SAN交换机端口类型

SAN交换机端口类型
SAN交换机端口类型

SAN设备(节点)端口

N端口:Node Port节点端口;节点连接点;光纤通道通信的终端

F端口:Fabric Port 光纤端口;一种交换连接端口,也就是两个N端口连接的"中间端口"

NL端口:Node Loop Port 节点环路端口;通过它们的NL端口连接到其他端口,或通过一个单独的FL端口连接到交换后的光纤网络;或是NL端口连接到F端口到F端口到N端口(通过交换机)

FL端口:Fabric Loop Port光纤环路端口;一种共享的位AL设备提供进入光纤网络服务的端口;例子,NL端口到FL端口到F端口到N端口E端口:Expansion Port 扩展端口;用于通过ISL(内部交换链接)连接多个交换机

G端口:Generic Port 通用端口;可根据连接方式,在F端口和E端口之间进行切换

TE端口:Trunked Expansion Port 汇聚的扩展端口;为了获得高流量而将多个E端口连接在一起

光纤通道也定义了其他一系列不同类别可以用于接收和传输光纤通道数据的端口, 包括“NL_Ports,” “F_Ports,” “E_Ports,”等.

设备 (节点)端口

N_Port = “Fabric直接连接设备”

NL_Port = “Loop连接设备”

交换机端口

E_Port = “扩展端口” (交换机到交换机)

F_Port = “Fabric端口”

FL_Port = “Fabric Loop端口”

G_Port = “通用(Generic)端口—可以转化为E或F”

将Fabric与Arbitrated Loop技术混合实施是可行的, 交换机的一个

Fabric端口可以作为Loop的组成部分, 数据可以从交换机中传输到Loop环上. 在Loop环境下正常工作的一个Fabric端口称之为“FL_port.” 虽然数据和控制信息的路由需要通过其他端口对链路的访问来进行,但是多数光纤通道功能与拓扑结构无关.

端口的生成过程:

U_PORT——G_PORT——F_PORT——E_PORT

光纤交换机的端口状态的G-Port 、L-Port 、F-Port

N端口:Node Port节点端口;节点连接点;光纤通道通信的终端

F端口:Fabric Port 光纤端口;一种交换连接端口,也就是两个N端口连接的"中间端口"

NL端口:Node Loop Port 节点环路端口;通过它们的NL端口连接到其他端口,或通过一个单独的FL端口连接到交换后的光纤网络;或是NL端口连接到F端口到F端口到N端口(通过交换机)

FL端口:Fabric Loop Port光纤环路端口;一种共享的位AL设备提供进入光纤网络服务的端口;例子,NL端口到FL端口到F端口到N端口E端口:Expansion Port 扩展端口;用于通过ISL(内部交换链接)连接多个交换机

G端口:Generic Port 通用端口;可根据连接方式,在F端口和E端口之间进行切换

TE端口:Trunked Expansion Port 汇聚的扩展端口;为了获得高流量而将多个E端口连接在一起

光纤通道也定义了其他一系列不同类别可以用于接收和传输光纤通道数据的端口, 包括“NL_Ports,” “F_Ports,” “E_Ports,”等.

设备 (节点)端口

N_Port = “Fabric直接连接设备”

NL_Port = “Loop连接设备”

交换机端口

E_Port = “扩展端口” (交换机到交换机)

F_Port = “Fabric端口”

FL_Port = “Fabric Loop端口”

G_Port = “通用(Generic)端口—可以转化为E或F”

将Fabric与Arbitrated Loop技术混合实施是可行的, 交换机的一个Fabric端口可以作为Loop的组成部分, 数据可以从交换机中传输到Loop环上. 在Loop环境下正常工作的一个Fabric端口称之为“FL_port.” 虽然数据和控制信息的路由需要通过其他端口对链路的访问来进行,但是多数光纤通道功能与拓扑结构无关

三层交换机生成树协议

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载 三层交换机生成树协议 甲方:___________________ 乙方:___________________ 日期:___________________

三层交换机生成树协议 篇一:网络工程技术生成树协议 1. 生成树stp的计算推导 (1) 手工计算推导出下图中的根交换机、根端口、指 定端口和阻塞端口 (假设每条链路带宽均为100mbps),最后 在packettracer6.0 模拟器上进行验证,通过抓包路径跟踪 的方法演示当主链路出现故障后的收敛过程和结果。 (2) 若使收敛时间更快速,可以采用哪种该进协议, 该方法的优势是什么? 优势: a、stp没有明确区分端口状态与端口角色,收敛时主要 依赖于端口状态的切换。Rstp比较明确的区分了端口状态与端口角色,且其收敛时更多的是依赖于端口角色的切换。 b、stp端口状态的切换必须被动的等待时间的超时。而 Rstp 端口状态的切换却是一种主动的协商。 c、stp中的非根网桥只能被动的中继bpdu。而Rstp中的非根网桥对bpdu的中继具有一定的主动性。 1、为根端口和指定端口设置了快速切换用的替换端口(alternateport) 和备

