λ-矩阵等价,当且仅当它们有相同的初等因子和相同的秩

定理10 设λ-矩阵()λA 等价于对角型λ-矩阵()() ()()?????? ?? ? ???????? ?=λλλλn h h . . . ..21h B ,若将()λB 的次数大于1的对角线元素分解为不同的一次因式的方幂的乘积,则所有这些一次因式的方幂(相同 的按照重复的次数计算)就是()λA 的全部初等因子。 行列式因子 不变因子 初等因子 初等因子被不变因子唯一确定但,只要λ-矩阵()λA 化为对角阵,再将次数大于等于1的对角线元素分解为不同的一次方幂的乘积,则 所有这些一次因式的方幂(相同的必须重复计算)就为()λA 的全部初等因子,即不必事先知道不变因子,可以直接求得初等因子。 矩阵的若当 标准型 定理1 两个n ?m 阶数字矩阵A 和B 相似,当且仅当它们的特征矩阵B -E A -E λλ与等价 N 阶数字矩阵的特征矩阵A -E λ的秩一定是n 因此它的不变因子有n 个,且乘积是A 的特征多项式 推论3 两个同阶矩阵相似,当且仅当它们有相同的行列式因子,或相同的不变因子,或相同的初等因子。 定理4 每个n 阶复矩阵A 都与一个若当标准型矩阵相似,这个若当标准型矩阵除去其中若当块的排列次序外是被矩阵A 唯一确定的。 求解若当标准型及可逆矩阵P:根据数字矩阵写出特征矩阵,化为对角阵后,得出初等因子, 根据初等因子,写出若当标准型J,设P(X1X2X3),然后根据 J X X X X X X A PJ AP J AP P 321321-1),,(),,(,即得到===得到 P (X1X2X3)方阵 矩阵的最小 多项式 定理1 矩阵A 的最小多项式整除A 的任何零化多项式,且最小多项式唯一。 N 阶数字矩阵可以相似对角化,当且仅当最小多项式无重根。 定理2 矩阵A 的最小多项式的根一定是A 的特征值,反之,矩阵A的特征值一定是最小多项式的根。 求最小多项式:根据数字矩阵写出特征多项式()A E f -=λλ, 根据特征多项式得到最小多

相关文档
最新文档