各类土质渗透系数经验值知识分享

各类土质渗透系数经验值知识分享
各类土质渗透系数经验值知识分享

各类土质渗透系数经

验值

毛昶熙主编《堤防工程手册》所给经验值: 表1 各种土的渗透系数经验值

土质类别 K(cm/s) 土质类别 K(cm/s) 粗砾 1~0.5 黄土(砂质) 1e-3~1e-4 砂质砾 0.1~0.01 黄土(泥质) 1e-5~1e-6 粗砂 5e-2~1e-2 黏壤土 1e-4~1e-6 细砂 5e-3~1e-3 淤泥土 1e-6~1e-7 黏质砂 2e-3~1e-4 黏土 1e-6~1e-8 沙壤土 1e-3~1e-4

均匀肥黏土

1e-8~1e-10

表2 岩石和岩体的渗透系数

岩块 K (实验室测定,

cm/s ) 岩体 K (现场测定,

cm/s ) 砂岩(白垩复理

层)

1e-8~1e-10

脉状混合岩 3.3e-3

粉岩(白垩复理

层) 1e-8~1e-9 绿泥石化脉状页

岩 0.7e-2 花岗岩 2e-10~5e-11 片麻岩 1.2e-3~1.9e-3

板岩 1.6e-10~7e-11 伟晶花岗岩 0.6e-3 角砾岩 4.6e-10 褐煤层 1.7e-2~2.39e-2

方解岩 9.3e-8~7e-10 砂岩 1e-2 灰岩 1.2e-7~7e-10 泥岩 1e-4 白云岩 1.2e-8~4.6e-9 鳞状片岩 1e-2~1e-4

砂岩 1.2e-5~1.6e-7 1个吕荣单位裂隙宽度0.1mm 间距1m 和不透水岩块

的岩体

0.8e-4

砂泥岩 2e-6~6e-7 细粒砂岩 2e-7 蚀变花岗岩 0.6e-5~1.5e-5

表3 各种岩土的给水度

岩土类别 渗透系数K (cm/s ) 孔隙率n 给水度 资料来源 砾 240 0.371 0.354

瑞士工学研究

粗砾 160 0.431 0.338 砂砾 0.76 0.327 0.251 砂砾 0.17 0.265 0.182 砂砾 7.2e-2 0.335 0.161 中粗砂 4.8e-2 0.394 0.18 含黏土的砂

1.1e-4

0.397

0.0052

表4 各种岩土的压缩弹性模量E及单位储存量S的值

郑春苗,Gordon D.Bennett 著《地下水污染物迁移模拟》所给经验值:表5 不同岩石类型的渗透系数取值范围

实验一 土壤渗透性的测定

实验一土壤渗透性的测定 目的要求 径流对土壤的侵蚀能力主要取决于地表径流量,而透水性强的土壤往往在很大程度上减少地表径流量。土壤透水性强弱常用渗透率(或渗透系数)表示。当渗透量达到一个恒定值时的入渗量即为稳渗系数。通过本次实验,掌握测定土壤渗透性的基本原理和操作方法。 基本原理 由图可以看出,在降雨初期一段时间(几分钟)内,土壤渗透速率较高,降雨量全部渗入土壤,此时土壤的渗透速率和降水速率等值,没有地表径流产生。随着降雨时间延长、土壤含水量增高,渗透速率逐渐降低,当渗透速率小于降水速率时,地表产生径流。 仪器设备 环刀(200cm3,h5.2,Φ7.0cm),量筒(100及50ml),烧杯(100ml),漏斗、漏斗架、秒表等。 方法步骤 一、在室外用环刀取原状土,带回实验室内,将环刀上、下盖取下,下端换上有网孔且垫有滤纸的底盖并将该端浸入水中,同时注意水面不要超过环刀上沿。一般砂土浸4~6h,壤土浸8~12h,粘土浸24h。 二、到预定时间将环刀取出,在上端套上一个空环刀,接口处先用胶布封好,再用熔蜡粘合,严防从接口处漏水,然后将结合的环刀放在漏斗上,架上漏斗架,漏斗下面承接有烧杯。 三、往上面的空环刀中加水,水层5cm,加水后从漏斗滴下第一滴水时开始计时,以后每隔1,2,3,5,10,……t i……t n min更换漏斗下的烧杯(间隔时间的长短,视渗透快慢而定,注意要保持一定压力梯度)分别量出渗入量Q1,Q2,Q3,Q5……Q n。每更换一次烧杯要将上面环刀中水面加至原来高度,同时记录水温(℃)。 四、试验一般时间约1h,渗水开始稳定,否则需继续观察到单位时间内渗出水量相等时为止。

总传热系数的测定 附最全思考题

聊城大学实验报告 课题名称:化工原理实验 实验名称:总传热系数的测定 姓名:元险成绩: 学号:1989 班级: 实验日期:2011-9-18 实验内容:测定套管换热器中水—水物系在常用流速范围内的总传热系数K,分析强化传热效果的途径。