份端口(backupport) 两种角色,在根 端口/指定端口失效的情况下,替换端口/备份端口就会无 时延地进入转发状态,而无需等待两倍的转发时延(Forwarddelay)时间。 2、在只连接了两个交换端口的点对点链路中,指定端口只需与下游网桥进行一次握手就可以无时延地进入转发 状态。如果是连接了三个以上网桥的共享链路,下游网桥是不会响应上游指定端口发出的握手请求的,只能等待两倍Forwarddelay 时间进入转发状态。 3、将直接与终端相连而不是与其他网桥相连的端口定义为边缘端口(edgeport)。边缘端口可以直接进入转发状态,不需要任何延时。由于网桥无法知道端口是否直接与终端相连,因此需要人工配置。 (3) 交换机端口的颜色灯和闪烁频率,分别代表哪些含义?若要求交换机的端口直接接用户的pc机而不参与stp 运算,应如何进行设置? 颜色灯: 绿色灯表示可以发出 而黄色灯表示阻塞,不能发出闪烁频率:灯光闪烁说明有数据在传输,闪的快就说明比较频繁,也就是连续在端口上酉己置spanning-treeportfast 或

交换机接口及连接(图解)

全面图解交换机接口及连接 局域网交换机作为局域网的集中连接设备,它的接口类型是随着各种局域网和传输介质类型的发展而变化的,分析一下局域网的主要网络类型和传输介质发展过程,我们就不难发现各种交换机接口类型,下面我们就先来介绍目前仍存在的一些交换机接口,注意,因交换机的许多接口与路由器接口完全一样,所以在此仍以路由器上的相应接口进行介绍。 一、交换机接口类型 1、双绞线RJ-45 接口 这是我们见的最多、应用最广的一种接口类型,它属于双绞线以太网接口类型。它不仅在最基本的10Base-T以太网网络中使用,还在目前主流的 100Base-TX快速以太网和1000Base-TX千兆以太网中使用。 虽然它们所使用的传输介质都是双绞线类型,但是它们却各自采用了不同版本的双绞线类型,如最初10Base-T使用的3类线到支持1000Base-TX千兆速率的6类线,中间的100Base-TX则中以使用所谓的五类、超五类线,当然也可以是六类线。 这些RJ-45接口的外观是完全一样的,如图1左图所示,像一个扁“T”字。与之相连的是RJ-45水晶头,如图2中,右图分别为一个水晶头和做好水晶头连线的双绞网线。如图2所示的就是一款24口RJ-45接口的以太网交换机,其中还有将在下文介绍的2个SC光纤接口和1个AUI接口。 图2 2、光纤接口 图1

对于光纤这种传输介质虽然早在100Base时代就已开始采用这种传输介质,当时这种百兆网络为了与普遍使用的百兆双绞线以太网100Base-TX区别,就称之为“100Base-FX”,其中的“F”就是光纤“Fiber”的第一个字母。 不过由于在当时的百兆速率下,与采用传统双绞线介质相比,优势并不明显,况且价格比双绞线贵许多,所以光纤在100Mbps时代产没有得到广泛应用,它主要是从1000Base技术正式实施以来才得以全面应用,因为在这种速率下,虽然也有双绞线介质方案,但性能远不如光纤好,且在连接距离等方面具有非常明显的优势,非常适合城域网和广域网使用。 目前光纤传输介质发展相当迅速,各种光纤接口也是层出不究,不过在局域网交换机中,光纤接口主要是SC类型,无论是在100Base-FX,还是在1000Base-FX网络中。SC接口的芯在接头里面,如图3左图所示的是一款100Base-FX网络的SC光纤接口模块,其右图为一款提供了4个SC光纤接口的光纤交换机。图2中所示交换机中也有2个SC光纤接口。 图3 从图2和图3右图交换机的SC接口外观可以看出,它与RJ-45接口非常类似,不过SC接口看似更扁些,缺口浅些。主要看其中的接触芯片是一什么类型的,如果是8条铜弹片,则是RJ-45接口,而里面如果是一根铜柱则是SC光纤接口。 3、AUI接口与BNC AUI接口是专门用于连接粗同轴电缆的,虽然目前这种网络在局域网中并不多见,但在一些大型企业网络中,仍可能有一些遗留下来的粗同轴电缆令牌网络设备,所以有些交换机也保留了少数AUI接口,以更大限度地满足用户需求。AUI接口是一个15针“D”形接口,类似于显示器接口。这种接口同样也在许多网络设备中见到,如路由器,甚至服务器中,如图4所示的就是路由器上的AUI 接口示意图。

交换机常见的故障类型及分析排查

交换机常见的故障类型及分析排查交换机运行中出现故障是不可避免的,但出现故障后应当迅速地进行处理,尽快查出故障点,排除故障,这是网管人员应尽的职责。但是要做到这一点,就必须了解交换机故障的类型及具备对故障进行分析和处理的能力。为此,本文就交换机常出现的故障类型及分析排查的方法进行简要的介绍。 电源故障 由于外部供电不稳定,电源线路老化或者雷击等原因导致电源损坏或者风扇停转,以致不能正常工作。或者由于电源缘故导致机内其他部件的损坏都会使交换机出现问题。 假如交换机面板上的POWER指示灯是绿色的,就表示是正常的;假如该指示灯灭了,则说明交换机没有正常供电。这类问题很轻易发现,也很轻易解决,同时也是最轻易预防的。 针对这类故障,首先应该做好外部电源的供给工作,一般通过引入独立的电力线来提供独立的电源,并添加稳压器来避免瞬间高压或低压现象。假如条件答应,可以添加UPS(不间断电源)来保证交换机的正常供电,有的UPS提供稳压功能,而有的没有,选择时要注重。在机房内设置专业的避雷措施,来避免雷电对交换机的伤害。现在有很多做避雷工程的专业公司,实施网络布线时可以考虑。

