焦半径公式的三角形式及其应用

焦半径公式的三角形式及其应用
焦半径公式的三角形式及其应用

焦半径公式的三角形式及其应用

重庆清华中学 张 忠

焦半径是圆锥曲线中很重要的几何量,与它相关的问题是各类考试的热点,常考常新,故值得我们进一步总结与研究。

焦半径公式的代数形式:设21,F F 是曲线的左、右焦点,点),(00y x P 在曲线上,记

11PF r =、22PF r =为左、右焦半径。则在椭圆中:0201,ex a r ex a r -=+=;在双曲

线中:a ex r a ex r -=+=0201,;在抛物线)0(22

>=p px y 中:2

0p x r +

=。 若焦点在y 轴上时,则把相应的0x 改为0y 即可。因应用情形比较常见,不再叙述。,本文介绍它的三角形式及其应用。

定理1:若椭圆的离心角为θ,则 (1)|PF 1|=a +ccosθ; (2)|PF 2|=a -ccosθ. 证明:∵ 椭圆的离心角为θ,由椭圆参数方程知点P 的横坐标为acosθ,依焦半径的代数形式知:|PF 1|=a +ex p =a +ea·cosθ=a +c·cosθ,|PF 2|=a -ex p =a -c·cosθ.

例1. F 1、F 2是椭圆+y 2

=1的左右焦点,点

P 在椭圆上运动,则|PF 1|·|PF 2|的最大值 是______, 最小值是_________. (1996年第七届“希望杯”赛)

解:设椭圆的离心角为θ,又知a =2,c 2

=3,由定理1得 |PF 1|c·|PF 2|=a 2

-c 2

cos 2

θ=4-3cos 2

θ

∵ 0≤cos 2

θ≤1 故知 |PF 1|c·|PF 2|max =4-3·0=4 |PF 1|·|PF 2|min =4-3·1=1

例2. 椭圆的左右焦点为F 1、F 2,试问此椭圆的离心率e 在什么值范围内,椭圆上恒存在点

P,使得PF1⊥PF2。

解:设椭圆方程为b2x2+a2y2=a2b2(a>b>0),离心角为θ,依题设、定理1及勾股定理得(2c)2=(a-ccosθ)2+(a+ccosθ)2化简得cos2θ=

∵0≤cos2θ≤1,∴0≤2-

≤1,结合0<e<1得

≤e<1为所求。

定理2:在圆锥曲线中,准线在焦点右侧时,焦半径θ

cos 1e ep

PF +=

,这里θ为x 轴到直

线PF 的角,p 为焦准距,在椭圆和双曲线中,因c b p 2

=,θcos 2c a b PF +=。准线在焦

点左侧时,θ

cos 1e ep

PF -=,在椭圆和双曲线中,θcos 2c a b PF -=。准线在焦点上方

或下方时,只需将θ视为y 轴到直线PF 的角即可。 证明:则在圆锥曲线中,有以下几种情形:

1. 准线在焦点右侧; 2. 准线在焦点左侧; 3. 准线在焦点上方; 4. 准线在焦点下方;

对于情形1:准线在焦点右侧,如下图1,设点),(00y x P 在圆锥曲线上,F 是焦点,QH 是准线所在直线,x 轴到直线PF 的角为θ,过点P 作Q QH PQ 于⊥,过点F 作

H QH FH 于⊥,则:

PQ e PF =,θcos PF FH PQ -=,可得

θ

θ

cos 1cos 1e ep

e FH e PF +=

+=

,这里p 为焦准距,在椭圆和双

曲线中,c

b p 2

=。

具体化到椭圆和双曲线中,有公式θ

cos 2

c a b PF +=,抛物线中,有公式

θ

cos 1+==

p

PF ;

对于情形2,如下图,准线在焦点左侧,同理可得:

θ

θ

cos 1cos 1e ep

e FH e PF -=

-=

,这里p 为焦准距,在椭圆和双曲

线中,c

b p 2

=。

具体化到椭圆和双曲线中,有公式θ

cos 2

c a b PF -=,抛物线中,有公式

θ

cos 1-==

p

PF ;

对于情节形3、4,如下两图,只需将上两种情形中的θ的几何意义改为y 轴到直线PF 的角即可。

下面看角焦半径公式在高考中的应用:

例3.(07、重庆)过双曲线C :42

2

=-y x 的右焦点F 作倾斜角为0

105的直线,与双曲线

C 交于A 、B 两点,则|AF |·|BF |=___________;