总传热系数的测定 一、实验目的 1.了解换热器的结构,掌握换热器的操作方法。 2.掌握换热器总传热系数K 的测定方法。 3.了解流体的流量和流向不同对总传热系数的影响 二、基本原理 在工业生产中,要完成加热或冷却任务,一般是通过换热器来实现的,即换热器必须在单位时间内完成传送一定的热量以满足工艺要求。换热器性能指标之一是传热系数K 。通过对这一指标的实际测定,可对换热器操作、选用、及改进提供依据。 传热系数K 值的测定可根据热量恒算式及传热速率方程式联立求解。 传热速率方程式: Q =kS ?t m (1) 通过换热器所传递的热量可由热量恒算式计算,即 Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1)+Q 损 (2) 若实验设备保温良好,Q 损可忽略不计,所以 Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1) (3) 式中,Q 为单位时间的传热量,W ;K 为总传热系数,W/(m 2·℃);?t m 为传热对数平均温度差,℃;S 为传热面积(这里基于外表面积),m 2;W h ,W c 为热、冷流体的质量流量,kg/s ;C ph ,C pc 为热、冷流体的平均定压比热,J/(kg ·℃);T 1,T 2为热流体的进出口温度,℃;t 1,t 2为冷流体的进出口温度,℃。 ?tm 为换热器两端温度差的对数平均值,即 12 1 2ln t t t t t m ???-?=? (4) 当212≤??t t 时,可以用算术平均温度差(2 12t t ?+?)代替对数平均温度差。由上式所计算出口的传热系数K 为测量值K 测。 传热系数的计算值K 计可用下式进行计算: ∑+++=S i R K λδαα11 10计 (5) 式中,α0为换热器管外侧流体对流传热系数,W/(m 2·℃);αi 为换热器管内侧流体对流传热系数,W/(m 2·℃);δ为管壁厚度,m ;λ——管壁的导热系数,W/(m 2·℃);R S 为污垢热阻,m 2·℃/W 。 当管壁和垢层的热阻可以忽略不计时,上式可简化成:

土层渗透系数K的经验值

一、土层渗透系数 土层渗透系数K的经验值 土质名称K(m/d)土质名称K(m/d) 高液限黏土<0.001 砂细1~5 黏土质砂0.001~0.05中5~20含砂低液限黏 土 0.05~0.10粗20~50含砂低液限粉 土 0.10~0.50砾类土50~150低液限黏土 (黄土) 0.25~0.50卵石100~500粉土质砂0.5~1.0漂石(无砂质充填)500~1000 按土质颗粒大小的渗透系数K经验值 土质名称K(m/d) 黏土质粉砂0.01~0.074mm颗粒多 数 0.5~1.0 均质粉砂0.01~0.074mm颗粒多 数 1.5~5.0 黏土质细砂0.074~0.25mm颗粒多 数 1.0~1.5 均质细砂0.074~0.25mm颗粒多 数 2.0~2.5 黏土质中砂0.25~0.5mm 颗粒多数 2.0~2.5均质中砂0.25~0.5mm颗粒多数35~50黏土质粗砂0.5~1.0mm颗粒多数35~40

均质粗砂0.5~1.0mm颗粒多数60~75 砾石100~125二、计算渗水量 缺水文地质资料计算渗水量: Q=F1q1+ F 2q2式中:F1—基坑底面积,m2 q1—基坑每平方米底面积平均渗水量,m3/h F 2—基坑侧面积,m2 q2—基坑每平方米侧面积平均渗水量,m3/h q1基坑每平方米底面积平均渗水量,m3/h 序号土类土的特征及粒径渗水量m3/h 1细粒土质砂、 松软粉质土 基坑外侧有地表水,内侧为岸 边干地,土的天然含水量 <20%,土粒径<0.05mm 0.14~ 0.18 2有裂隙的碎石 岩层、较密实 的粘质土 多裂隙透水的岩层,有孔隙水 的粘质土层 0.15~ 0.25 3黏土质砂、黄 土层、紧密砾 土层 细砂粒径0.05~0.25mm,大孔 土质量800~950kg/m3, 砾石土 孔隙率在20%以下 0.16~ 0.32 4中粒砂、砾砂 层 砂粒径0.25~1.0mm,砾石含量 在30%以下,平均粒径10mm以 下 0.24~0.8 5粗粒砂、砾石 层 砂粒径1.0~2.5mm,砾石含量 在30~70%,平均最大粒径 150mm以下 0.8~3.0

环刀法测土壤渗透系数

提示:土壤导水率(soil water conductivity) 单位水势梯度下水分通过垂直于水流方向的单位截面积的饱和土壤水的流速。根据饱和流达西......壤处于水饱和状态时,便需用饱和导水率计算其通量。饱和导水率也是土壤最大可能的导水率,常以它作为参比量,比较不同湿度条件下土壤的导水性能。 土壤—饱和导水率(渗透系数)的测定—环刀法 1、范围:本方法适用于室内土壤饱和导水率(渗透系数)的测 定。 2、原理:用环刀取原状土样,浸水后,在单位水压梯度下,根 据达西定律,求得通过垂直于水流方向的单位土壤截面积的水流速度,称为土壤的饱和导水率或渗透系数。 3、仪器 3.1 环刀,容积100 cm3或200cm3。3.2 量筒,100mL、 10mL。3.3 烧杯,100mL。3.4 漏斗。3.5 秒表。3.6 温度计。 4、操作步骤 4.1 在室外用环刀取原状土样,带回室内浸入水中。一般砂土 浸4h~6h,壤土浸8 h~12h,粘土浸24h。浸水时要保持水面与 环刀上口平齐,勿使水淹到环刀上口的土面。 4.2 在预定时间将环刀取出,除去盖子,在上面套上一个空环 刀,接口处先用胶布封好,再用熔蜡粘合,严防从接口处漏水。 然后将接合的环刀放到漏斗上,漏斗下面用100mL烧杯承接。 4.3 向上面的空环刀中加水,水面比环刀口低1mm,水层厚 5cm。 4.4 加水后,自漏斗下面滴下第一滴水时用秒表计时,每隔1、