端口故障 这是最常见的硬件故障,无论是光纤端口还是双绞线的RJ-45端口,在插拔接头时一定要小心。假如不小心把光纤插头弄脏,可能导致光纤端口污染而不能正常通信。我们经常看到很多人喜欢带电插拔接头,理论上讲是可以的,但是这样也无意中增加了端口的故障发生率。在搬运时不小心,也可能导致端口物理损坏。假如购买的水晶头尺寸偏大,插入交换机时,也轻易破坏端口。此外,假如接在端口上的双绞线有一段暴露在室外,万一这根电缆被雷电击中,就会导致所连交换机端口被击坏,或者造成更加不可预料的损伤。 一般情况下,端口故障是某一个或者几个端口损坏。所以,在排除了端口所连计算机的故障后,可以通过更换所连端口,来判定其是否损坏。碰到此类故障,可以在电源关闭后,用酒精棉球清洗端口。假如端口确实被损坏,那就只能更换端口了。 模块故障 交换机是由很多模块组成,比如:堆叠模块、治理模块(也叫控制模块)、扩展模块等。这些模块发生故障的几率很小,不过一旦出现问题,就会遭受巨大的经济损失。假如插拔模块时不小心,或者搬运交换机时受到碰撞,或者电源不稳定等情况,都可能导致此类故障的发生。 当然上面提到的这3个模块都有外部接口,比较轻易辨认,有的还可以通过模块上的指示灯来辨别故障。比如:堆叠模块上有一个扁平的

交换机的端口安全配置

【实验文档】【实验0021】【交换机的端口安全配置】 【实验名称】 交换机的端口安全配置。 【实验目的】 掌握交换机的端口安全功能,控制用户的安全接入。 【背景描述】 你是一个公司的网络管理员,公司要求对网络进行严格控制。为了防止公司内部用户的IP 地址冲突,防止公司内部的网络攻击和破坏行为。为每一位员工分配了固定的IP地址,并且限制只允许公司员工主机可以使用网络,不得随意连接其他主机。例如:某员工分配的IP地址是172.16.1.55/24,主机MAC地址是00-06-1B-DE-13-B4。该主机连接在1台2126G 上边。 【技术原理】 交换机端口安全功能,是指针对交换机的端口进行安全属性的配置,从而控制用户的安全接入。交换机端口安全主要有两种类项:一是限制交换机端口的最大连接数,二是针对交换机端口进行MAC地址、IP地址的绑定。 限制交换机端口的最大连接数可以控制交换机端口下连的主机数,并防止用户进行恶意的ARP欺骗。 交换机端口的地址绑定,可以针对IP地址、MAC地址、IP+MAC进行灵活的绑定。可以实现对用户进行严格的控制。保证用户的安全接入和防止常见的内网的网络攻击。如ARP欺骗、IP、MAC地址欺骗,IP地址攻击等。 配置了交换机的端口安全功能后,当实际应用超出配置的要求,将产生一个安全违例,产生安全违例的处理方式有3种: ? protect 当安全地址个数满后,安全端口将丢弃未知名地址(不是该端口的安全地址中的任何一个)的包。 ? restrict 当违例产生时,将发送一个Trap通知。 ? shutdown 当违例产生时,将关闭端口并发送一个Trap通知。 当端口因为违例而被关闭后,在全局配置模式下使用命令errdisable recovery来将接口从错误状态中恢复过来。 【实现功能】 针对交换机的所有端口,配置最大连接数为1,针对PC1主机的接口进行IP+MAC地址绑定。【实验设备】 S2126G交换机(1台),PC(1台)、直连网线(1条)

三层交换机端口IP地址配置方法

三层交换机端口IP地址配置方法 目前市场上的三层交换机有2种方式可以配置交换机端口的lP地址,一是直接在物理端口上设置.二是通过逻辑VLAN端口间接设置。为了分析这2种配置方法在交换机实际运行中会产生哪些差别.在详细分析了三层交换机端口工作原理的基础上.搭建测试环境,主要从端口初始化和三层路由收敛过程分析了2种方式的不同。通过分析发现,在交换机物理端口上直接配置IP地址,可以节省生成树协议(STP,Spanning Tree Protocol)收敛所需的时间,并且不需要规划额外的VLAN。为日后的运行维护工作带来了方便。 三层变换机能够快速地完成VIAN间的数据转发,从而避免了使用路由器会造成的三层转发瓶颈,目前已经在企业内部、学校和住宅小区的局域网得到大量使用。在配置三层交换机端口lP地址时,通常有2种方法:一是直接在物理端口上设置lP地址,二是通过逻辑VLAN端口间接地设置IP地址。 作者所在单位日前购得一批三层交换机,最初只立持第2种配置方法但在厂家随后升级的软件版本中可以支持以上2种配置方法。为了比较这2种方法的优缺点,本文首先阐述了三层交换机的工作原理,然后比较了这2种方法的操作命争和端口初始化时间.并通过测试得出结论。 1、三层交换机的工作原理 传统的交换技术是在OSI网络参考模型中的第二层(即数据链路层)进行操作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发,利用第三层协议中的信息来加强笫二层交换功能的机制(见图1) 从硬件的实现上看,目前笫二层交换机的接口模块都是通过高速背扳/总线交换数据的。在第三层交换机中,与路由器有关的第三层路由硬件模块也插接在高速背板/总线上,这种方式使得路由模块可以与需要路由的其他模块高速地进行数据交换,从而突破了外接路由器接口速率的限制。 假设有2个使用IP协议的站点,通过第三层交换机进行通信的过程为:若发送站点1在开始发送时,已知目的站点2的IP地址,但不知遒它在局域网上发送所需要的MAC地址,则需要采用地址解析(ARP)来确定站点2的MAC地址。站点1把自己的IP地址与站点2的IP地址比较,采用其软件配置的子网掩码提取出网络地址来确定站点2是否与自己在同一子网内。若站点2与站点1在同一子网内,那么站点1广播一个ARP请求,站点2返回其MAC地址,站点1得到站点2的MAC地址后将这一地址缓存起来,并用此MAC地址封包转发数据,第二层交换模块查找MAC地址表确定将数据包发向目的端口。若2个站点不在同子网