解:由题设有:2==b a ,2=e ,22

==a

b ep ? |AF |=

105cos 212

cos 1-=-θe ep ,|BF |=

105

cos 212+?

|AF |·|BF |=

02105cos 214-=33

830cos 4)210cos 1(140

0=

=+-. 例4.(07.重庆理22)如图,中心在原点O 的椭圆的右焦点为F (3,0),右准线l 的方程

为:x = 12。

(1)求椭圆的方程;

(2)在椭圆上任取三个不同点321,,P P P ,使133221FP P FP P FP P ∠=∠=∠,证明

|

|1

||1||1321FP FP FP ++为定值,并求此定值。

解:(I )设椭圆方程为22

221x y a b +=.因焦点为(30)F ,,故半焦距3c =.

又右准线l 的方程为2a x c =,从而由已知

2

21236a a c

==,, 因此6a =

,b ==.故所求椭圆方程为

22

13627

x y +=. (II )记椭圆的右顶点为A ,并设i i AFP α∠=(i =1,2,3)

,不失一般性, 假设1203απ<

≤,且2123ααπ=+,3143

ααπ

=+. 又设点i P 在l 上的射影为i Q ,因椭圆的离心率1

2

c e a ==,从而有

2cos i i i i i a FP PQ e c FP e c α??==-- ?

??

g 1

(9cos )2i i FP α=- (123)i =,,. 解得

1211cos 92i i FP α??

=+ ???

(123)i =,

,.

最全面的三角形面积公式

最全面的三角形面积公式 一提到三角形面积公式,大家都知道。 ① 已知三角形的底边长为a , 高为h ,则 三角形面积S= 底 ? 高 ÷2 2 ah = B 实际上,三角形面积公式太多啦,上面得公式是最基本的公式,根据条件不同,三角形面积公式也不同。 ②已知三角形的周长为l ,内切圆半径为r ,则三角形面积2 lr S = ③已知三角形的三边长的乘积为L ,外接圆半径为R ,则三角形面积4L S R = ④已知三角形AOB 中,向量 OA a =uu r r ,OB b =u u u r r ,则三角形面积S = 此公式也适用于空间三角形求面积。 ⑤已知在平面直角坐标系中,三角形ABC 的三顶点坐标分别为,11(,)A x y ,22(,)B x y , 33C(,)x y , 则三角形面积1 1223 31 1121 x y S x y x y = 的绝对值1223311321321 2 x y x y x y x y x y x y =++---。

特别地,当(0,0)C ,或经过平移后(0,0)C ,此时,三角形面积12211 2S x y x y =-。 ⑥海伦(Heran )公式,已知△ABC 中,1 ,,,()2 AB c BC a CA b p a b c ====++,则 三角形面积S 我国宋朝时期也有类似的三角形面积公式,即秦九韶公式,也叫三斜求积公式。 S = ⑦已知三角形两边及夹角,则三角形面积公式为 111 sin sin sin 222 S ab C bc A ca B = == ⑧已知三角形两角及夹边,则三角形面积公式为 222sin sin sin sin sin sin 2sin()2sin()2sin() c A B b A C a B C S A B A C B C === +++ ⑨已知三角形两角A 、B 及其中一边的对边a ,则三角形面积公式为 2sin()sin 2sin a A B B S A += ⑩已知空间三角形ABC 的顶点111222333(,,), (,,),(,,)A x y z B x y z C x y z 。 则三角形面积212121313131 11 22 i j k S AB AC x x y y z z x x y y z z =?=------ 的绝对值

圆锥曲线的统一焦半径公式在解题中的应用

圆锥曲线的统一焦半径公式 在解题中的应用 宜昌二中 黄群星 我们在解决有关直线与圆锥曲线的关系问题时,经常会用到焦半径公式。解决这类问题,我们可以用到的公式有:平面上两点之间的距离公式,弦长公式,三种圆锥曲线的焦半径公式,和圆锥曲线的统一焦半径公式。最后一个公式往往被大家忽视,现在我想专门谈谈这个公式的使用。 一.在椭圆中的运用: 例1:已知椭圆22221(0)x y a b a b +=>> 的离心率为2 ,过右焦点F 且斜率为k (>0)的直 线与C 相交与A,B 两点,若3AF FB =,求k 的值。 解法一:∵ 2 e = ∴12b a = 设椭圆的方程为22 221,4x y b b += 右焦点为,0), 设直线的方程为my x =,设1122(,),(,)A x y B x y 222440x y b my x ?+-=?? =? ?222 (4)0m y b ?++-= ∵3AF FB =1122,)3(,)x y x y ?--=123y y ?=-① 122 (4)y y m -+=+ ② 2 122(4) b y y m -?=+ ③ 将①带入②得 1224y y m ?=????=-?+? ∴2221222 94(4)m b b y y m m --?==++212m ?= k>0, ∴m>0, ∴2 m k ==解法二; 由题意得3AF FB = =cos 3θ?=