2、3、5、10……tnmin更换漏斗下的烧杯(间隔时间的长短,视 渗透快慢而定),并分别用100mL或10mL量筒计量渗出水量Q1、Q2、Q3……Qn。每更换一次烧杯,要将上面环刀水面加至原来高度,并用温度计记录水温。 4.5 试验一般持续时间约1h才开始稳定。如果仍不稳定,应继 续延长时间直到单位时间内渗出水量相等时为止。 5、结果计算 5.1 渗出水总量按式(1)计算: 式(1)中:Q——渗出水总量,mm;Q1、Q2、Q3……Qn ——每次渗出水量,mL,即cm3;S——环刀横截面积,cm2;10——由cm换算成mm所乘倍数。 渗透速度按式(2)计算: 式(2)中:V——渗透速度,mm/min; Qn——n次渗出水量,mL,即cm3;tn——每次渗透所间隔时间,min。 饱和导水率(渗透系数)按式(3)计算: 式(3)中:Kt——温度为t(℃)时的饱和导水率(渗透系数),mm/min;Qn——n次渗出水量,mL,即cm3;tn——每次渗透所间隔时间,min;S——环刀的横截面积,cm2;h——水层厚度,cm;L——土层厚度,cm;V——渗透速度,mm/min。 为了使不同温度下所测得的Kt值便于比较,应换算成10℃时的饱和导水率(渗透系数),按式(4)计算:

管道总传热系数计算18

1管道总传热系数 管道总传热系数是热油管道设计和运行管理中的重要参数。在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。当考虑结蜡 层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式: (1-1)1112ln 111ln 22i i n e n w i L L D D D KD D D D ααλλ-+???? ?????=+++????????∑式中:——总传热系数,W /(m 2·℃);K ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于e D 无保温埋地管路可取沥青层外径);——管道内直径,m ;n D ——管道最外层直径,m ;w D ——油流与管内壁放热系数,W/(m 2·℃);1α ——管外壁与周围介质的放热系数,W/(m 2·℃);2α ——第层相应的导热系数,W/(m·℃);i λi ,——管道第层的内外直径,m ,其中;i D 1i D +i 1,2,3...i n =——结蜡后的管内径,m 。L D 为计算总传热系数,需分别计算内部放热系数、自管壁至管道最外径K 1α的导热热阻、管道外壁或最大外围至周围环境的放热系数。 2α(1)内部放热系数的确定1α放热强度决定于原油的物理性质及流动状态,可用与放热准数、自然1αu N 对流准数和流体物理性质准数间的数学关系式来表示[47]。r G r P 在层流状态(Re<2000),当时:500Pr

总传热系数经验值

浸没在液体中的盘管总传热系数大致值.W/(m2 带有夹套的容器总传热系数大致值.W/(m2

空气冷却器总传热系数大致值.W/(m2

不同压力下水的汽化潜热 水在一个大气压(0.1MPa)100℃时的汽化潜热为2257.2kJ/kg 饱和水和饱和水蒸气热力性质表(按压力排列) 压力/MPa 温度/℃汽化潜热kJ/kg 0.001 6.9491 2484.1 0.002 17.5403 2459.1 0.003 24.1142 2443.6 0.004 28.9533 2432.2 0.005 32.8793 2422.8 0.006 36.1663 2415 0.007 38.9967 2408.3

0.008 41.5075 2402.3 0.009 43.7901 2396.8 0.01 45.7988 2392 0.015 53.9705 2372.3 0.02 60.065 2357.5 0.025 64.9726 2345.5 0.03 69.1041 2335.3 0.04 75.872 2318.5 0.05 81.3388 2304.8 0.06 85.9496 2293.1 0.07 89.9556 2282.8 0.08 93.5107 2273.6 0.09 96.7121 2265.3 0.1 99.634 2257.6 0.12 104.81 2243.9 0.14 109.318 2231.8 0.16 113.326 2220.9 0.18 116.941 2210.9 0.2 120.24 2201.7 0.25 127.444 2181.4 0.3 133.556 2163.7 0.35 138.891 2147.9 0.4 143.642 2133.6 0.5 151.867 2108.2 0.6 158.863 2086 0.7 164.983 2066 0.8 170.444 2047.7 0.9 175.389 2030.7 1 179.916 2014.8 1.1 184.1 1999.9 1. 2 187.995 1985.7 1. 3 191.64 4 1972.1 1.4 195.078 1959.1 1. 5 198.327 1946. 6 1.6 201.41 1934.6 1. 7 204.346 1923 1. 8 207.151 1911.7 1. 9 209.838 1900.7

实验五_土壤渗透系数的测定

实验五 土壤渗透系数的测定 1 测定意义 当土层被水分饱和后,土壤中的水分受重力影响而向下移动的现象称为渗透性。 土壤渗透性是土壤重要的特性之一,它与大气降水和灌溉水几乎完全进入土壤,并在其中贮存起来,而在渗透性不好的情况下,水分就沿土表流走,造成侵蚀。 土壤渗透性与土壤质地、结构、盐分含量、含水量以及湿度等有关。 2 测定原理 在饱和水分土壤中,渗透性按照达西公式计算如下: V=K ·I (厘米/秒) L h I = 式中:V ——渗透速度,每秒钟通过1平方厘米土壤断面的水的流量,以立 方厘米表示; I ——水压梯度,即渗透层中单位距离内的水压降; K ——渗透系数,在单位水压梯度(I=1)下,单位时间内通过单位截面积的流量 (毫升/分或小时); H ——土柱上水头差(厘米)即静水压力; L ——发生水分渗透作用的土层的厚度(厘米)即渗透路程。 在时间t 内渗透过一定截面积A (平方厘米)的水量Q ,可以用下列的方程式来表示: Q=V ·A ·t=K ·I ·A ·t 因此渗透系数 K=I t A Q ??(毫米/厘米2/分或小时) 土壤渗透性的测定有室外法(渗透简法)及室内法(环刀法)。