cisico 二层交换机端口错包排查方法

CISCO二层交换机端口错包排查方法,以C2950为例进行说明 ①交换机端口原来配置 2950#sh ru int fa0/3 interface FastEthernet0/3 description test switchport access vlan 100 no ip address duplex full speed 100 end ②交换机端口原来数据包统计, 2950#sh int fa0/3 FastEthernet0/3 is up, line protocol is up (connected) Hardware is Fast Ethernet, address is 000d.bd98.1c43 (bia 000d.bd98.1c43) Description: test MTU 1500 bytes, BW 100000 Kbit, DLY 1000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive set (10 sec) Full-duplex, 100Mb/s input flow-control is off, output flow-control is off ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output 00:00:01, output hang never Last clearing of "show interface" counters 21w6d Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue :0/40 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute ouxtput rate 0 bits/sec, 0 packets/sec 330574221 packets input, 78353246 bytes, 0 no buffer Received 372 broadcasts, 0 runts, 0 giants, 0 throttles 3540 input errors, 3540 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog, 0 multicast, 0 pause input 0 input packets with dribble condition detected 307917156 packets output, 176359999 bytes, 0 underruns 0 output errors, 0 collisions, 0 interface resets 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier, 0 PAUSE output

交换机的端口配置

实验3 交换机的端口配置 一、实验目的 二、实验条件 三、实验内容 1.配置以太网端口 对端口的配置命令,均在接口配置模式下运行。 1.为端口指定一个描述性文字 在实际配置中,可对端口指定一个描述性的说明文字,对端口的功能和用途等进行说明,以起备忘作用,其配置命令为:description port-description 如果描述文字中包含有空格,则要用引号将描述文字引起来。 若交换机的快速以太网端口1为trunk链路端口,需给该端口添加一个备注说明文字,则配置命令为: student1#config t student1(config)#interface fa0/1 student1(config)#description "-----------trunk port----------------" 2.设置端口通讯速度 配置命令:speed [10|100|1000|auto] 默认情况下,交换机的端口速度设置为auto(自动协商),此时链路的两个端点将交流有关各自能力的信息,从而选择一个双方都支持的

最大速度和单工或双工通讯模式。若链路一端的端口禁用了自动协商功能,则另一端就只能通过电气信号来探测链路的速度,此时无法确定单工或双工通讯模式,此时将使用默认的通讯模式。 例如,若要将Cisco Catalyst 2950-24交换机的10号端口的通讯速度设置为100Mbit/s,则配置命令为: student1(config)#interface f 0/10 student1(config-if)#speed 100 3.设置端口的单双工模式 配置命令:duplex [full|half|auto] full代表全双工(full-duplex),half代表半双工(half-duplex),auto 代表自动协商单双工模式。 在配置交换机时,应注意端口的单双工模式的匹配,如果链路的一端设置的是全双工,而另一端是半双工,则会造成响应差和高出错率,丢包现像会很严重。通常可设置为自动协商或设置为相同的单双工模式。 例如,若要将Cisco Catalyst 2950-24交换机的10号端口设置为全双工通讯模式,则配置命令为: student1(config-if)#duplex full 4.控制端口协商 启动链路协商,配置命令:negotiation auto 禁用链路协商,配置命令:no negotiation auto 比如,一台Cisco 3550交换机,通过光纤与远程的华为S3526E通过

交换机端口介绍(DOC)

交换机端口untaged、taged、trunk、access 的区别2010-08-24 22:17:49 分类:系统运维 来源:网络 首先,将交换机的类型进行划分,交换机分为低端(SOHO级)和高端(企业级)。其两者的重要区别就是低端的交换机,每一个物理端口为一个逻辑端口,而高端交换机则是将多个物理端口捆绑成一个逻辑端口再进行的配置的。 cisco网络中,交换机在局域网中最终稳定状态的接口类型主要有四种:access/ trunk/ multi/ dot1q-tunnel。 1、access: 主要用来接入终端设备,如PC机、服务器、打印服务器等。 2、trunk: 主要用在连接其它交换机,以便在线路上承载多个vlan。 3、multi: 在一个线路中承载多个vlan,但不像trunk,它不对承载的数据打标签。主要用于接入支持多vlan的服务器或者一些网络分析设备。现在基本不使用此类接口,在cisco的网络设备中,也基本不支持此类接口了。 4、dot1q-tunnel: 用在Q-in-Q隧道配置中。 Cisco网络设备支持动态协商端口的工作状态,这为网络设备的实施提供了一定的方便(但不建议使用动态方式)。cisco动态协商协议从最初的DISL(Cisco 私有协议)发展到DTP(公有协议)。根据动态协议的实现方式,Cisco网络设备接口主要分为下面几种模式: 1、switchport mode access: 强制接口成为access接口,并且可以与对方主动进行协商,诱使对方成为access模式。 2、switchport mode dynamic desirable: 主动与对协商成为Trunk接口的可能性,如果邻居接口模式为Trunk/desirable/auto之一,则接口将变成trunk 接口工作。如果不能形成trunk模式,则工作在access模式。这种模式是现在交换机的默认模式。 3、switchport mode dynamic auto: 只有邻居交换机主动与自己协商时才会变成Trunk接口,所以它是一种被动模式,当邻居接口为Trunk/desirable之一时,才会成为Trunk。如果不能形成trunk模式,则工作在access模式。 4、switchport mode trunk: 强制接口成为Trunk接口,并且主动诱使对方成为Trunk模式,所以当邻居交换机接口为trunk/desirable/auto时会成为Trunk 接口。 5、switchport nonegotiate: 严格的说,这不算是种接口模式,它的作用只是阻止交换机接口发出DTP数据包,它必须与switchport mode trunk或者switchport mode access一起使用。

总结交换机常见故障的分类和排障步骤

总结交换机常见故障的一般分类和排障步骤 交换机的优越性能和价格的大幅度下降,促使了交换机的迅速普及。 网络管理员在工作中经常会遇到各种各样的交换机故障,如何迅速、准确地查出故障并排除故障呢?本文就常见的故障类型和排障步骤做一个简单的介绍。由于交换机在公司网络中应用范围非常广泛,从低端到中端,从中端到高端,几乎涉及每个级别的产品,所以交换机发生故障的机率比路由器,硬件防火墙等要高很多,这也是为什么我们首先讨论交换机故障的分类与排除故障步骤的原因。 一,交换机故障分类: 交换机故障一般可以分为硬件故障和软件故障两大类。硬件故障主要指交换机电源、背板、模块、端口等部件的故障,可以分为以下几类。 (1)电源故障: 由于外部供电不稳定,或者电源线路老化或者雷击等原因导致电源损坏或者风扇停止,从而不能正常工作。由于电源缘故而导致机内其他部件损坏的事情也经常发生。 如果面板上的POWER指示灯是绿色的,就表示是正常的;如果该指示灯灭了,则说明交换机没有正常供电。这类问题很容易发现,也很容易解决,同时也是最容易预防的。 针对这类故障,首先应该做好外部电源的供应工作,一般通过引入独立的电力线来提供独立的电源,并添加稳压器来避免瞬间高压或低压现象。如果条件允许,可以添加UPS(不间断电源)来保证交换机的正常供电,有的UPS提供稳压功能,而有的没有,选择时要注意。在机房内设置专业的避雷措施,来避免雷电对交换机的伤害。现在有很多做避雷工程的专业公司,实施网络布线时可以考虑。 (2)端口故障: 这是最常见的硬件故障,无论是光纤端口还是双绞线的RJ-45端口,在插拔接头时一定要小心。如果不小心把光纤插头弄脏,可能导致光纤端口污染而不能正常通信。我们经常看到很多人喜欢带电插拔接头,理论上讲是可以的,但是这样也无意中增加了端口的故障发生率。在搬运时不小心,也可能导致端口物理损坏。如果购买的水晶头尺寸偏大,插入交换机时,也容易破坏端口。此外,如果接在端口上的双绞线有一段暴露在室外,万一这根电缆被雷电击中,就会导致所连交换机端口被击坏,或者造成更加不可预料的损伤。

三层交换机基本配置

三层交换机基本配置 【实验名称】 三层交换机端口配置 【实验目的】 配置开启三层交换机的三层功能,实现路由作用。 【背景描述】 为了隔离广播域而划分了VLAN,但不同的VLAN之间需要通信,本实验将实现这一功能。即同一VLAN里的计算机能跨交换机通信,不同VLAN里的计算机系统也能互相通信。 【技术原理】 三层交换机是在二层交换的基础上实现了三层的路由功能。三层交换机基于“一次路由,多次交换”的特性,在局域网环境中转发性能远远高于路由器。而且三层交换机同时具备二层的功能,能和二层交换机进行很好的数据转发。三层交换机的以太网接口要比一般的路由器多很多,更加适合多个局域网段之间的互联。 三层交换机本身默认开启了路由功能,可利用IP Routing命令进行控制。 【实验设备】 S3350(一台),PC机(两台)。 【实验拓扑】