3 测定方法 3.1室外测定 3.1.1 仪器设备 ①渗透筒:铁制圆柱形筒,横截面积为1000平方厘米(内径358毫米),高350毫米。 ②量筒500ml和1000ml各一个。 ③小铁筒:打水用。 ④温度计:0—50℃ ⑤秒表或一般钟表 ⑥木制厘米尺、小刀、斧头等。 3.1.2 测定步骤 3.1.2.1、在选择具有代表性的地段上,布置一块约1平方米的圆形(直径113cm)试验地块,将其周围筑以土埂。土埂高约30 cm,顶宽20 cm,并捣实之。渗透筒置于中央,应用小刀按筒的圆周向外挖宽2—3cm,深15—20cm小沟,使筒深深嵌入土中。插好后,把取出的土壤重新填入隙缝并予捣实,防止沿壁渗漏损失。筒内部为试验区,外部为保护区。 也可用高15—20厘米面积分别为25×25 和50×50平方厘米的方形铁框或圆形铁筒打入土中3—5厘米进行测定。 3.1.2.2、在筒内:外各插入一米尺,以便观察灌水层的厚度。筒内外迅速灌水,使水层厚度保持为5cm. 为从一开始时,水就向土壤内渗入,所以必须很快地把水倒到预期的水层厚度。为了使灌入的水不致冲刷表层土壤,不应将水直接倒在土面上,而应在简内外灌水处用胶板或木板(甚至杂草或蒿草)保护之。 3.1.2.3、温度影响渗透系数很大,应在简内插入温度计,以使换算为10℃时的渗透系数。 3.1.2.4、当试验区内部灌水到5cm高时,应立即开始计时,每隔一定时间进行

渗透系数经验值

毛昶熙主编《堤防工程手册》所给经验值: 土质类别K(cm/s) 土质类别K(cm/s) 粗砾1~0.5 黄土(砂质)1e-3~1e-4 砂质砾0.1~0.01 黄土(泥质)1e-5~1e-6 粗砂5e-2~1e-2 黏壤土1e-4~1e-6 细砂5e-3~1e-3 淤泥土1e-6~1e-7 黏质砂2e-3~1e-4 黏土1e-6~1e-8 沙壤土1e-3~1e-4 均匀肥黏土1e-8~1e-10 表2 岩石和岩体的渗透系数 岩块K(实验室测定,cm/s)岩体K(现场测定,cm/s)砂岩(白垩复理层)1e-8~1e-10 脉状混合岩 3.3e-3 粉岩(白垩复理层)1e-8~1e-9 绿泥石化脉状页岩0.7e-2 花岗岩2e-10~5e-11 片麻岩 1.2e-3~1.9e-3 板岩 1.6e-10~7e-11 伟晶花岗岩0.6e-3 角砾岩 4.6e-10 褐煤层 1.7e-2~2.39e-2 方解岩9.3e-8~7e-10 砂岩1e-2 灰岩 1.2e-7~7e-10 泥岩1e-4 白云岩 1.2e-8~4.6e-9 鳞状片岩1e-2~1e-4 砂岩 1.2e-5~1.6e-7 1个吕荣单位裂隙宽 度0.1mm间距1m和 不透水岩块的岩体 0.8e-4 砂泥岩2e-6~6e-7 细粒砂岩2e-7 蚀变花岗岩0.6e-5~1.5e-5 岩土类别渗透系数K(cm/s)孔隙率n 给水度资料来源砾240 0.371 0.354 瑞士工学研究所粗砾160 0.431 0.338 砂砾0.76 0.327 0.251 砂砾0.17 0.265 0.182 砂砾7.2e-2 0.335 0.161 中粗砂 4.8e-2 0.394 0.18 含黏土的砂 1.1e-4 0.397 0.0052 含黏土1%的砂砾 2.3e-5 0.394 0.0036 含黏土16%的砂砾 2.5e-6 0.342 0.0021 重粉质壤土d50=0.02mm 2e-4 0.442 0.007 南京水利科学研 究院 中细砂d50=0.2mm 1.7e-3~6.1e-4 0.438~0.392 0.074~0.039 粗砾d50=5mm 613 0.392 0.36 砂砾石料 2.4e-3 0.302 0.078

渗透系数

渗透系数 渗透系数又称水力传导系数(hydraulic conductivity)。在各向同性介质中,它定义为单位水力梯度下的单位流量,表示流体通过孔隙骨架的难易程度,表达式为:κ=kρg/η,式中k为孔隙介质的渗透率,它只与固体骨架的性质有关,κ为渗透系数;η为动力粘滞性系数;ρ为流体密度;g为重力加速度。在各向异性介质中,渗透系数以张量形式表示。渗透系数愈大,岩石透水性愈强。强透水的粗砂砾石层渗透系数>10米/昼夜;弱透水的亚砂土渗透系数为1~0.01米/昼夜;不透水的粘土渗透系数<0.001米/昼夜。据此可见土壤渗透系数决定于土壤质地。 1.测定影响 渗透系数k 是一个代表土的渗透性强弱的定量指标,也是渗流计算时必须用到的一个基本参数。不同种类的土,k 值差别很大。因此,准确的测定土的渗透系数是一项十分重要的工作。 2计算方法 渗透系数K是综合反映土体渗透能力的一个指标,其数值的正确确定对渗透计算有着非常重要的意义。影响渗透系数大小的因素很多,主要取决于土体颗粒的形状、大小、不均匀系数和水的粘滞性等,要建立计算渗透系数k的精确理论公式比较困难,通常可通过试验方