注意:先连线,在进行配置,注意连接线缆的接口编号。S3350为三层交换机。 【实验步骤】 步骤一 开启三层交换机的路由功能: Switch>enable //进程特权模式 Switch #configure terminal //进入全局模式 Switch (config)#hostname s3350-24 S3350-24 (config)#ip routing //开启三层交换机的路由功能 步骤二 配置三层交换机端口的路由功能: S3350-24>enable //进入特权模式 S3350-24#configure terminal //进入全局模式 S3350-241 (config)#interface fastethernet 0/2 //进入fa0/2端口 S3350-24 (config-if)#no switchport //开启端口的三层路由功能 S3350-24 (config-if)#ip address 192.168.5.254 255.255.255.0 //配置ip地址S3350-24 (config-if)#no shutdown //启用端口,使其转发数据

交换机端口错误包类型

错误报分类: 1)input errors: 各种输入错误的总数,显示范围是20bit。 (2)runts: 表示接收到的超小帧个数。超小帧即接收到的报文小于64字节,且包括有效的CRC字段,报文格式正确。(3)giants: 表示接收到的超长帧个数。超长帧即接收到的有效报文字节长度大于1518(如果是带tag报文,大于1522),且小于设备能接收的超长帧最大值(1536)。 (4)CRC: 表示接收到的CRC校验错误报文个数,即接收到的报文在64~1518(带tag报文是1522)字节范围内,且字节是整数,而CRC校验错误。 (5)frame: 也是CRC校验出错报文个数,报文字节不是整数,其他同上。 (6)aborts: 表示接收到的非法报文总数,包括:○1报文碎片:小于64字节,且CRC校验错误(报文字节是整数或非整数)。○2jabber帧:大于1518(tag报文是1522)字节,且CRC校验错误(报文字节是整数或非整数)。○3符号错误帧:报文中至少包含1各错误的符号,其他部分合法。○4携带错误帧:在空闲阶段发现的错误携带帧。○5操作码未知帧:报文是MAC控制帧,但不是Pause帧。○6长度错误帧:报文中802.3长度字段与报文实际长度(46~1500字节)不匹配,但不包括802.3长度字段无效(如Ether Type)的报文。 (7)ignored: 表示在端口接收报文时因各种原因丢弃的报文总数。 4. 输出错误统计值详解 (1)output errors:

各种输出错误的总数,显示范围是20bit。 (2)aborts: 表示发送失败的报文总数,指已经开始发送,但由于各种原因(如冲突)而导致发送失败的报文。该项统计包括各类发送失败的报文,无论是二层或是三层转发。 (3)deferred: 表示延迟报文的总数。报文延迟是指因延迟过长的周期而导致发送失败的报文,而这些报文由于发送媒质繁忙而等待了超过2倍的最大报文发送时间。 (4)collisions: 表示冲突帧总数,即在发送过程中发生冲突的报文。冲突是指DO和RD信号同时出现,即发送和接收同时发生。(5)late collisions: 表示延迟冲突帧,即发送过程中发生延迟冲突超过512bit时间的帧。 (6)lost carrier: 表示在空闲阶段发现的错误携带帧的总数。

3三层交换机、路由端口配置

Sw-a Switch>en Switch#conf t Switch(config)#int fa0/24 Switch(config-if)#no switchport Switch(config-if)#ip address 10.1.1.2 255.255.255.0 Switch(config-if)#no shut Switch(config-if)#exit Switch(config)#hostname sw-a sw-a(config)#router sw-a(config)#router rip sw-a(config-router)#version 2 sw-a(config-router)#no auto-summary sw-a(config-router)#net 10.1.1.0 sw-a(config-router)#net 192.168.10.0 sw-a(config-router)#net 192.168.20.0 sw-a(config-router)#net 192.168.30.0 sw-a(config-router)#exi sw-a(config)#ip router sw-a(config)#ip route 0.0.0.0 0.0.0.0 10.1.1.1 sw-a(config)#end sw-a#show ip route sw-b Switch>enable Switch#conf t Switch(config)#interface fastEthernet0/24 Switch(config-if)#no switchport Switch(config-if)#ip add 20.2.2.2 255.255.255.0 Switch(config-if)#no shut Switch(config-if)#exi Switch(config)#hostname Switch(config)#hostname sw-b sw-b(config)#route rip sw-b(config-router)#version 2 sw-b(config-router)#no auto-summary sw-b(config-router)#network 20.2.2.0 sw-b(config-router)#network 192.168.10.0 sw-b(config-router)#network 192.168.20.0 sw-b(config-router)#network 192.168.30.0 sw-b(config-router)#exi sw-b(config)#ip route 0.0.0.0 0.0.0.0 20.2.2.1

常见交换机光纤接口大全

光纤接口大全 ●?各种光纤接口类型介绍 光纤接头 FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体( 华为8850上有用) 光纤模块:一般都支持热插拔, GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310 单模长距LH 波长1310,1550 多模:SM 波长850 SX/LH表示可以使用单模或多模光纤 ●? 在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下 ●? “/”前面部分表示尾纤的连接器型号 “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。 传输设备侧光接口一般用SC接头 “LC”接头与SC接头形状相似,较SC接头小一些。 “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。