法,包括实验室测定法和现场测定法或经验估算法来确定k值。 3测定方法 渗透系数的测定方法主要分“实验室测定”和“野外现场测定“两大类。 常水头法测渗透系数k 1.实验室测定法 目前在实验室中测定渗透系数k 的仪器种类和试验方法很多,但从试验原理上大体可分为”常水头法“和"变水头法"两种。 常水头试验法就是在整个试验过程中保持水头为一常数,从而水头差也为常数。如图: 试验时,在透明塑料筒中装填截面为A,长度为L的饱和试样,打开水阀,使水自上而下流经试样,并自出水口处排出。待水头差△h

渗透系数经验值

毛昶熙主编《堤防工程手册》所给经验值: 土质类别 K(cm/s) 土质类别 K(cm/s) 粗砾 1~0.5 黄土(砂质) 1e-3~1e-4 砂质砾 0.1~0.01 黄土(泥质) 1e-5~1e-6 粗砂 5e-2~1e-2 黏壤土 1e-4~1e-6 细砂 5e-3~1e-3 淤泥土 1e-6~1e-7 黏质砂 2e-3~1e-4 黏土 1e-6~1e-8 沙壤土 1e-3~1e-4 均匀肥黏土 1e-8~1e-10 表2 岩石和岩体的渗透系数 岩块 K (实验室测定, cm/s ) 岩体 K (现场测定,cm/s ) 砂岩(白垩复理层) 1e-8~1e-10 脉状混合岩 3.3e-3 粉岩(白垩复理层) 1e-8~1e-9 绿泥石化脉状页岩 0.7e-2 花岗岩 2e-10~5e-11 片麻岩 1.2e-3~1.9e-3 板岩 1.6e-10~7e-11 伟晶花岗岩 0.6e-3 角砾岩 4.6e-10 褐煤层 1.7e-2~2.39e-2 方解岩 9.3e-8~7e-10 砂岩 1e-2 灰岩 1.2e-7~7e-10 泥岩 1e-4 白云岩 1.2e-8~4.6e-9 鳞状片岩 1e-2~1e-4 砂岩 1.2e-5~1.6e-7 1个吕荣单位裂隙宽度0.1mm 间距1m 和不透水岩块的岩体 0.8e-4 砂泥岩 2e-6~6e-7 细粒砂岩 2e-7 蚀变花岗岩 0.6e-5~1.5e-5 表3 各种岩土的给水度 岩土类别 渗透系数K (cm/s ) 孔隙率n 给水度 资料来源 砾 240 0.371 0.354 瑞士工学研究所 粗砾 160 0.431 0.338 砂砾 0.76 0.327 0.251 砂砾 0.17 0.265 0.182 砂砾 7.2e-2 0.335 0.161 中粗砂 4.8e-2 0.394 0.18 含黏土的砂 1.1e-4 0.397 0.0052 含黏土1%的砂砾 2.3e-5 0.394 0.0036 含黏土16%的砂砾 2.5e-6 0.342 0.0021 重粉质壤土d50=0.02mm 2e-4 0.442 0.007 南京水利科学研 中细砂d50=0.2mm 1.7e-3~6.1e-4 0.438~0.392 0.074~0.039 粗砾d50=5mm 613 0.392 0.36 砂砾石料 2.4e-3 0.302 0.078

传热系数和导热系数

传热系数和导热系数 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K ,C), 1小时内通过1平方米面积传递的热量,单位是瓦/平方米度(W/ m2 K,此处K可用C代替)。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K, C),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处为K可用C代替)。导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。通常把导热系数较低的材料称为保温材料,而把导热系数在0.05瓦/米?度以下的材料称为高效保温材料。 传热阻以往称总热阻,现统一定名为传热阻。传热阻RO是传热和系数K的倒数,即RO=1/K,单位是平方米度/瓦(m2. K/ W)。围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 由固体器壁隔开的热、冷流体在温度相差为一度时,单位时间内通过单位器壁面积的传热量,又称总传热系数。它是传热学中度量传热过程有效程度的主要指标。其数学定义式为

式中?为单位时间内流过传热面的热量即热流量;为传热面积;△ 为热、冷流体的对数平均温度差。 机械工程中遇到的传热过程常常是热传导、对流换热和辐射换热三者的综合,而在应用最多的表面式换热器(又称间壁式换热器)中温度不太高,辐射换热的作用不大,所以分析时主要考虑热传导和对流换热的综合过程。 传热过程中热流体通过对流换热向高温侧壁面传热(见图 这一热量又通过固体壁导热传递给低温侧 壁面,最后以对流换热方式由冷流体把热量从低温侧壁面带走。因此,传热过程通常都可简化成串联的3个基本环节:对流换热一导热—对流换热。3个串联环节的分热阻之和组成传热过程的总热阻。因此,传热系数可表示为 I ] * $ * ] 屍鼻屁式中方、方分别表示热、冷流体与其相接触壁面间的对流传热系数(需要时,其中包括辐射换热的相应折算值);?、分别为器壁的厚度和热导率。分母中的3个分数代表3 个串联环节的分热阻。因此,传热系数不仅与器壁的材料性能和厚度有关,还与器壁两侧的对流换热(有时还有辐射换热)过程有关,而且