●? 连接器的品种信号较多,除了上面介绍的三种外,还有MTRJ、ST、MU等,具体 的外观参见下图 此主题相关图片如下: ●?/”后面表明光纤接头截面工艺,即研磨方式。 “PC”在电信运营商的设备中应用得最为广泛,其接头截面是平的。 “UPC”的衰耗比“PC”要小,一般用于有特殊需求的设备,一些国外厂家ODF 架部跳纤用的就是FC/UPC,主要是为提高ODF设备自身的指标。 ◆??另外,在广电和早期的CATV中应用较多的是“APC”型号,其尾纤头采用了带倾 角的端面,可以改善电视信号的质量,主要原因是电视信号是模拟光调制,当接头耦合面是垂直的时候,反射光沿原路径返回。由于光纤折射率分布的不均匀会再度返回耦合面,此时虽然能量很小但由于模拟信号是无法彻底消除噪声的,所以相当于在原来的清晰信号上叠加了一个带时延的微弱信号,表现在画面上就是重影。尾纤头带倾角可使反射光不沿原路径返回。一般数字信号一般不存在此问题 ●??????? 光纤连接器 ◆??光纤连接器是光纤与光纤之间进行可拆卸(活动)连接的器件,它是把光纤 的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小,这是光纤连接器的基本要求。在一定程度上,光纤连接器也影响了光传输系统的可靠性和各项

交换机接口信息解释

Display interface: [1] GigabitEthernet3/0/1 current state : DOWN 接口状态显示硬件链路的状态 [2] IP Sending Frames Format is PKTFMT_ETHNT_2, Hardware address is 00e0-fc00-0010 接口的输出帧封装类型和MAC地址显示接口的删除帧封装类型和MAC地址 [3] The Maximum Transmit Unit is 1500 接口的最大传输单元显示接口的最大传输单元 [4] Media type is not sure, loopback not set 端口的连接线类型和环回状态显示接口的连接线类型和环回状态 [5] Port hardware type is No Connector 端口的连接器硬件类型显示接口的连接器硬件类型 [6] Unknown-speed mode, unknown-duplex mode 端口的实际速度和双工状态显示端口的实际速度和双工状态 [7] Link speed type is autonegotiation, link duplex type is autonegotiation 端口是否是速度、双工的自协商配置显示端口速度、双工的自协商配置 [8] Flow-control is not supported 端口流控状态显示端口的MDI类型(不是缺省值的情况显示) 目前以太网有MDI和MDI-X两种类型的接口。MDI称为介质相关接口,MDI-X称为介质非相关接口。市场上常见的以太网交换的端口都属于MDI-X接口,而路由器和PC的端口都属于MDI接口。当MDI-X接口和连接时,需要用直连网线(Normal Cable);当同一类型号的接口如MDI和MDI、MDI-X和MDI-X连接时,需要采用交叉网线(Cross Cable)。 [9] The Maximum Frame Length is 1536 端口可以正常转发的帧长度显示端口可以正常转发的帧长度 [10] Broadcast MAX-ratio: 100% 端口的广播抑制比显示端口的广播抑制比 [11] Allow jumbo frame to pass 端口是否允许jumbo帧通过显示端口是否允许jumbo帧通过 [12] PVID: 1 端口的PVID 显示端口的PVID pvid,就是指port vid,一般来说,pvid和vid是同时应用的(只要是支持802.1q的交换机),pvid指的是帧进端口的策略,vid指的是帧出端口的策略。进端口时如果帧没有vlan tag,就以pvid值给帧打上tag;如果有tag,就不改变其值。

H3C交换机Trunk端口配置

组网需求: 1.SwitchA与SwitchB用trunk互连,相同VLAN的PC之间可以互访,不同VLAN的PC之间禁止互访; 2.PC1与PC2之间在不同VLAN,通过设置上层三层交换机SwitchB的VLAN 接口10的IP地址为10.1.1.254/24,VLAN接口20的IP地址为20.1.1.254/24可以实现VLAN间的互访。 组网图: 1.VLAN内互访,VLAN间禁访 2.通过三层交换机实现VLAN间互访 配置步骤: 实现VLAN内互访VLAN间禁访配置过程 SwitchA相关配置: 1.创建(进入)VLAN10,将E0/1加入到VLAN10 [SwitchA]vlan 10 [SwitchA-vlan10]port Ethernet 0/1 2.创建(进入)VLAN20,将E0/2加入到VLAN20 [SwitchA]vlan 20

[SwitchA-vlan20]port Ethernet 0/2 3.将端口G1/1配置为Trunk端口,并允许VLAN10和VLAN20通过[SwitchA]interface GigabitEthernet 1/1 [SwitchA-GigabitEthernet1/1]port link-type trunk [SwitchA-GigabitEthernet1/1]port trunk permit vlan 10 20 SwitchB相关配置: 1.创建(进入)VLAN10,将E0/10加入到VLAN10 [SwitchB]vlan 10 [SwitchB-vlan10]port Ethernet 0/10 2.创建(进入)VLAN20,将E0/20加入到VLAN20 [SwitchB]vlan 20 [SwitchB-vlan20]port Ethernet 0/20 3.将端口G1/1配置为Trunk端口,并允许VLAN10和VLAN20通过[SwitchB]interface GigabitEthernet 1/1 [SwitchB-GigabitEthernet1/1]port link-type trunk [SwitchB-GigabitEthernet1/1]port trunk permit vlan 10 20 通过三层交换机实现VLAN间互访的配置 SwitchA相关配置: 1.创建(进入)VLAN10,将E0/1加入到VLAN10 [SwitchA]vlan 10 [SwitchA-vlan10]port Ethernet 0/1 2.创建(进入)VLAN20,将E0/2加入到VLAN20 [SwitchA]vlan 20 [SwitchA-vlan20]port Ethernet 0/2 3.将端口G1/1配置为Trunk端口,并允许VLAN10和VLAN20通过[SwitchA]interface GigabitEthernet 1/1 [SwitchA-GigabitEthernet1/1]port link-type trunk [SwitchA-GigabitEthernet1/1]port trunk permit vlan 10 20 SwitchB相关配置: 1.创建VLAN10 [SwitchB]vlan 10 2.设置VLAN10的虚接口地址