各类土质渗透系数经验值知识分享

各类土质渗透系数经 验值

毛昶熙主编《堤防工程手册》所给经验值: 表1 各种土的渗透系数经验值 土质类别 K(cm/s) 土质类别 K(cm/s) 粗砾 1~0.5 黄土(砂质) 1e-3~1e-4 砂质砾 0.1~0.01 黄土(泥质) 1e-5~1e-6 粗砂 5e-2~1e-2 黏壤土 1e-4~1e-6 细砂 5e-3~1e-3 淤泥土 1e-6~1e-7 黏质砂 2e-3~1e-4 黏土 1e-6~1e-8 沙壤土 1e-3~1e-4 均匀肥黏土 1e-8~1e-10 表2 岩石和岩体的渗透系数 岩块 K (实验室测定, cm/s ) 岩体 K (现场测定, cm/s ) 砂岩(白垩复理 层) 1e-8~1e-10 脉状混合岩 3.3e-3 粉岩(白垩复理 层) 1e-8~1e-9 绿泥石化脉状页 岩 0.7e-2 花岗岩 2e-10~5e-11 片麻岩 1.2e-3~1.9e-3 板岩 1.6e-10~7e-11 伟晶花岗岩 0.6e-3 角砾岩 4.6e-10 褐煤层 1.7e-2~2.39e-2 方解岩 9.3e-8~7e-10 砂岩 1e-2 灰岩 1.2e-7~7e-10 泥岩 1e-4 白云岩 1.2e-8~4.6e-9 鳞状片岩 1e-2~1e-4 砂岩 1.2e-5~1.6e-7 1个吕荣单位裂隙宽度0.1mm 间距1m 和不透水岩块 的岩体 0.8e-4 砂泥岩 2e-6~6e-7 细粒砂岩 2e-7 蚀变花岗岩 0.6e-5~1.5e-5 表3 各种岩土的给水度 岩土类别 渗透系数K (cm/s ) 孔隙率n 给水度 资料来源 砾 240 0.371 0.354 瑞士工学研究 所 粗砾 160 0.431 0.338 砂砾 0.76 0.327 0.251 砂砾 0.17 0.265 0.182 砂砾 7.2e-2 0.335 0.161 中粗砂 4.8e-2 0.394 0.18 含黏土的砂 1.1e-4 0.397 0.0052

导热系数和传热系数区别

(W/㎡·K,此处K可用℃代替)。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处为K可用℃代替)。导热系数与材料的组成结构、密 时,导热系数较小。 传热系数(Heat transfer coefficient) 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K/℃)1小时内通过1平方米面积传递的热量 单位是瓦/平方米?度(W/㎡?K)此处K可用℃代替。 传热系数不是描述物质物性的物理量,它会随着不同的外界条件而发生变化,例如温度,流速,流量等,总的说来,它是一个工程上的概念. 机械工程中遇到的传热过程常常是热传导、对流换热和辐射换热三者的综合,而在应用最多的表面式换热器(又称间壁式换热器)中温度不太高,辐射换热的作用不大,所以分析时主要考虑热传导和对流换热的综合过程。因此,传热系数不仅与器壁的材料性能和厚度有关,还与器壁两侧的对流换热(有时还有辐射换热)过程有关。 导热系数(Thermal conductivity) 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1小时内,通过1平方米面积传递的热量,用λ表示,单位为瓦/(米·度),w/(m·k)(W/m·K,此处的K可用℃代替)。 导热系数与材料的组成结构、密度、含水率、温度等因素有关。导热系数又被称作“热导系数”或“导热率”,反映材料热性能的重要物理量.这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 热传导是热交换的三种(热传导,对流和辐射)基本形式之一.是工程热物理、材料科学、固态物理、能源、环保等各个研究领域的课题。材料的导热机理在很大程度上取决于它的微观结构。热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移。

换热器的传热系数K汇总

介质不同,传热系数各不相同我们公司的经验是: 1、汽水换热:过热部分为800~1000W/m2.℃ 饱和部分是按照公式K=2093+786V(V是管内流速)含污垢系数0.0003。 水水换热为:K=767(1+V1+V2)(V1是管内流速,V2水壳程流速)含污垢系数0.0003 实际运行还少有保守。有余量约10% 冷流体热流体总传热系数K,W/(m2.℃) 水水 850~1700 水气体 17~280 水有机溶剂 280~850 水轻油 340~910 水重油60~280 有机溶剂有机溶剂115~340 水水蒸气冷凝1420~4250 气体水蒸气冷凝30~300 水低沸点烃类冷凝 455~1140 水沸腾水蒸气冷凝2000~4250 轻油沸腾水蒸气冷凝455~1020 不同的流速、粘度和成垢物质会有不同的传热系数。K值通常在

800~2200W/m2·℃范围内。 列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃范围内。 板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃范围内。 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。 (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)