模块化交换机适用场所及端口分类

模块化交换机适用场所及端口分类 模块化交换机还是比较常用的,于是我研究了一下模块化交换机适用场所及端口分类,在这里拿出来和大家分享一下,希望对大家有用。随着经济发展的逐步深入,中国企业面临的变化更加复杂。企业只有推动变化,驾驭变化,才能避免危机,抓住商机。而在当今中国网络与企业业务发展更加的紧密。对网络而言,灵活的架构和灵活的产品是关键。 在千兆交换机的家族中,固定端口交换机由于所有端口都是固化在设备上的,因此常常难以应对网络调整。针对经常变更、弹性较强的网络环境,曾有专业人士建议“选择模块化交换机,因为而模块化交换机配备了额外的开放性插槽,用户可以自行选择不同速率、不同功能和不同接口类型的模块以适应不同的网络环境。”作为交换机发展趋势的模块化交换机而言:灵活的模块化设计为用户提供了堆叠接口、1000BASE-SX,1000BASE-LX、1000BASE-T、GBIC等一系列不同类型的端口选择,便于用户因地制宜,根据网络架构随时更换模块以扩展功能或提升性能,实现灵活组网。模块化交换机尽管价格上要比固定端口交换机昂贵一些,但是拥有出色的灵活性、扩充性和未来的升级性,从长远角度来看,具有更佳的投资回报率。 模块化交换机的适用场所 几乎所有网络都会遇到扩展和增容的问题,如何合理的、低成本的进行网络基础设施的购入、改造和更新是摆在很多用户面前的难题。建网初期,如若一味选择高端主流设备,势必会造成前期应用时设备的空余或闲置,造成投资的极大浪费;如若考虑前期购置成本而选择仅仅满足当前规模应用的网络设备,当未来需要继续增加工作站数量的时候,实现起来将会十分困难,采用级联或连入HUB集线器的方式拓展端口数量,将会产生传输瓶颈,严重影响网络的使用效率。这种情况下,初期的网络构建使用户处于两难的尴尬境地。而模块化交换机很好的解决了这个问题。 对于网络规模随时增长或工作站接入数量巨大的网络环境特别是政府部门、高校等,模块化交换机将是首选。模块化交换机具有灵活性、可扩展性和易于管理等优点,便于网络升级扩容,能够有效保护用户投资,实现“按需扩展”,物尽其用。可以根据部门规模的增长速度随时增加设备的堆叠数量,有效的避免了超前投资和资源浪费,而超强的背板带宽充分保证了在实现高层堆叠的同时,所有端口均能够保持线速转发能力,不会影响网络运行的效率。 模块化交换机也经常被用于连接用户到高速的园区网骨干。通常,它们有一些所谓的高速“用户”端口,并且具有很强的可扩展性。当数据从这些端口汇总上来时,会从更高速的数据上联通路传递出去,以实现和中心服务器、IP PBX等设备的数据交互。模块化交换机通常会放置在企业的配线间或者机房中,它能适应增长中的网络。如果有新的用户加入到网络中,管理员只需简单地在原来的设备上面放置一台新的设备,然后通过一个外部的“堆叠”接口将所有的交换机连接起来。事实上,这就像您自己又开发了一台新的、更大的交换机一样,可以方便地和原先的交换机一起管理,只是容量增大了。 一般在大型网络的核心层、汇聚层采用模块化交换机,具有很好的灵活性。按照需求灵

交换机端口错包排查方法

一、重要性: 从网维排查的用户反应网速慢的故障中,相当一部分是由于交换机和交换机端口、交换机端口和用户路由器端口、交换机端口和光电转换器端口、交换机端口和用户网卡匹配不当,产生错包引起的。该问题虽然比较常见,但只要按交换机开局来配置,通常能降低故障发生率,即使还存在端口错包问题,也能通过改端口速度和双工状态来彻底解决。 二、交换机端口错包说明: 以华为交换机端口为例进行说明: [NJ-A-GJXC-S3026C-1]dis int eth 0/1 Ethernet0/1 current state : UP IP Sending Frames' Format is PKTFMT_ETHNT_2, Hardware address is 000f-e21d-bedc Description: to gujiao_33-192.168.86.161 The Maximum Transmit Unit is 1500 Media type is twisted pair, loopback not set Port hardware type is 100_BASE_TX 100Mbps-speed mode, full-duplex mode Link speed type is force link, link duplex type is force link Flow-control is not enabled Port-flow-constrain has not been configured completely The Maximum Frame Length is 1536

相关文档
最新文档