传热系数与导热系数

传热系数与导热系数概念的区别 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K/℃)1小时内通过1平方米面积传递的热量 单位是瓦/平方米?度(W/㎡?K)此处K可用℃代替。 传热系数不是描述物质物性的物理量,它会随着不同的外界条件而发生变化,例如温度,流速,流量等,总的说来,它是一个工程上的概念. 导热系数是指在稳定传热条件下,1m厚的材料两侧表面的温差为1度(K/℃),在1小时内通过1平方米面积传递的热量.单位为瓦/米?度(W /m2.K此处为K可用℃代替)。 导热系数与材料的组成结构、密度、含水率、温度等因素有关。导热系数又被称作“热导系数”或“导热率”,反映材料热性能的重要物理量.热传导是热交换的三种(热传导,对流和辐射)基本形式之一.是工程热物理、材料科学、固态物理、能源、环保等各个研究领域的课题。材料的导热机理在很大程度上取决于它的微观结构。热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移。 二、传热系数计算公式 1、围护结构热阻的计算 单层结构热阻 R=δ/λA (m2.K/w) 式中:δ—材料层厚度(m) λ—材料导热系数[W/(m.k)] 多层结构热阻 A—平壁的面积,m2 R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m2.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m2.k/w)(一般取0.11) Re—外表面换热阻(m2.k/w)(一般取0.04) R —围护结构热阻(m2.k/w) 3、围护结构传热系数计算 K=1/ R0 (w/(m2.k)) 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中: Km—外墙的平均传热系数[W/(m2.k)] Kp—外墙主体部位传热系数[W/(m2.k)] Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m2.k)] Fp—外墙主体部位的面积 Fb1、Fb2、Fb3—外墙周边热桥部位的面积 计算公式引自看参考资料 参考资料:https://www.360docs.net/doc/7215949345.html,/view/630213.htm

渗透系数经验值

毛昶熙主编《堤防工程手册》所给经验值: 土质类别K(cm/s)土质类别K(cm/s)粗砾1~0。5黄土(砂质)1e—3~1e-4 砂质砾0。1~0.01黄土(泥质)1e-5~1e-6 粗砂5e-2~1e—2黏壤土1e-4~1e-6 细砂5e-3~1e—3淤泥土1e—6~1e—7 黏质砂2e-3~1e-4黏土1e-6~1e—8 沙壤土1e—3~1e-4均匀肥黏土1e-8~1e—10 表2 岩石和岩体的渗透系数 岩块K(实验室测定,cm/s)岩体K(现场测定,cm/s)砂岩(白垩复理层)1e-8~1e—10脉状混合岩3。3e-3 粉岩(白垩复理层)1e-8~1e-9绿泥石化脉状页岩0.7e-2花岗岩2e—10~5e—11片麻岩1.2e-3~1。9e—3板岩1.6e-10~7e—11伟晶花岗岩0.6e-3 角砾岩4.6e-10褐煤层1.7e—2~2.39 e—2方解岩9.3e-8~7e—10砂岩1e-2 灰岩1.2e—7~7e —10 泥岩1e-4 白云岩1.2e—8~4。6e- 9 鳞状片岩1e—2~1e-4 砂岩1.2e—5~1。6e—71个吕荣单位裂隙宽 度0。1mm间距1m 和不透水岩块的岩体 0.8e-4砂泥岩2e-6~6e-7 细粒砂岩2e-7 蚀变花岗岩0.6e—5~1。5e-5 岩土类别渗透系数K(c m/s) 孔隙率n给水度资料来源砾2400.3710.354 瑞士工学研究所粗砾1600.4310.338 砂砾0.760.3270.251 砂砾0.170.2650。182 砂砾7。2e-20.3350.161 中粗砂 4.8e-20.3940.18 含黏土的砂1。1e-40.3970.0052 含黏土1%的砂砾2。3e—50。3940.0036 含黏土16%的砂砾2.5e—60.3420.0021 重粉质壤土d50=0.0 2mm 2e-40.4420。007 中细砂d50=0。2m1.7e-3~6。1e0.438~0.390.074~

流速与总传热系数经验值表格

列管式换热器内的适宜流速范围 流体种流m/ 管壳 冷却1 黏度不一般液 低黏 高黏 5~15油蒸汽3~6 5~30气体3~15 2~6~3气液混合液体 总传热系数的选择

总传热系数/[W/壳程管程3(m·℃) 582)~)698水(流速为~1.5m/s水(流速为~1.5m/s 814~水水(流速较高时)1163 467轻有机物μ<·s~冷水814 290冷水=中有机物μ~1mPa·s~698 1161mPa~·冷水s467重有机物μ> 233轻有机物μ<·盐水s~582 198=有机溶剂~~·s233有机溶剂μ 233轻有机物μ<·~轻有机物μ<·ss465 116~349~中有机物μμ=~=1mPa·s物有中机

58s1mPa·~233s1mPa·重有机物μ> 2326~·重有机物μ>1mPas水蒸气(有压力)冷凝4652 17451m/s水(流速为)~3489水蒸气(常压或负压)冷1163~水1071凝 582水溶液μ<~s2mPa·水蒸气冷凝2908 582~水蒸气冷凝·水溶液μ>2mPas1193 291s有机物μ<·~水蒸气冷凝582 114水蒸气冷凝~s·~有机物μ=1mPa349 5821mPa有机物μ>~s·1163水蒸气冷凝 116~有机物蒸气及水蒸气冷水349 58~水凝174 582~1163水重有机物蒸气(常压)冷 174~凝349水 814~1163水重有机物蒸气(负压)冷 698水凝~930 饱和有机溶剂蒸气(75 压)冷 含饱和水蒸气的氯气(<℃)50 冷凝SO2冷凝NH3氟里昂冷凝

=1000cP==10P= 污垢热阻R的大致范围d 流体污垢热阻流体污垢热阻 Rd/(m2·℃·kwRd/(m2·℃·kw)-1-1) 水水蒸汽

管道总传热系数算

管道总传热系数算

————————————————————————————————作者:————————————————————————————————日期:

1管道总传热系数 管道总传热系数是热油管道设计和运行管理中的重要参数。在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。 1.1 利用管道周围埋设介质热物性计算K 值 管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式: 1 112ln 111ln 22i i n e n w i L L D D D KD D D D ααλλ-+???? ?????=+++????????∑ (1-1) 式中:K ——总传热系数,W /(m 2·℃); e D ——计算直径,m ;(对于保温管路取保温层内外径的平均值, 对于无保温埋地管路可取沥青层外径); n D ——管道内直径,m ; w D ——管道最外层直径,m ; 1α——油流与管内壁放热系数,W/(m 2·℃); 2α——管外壁与周围介质的放热系数,W/(m 2·℃); i λ——第i 层相应的导热系数,W/(m·℃); i D ,1i D +——管道第i 层的内外直径,m ,其中1,2,3...i n =; L D ——结蜡后的管内径,m 。 为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径的 导热热阻、管道外壁或最大外围至周围环境的放热系数2α。 (1)内部放热系数1α的确定 放热强度决定于原油的物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 和流体物理性质准数r P 间的数学关系式来表示[47]。 在层流状态(Re<2000),当500Pr

总传热系数的测定

昆明理工大学实验报告 课题名称:化工原理实验 实验名称:总传热系数的测定 姓名:成绩: 学号:班级: 实验日期: 实验内容:测定套管换热器中水—水物系在常用流速范围内的总传热系数K,分析强化传热效果的途径。

总传热系数的测定 一、实验目的 1.了解换热器的结构,掌握换热器的操作方法。 2.掌握换热器总传热系数K 的测定方法。 3.了解流体的流量和流向不同对总传热系数的影响 二、基本原理 在工业生产中,要完成加热或冷却任务,一般是通过换热器来实现的,即换热器必须在单位时间内完成传送一定的热量以满足工艺要求。换热器性能指标之一是传热系数K 。通过对这一指标的实际测定,可对换热器操作、选用、及改进提供依据。 传热系数K 值的测定可根据热量恒算式及传热速率方程式联立求解。 传热速率方程式: Q =kS ?t m (1) 通过换热器所传递的热量可由热量恒算式计算,即 Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1)+Q 损 (2) 若实验设备保温良好,Q 损可忽略不计,所以 Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1) (3) 式中,Q 为单位时间的传热量,W ;K 为总传热系数,W/(m 2·℃);?t m 为传热对数平均温度差,℃;S 为传热面积(这里基于外表面积),m 2;W h ,W c 为热、冷流体的质量流量,kg/s ;C ph ,C pc 为热、冷流体的平均定压比热,J/(kg ·℃);T 1,T 2为热流体的进出口温度,℃;t 1,t 2为冷流体的进出口温度,℃。 ?tm 为换热器两端温度差的对数平均值,即 1 2 1 2ln t t t t t m ???-?= ? (4) 当 21 2 ≤??t t 时,可以用算术平均温度差(212t t ?+?)代替对数平均温度差。由上式所计算出口 的传热系数K 为测量值K 测。 传热系数的计算值K 计可用下式进行计算: ∑ +++ = S i R K λ δαα1 1 1 计 (5) 式中,α0为换热器管外侧流体对流传热系数,W/(m 2·℃);αi 为换热器管内侧流体对流传热系数,W/(m 2·℃);δ为管壁厚度,m ;λ——管壁的导热系数,W/(m 2·℃);R S 为污垢热阻,m 2·℃/W 。 当管壁和垢层的热阻可以忽略不计时,上式可简化成:

传热系数

简介 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1s内通过1平方米面积传递的热量,单位是瓦/(平方米·度)(W/(㎡·K),此处K可用℃代替)。传热系数不仅和材料有关,还和具体的过程有关。 空调计算 对于空调工程上常采用的换热器而言,如果不考虑其他附加热阻,传热系数K 值可以按照如下计算: K=1/(1/Aw+δ/λ+1/An) W/(㎡·°C) 其中,An,Aw——内、外表面热交换系数,W/(㎡·°C) δ——管壁厚度,m λ——管壁导热系数,W/(m·°C) 计算公式 1、围护结构热阻的计算 单层结构热阻 R=δ/λ(m2.K/w) 式中:δ—材料层厚度(m) λ—材料导热系数[W/(m.k)] 多层结构热阻 R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m2.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m2.k/w)(一般取0.11) Re—外表面换热阻(m2.k/w)(一般取0.04) R —围护结构热阻(m2.k/w) 3、围护结构传热系数计算 K=1/ R0 (w/(m2.k))

式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中: Km—外墙的平均传热系数[W/(m2.k)] Kp—外墙主体部位传热系数[W/(m2.k)] Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m2.k)] Fp—外墙主体部位的面积 Fb1、Fb2、Fb3—外墙周边热桥部位的面积 4、铝合金门窗的传热系数的计算 Uw =(Af*Uf+Ag*Ug+Lg*Ψg)/(Af+Ag) 式中: Uw —整窗的传热系数W/m2·K Ug —玻璃的传热系数W/m2·K Ag —玻璃的面积m2 Uf —型材的传热系数W/m2·K Af —型材的面积m2 Lg —玻璃的周长m Ψg —玻璃周边的线性传热系数W/m2·K

相关文档
最新文档