∴sin tan 3 k θθ= ==即 评述:解法二应用了圆锥曲线的统一焦半径公式,从而大大简化了解题的过程。那么,在什么情况下可以用这个公式呢? 先看这个公式的结构:1cos ep PF e θ = ±,其中,e 是离心率,P 为焦准距,θ是过焦点 的直线的倾斜角,正是由于倾斜角的存在,使得这个公式在解决有关过焦点的直线的斜率和倾斜角的问题时相当便捷,而且,公式是根据圆锥曲线的统一定义推导出来,对椭圆,双曲线和抛物线都适用,这是它的一大优越之处。 二.在双曲线中的运用: 例2:双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12,l l ,经过右焦点F 垂直于1l 的直线分别交12,l l 于A,B 两点,已知,,OA AB OB 成等差数列,且,BF FA 同向 ① 求双曲线的离心率 ② 设直线AB 被双曲线所截得的线段的长为4,求双曲线的方程。 解:① 如图 ∵FA=b,OF=c, ∴OA=a ,∵OF 平分角∠AOB ∴OA AF OB BF = 设FB=mb,OB=m a ,则有2AB OA OB =+ 即12(1)2b m b a ma e a +=+? =∴= ② 设直线AB 的倾斜角为θ , cos b c θ= = ∴ 41c o s 1c o s e p e p e e θθ+=+- 4p p += 2 a P c c ?=-= 有∵ 6,3c a c b a ===∴= ∴ 双曲线的方程为 2 2 1369 x y -= 评述:双曲线的焦半径公式PF =a ex ±,由于正负号和绝对值符号的存在,使得这个公式在运用起来又很多不方便,而统一焦半径公式正好巧妙的解决了这一问题。 三.在抛物线中的使用: 例3:平面上一点P 到点F (1,0)的距离与它到直线x=3的距离之和为4, ① 求点P 的轨迹方程

三角形面积公式5种推导方法

三角形面积公式的五种推导方法 三角形面积的计算》一节,教材上是这样安排的:一、明确目标;二、用数格的方式不能确定三角形的面积;三、能否转化成以前学过的图形进行计算?四、拿两个全等的直角三角形可以拼成以前学习过的学习过的长方形和平行四边形,直角三角形的面积是长方形和平行四边形面积的一半;五、验证锐角三角形和钝角三角形是否也能拼成平行四边形;六、三次试验确定所有类型的三角形能转化成平行四边形,两者的关系是“等底等高,面积一半”;七、总结三角形的面积公式。 我们在多次的课堂教学实践和课下辅导过程中,发现上面的几个“环节”有些地方不太符合学生的认知特点。具体分析一下: 第一步没什么问题,每个教师都有自己的导入新课的方式。 第二步也没有什么:学生在学习长方形和正方形的面积时用的是“数格”的方式。学习平行四边形时用的是切割再组合的方式,就是所谓的“转化”。在大部分学生对面积这个概念的理解还不十分透彻的情况下,面对三角形,学生们的首选方法就是“数格”。因为这是学生学习有关面积计算的第一经验,第一印象,第一个技巧。也是最简单,最直接(当然也是最麻烦)的方法。 关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其内涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。 第四步。转化是一定的。但是,转化成什么?怎么转化?把三角形转化成“能计算的图形”大致有五种情况。教材推荐的是第五种(如图)。教材上的引导方式只有教师的主导性,而忽视了学生的主体位置。 前面提到,学生计算三角形面积的首选方法是数格,那么次选方法是什么?他们的第二方案应该还是在自己的经验中寻找帮助。这些经验当中,与计算面积有关的直接、简单、容易操作的内容就是在前面的几节课刚学过的“切割平行四边形成长方形”的方法。他们对“切割”这个动作记忆犹新。因为:一、这个技巧刚刚学过;二、切割是个动作,但这个动作能把不规则变规则,所以印象深刻;三、这个简单的动作能完成面积计算的任务。所以他们的下一步动作会是模仿上一节课的做法,想办法切割三角形的某一角移动填补另一角,变三角形成长方形或平行四边形。按这个说法,学生在寻找计算三角形面积的方法时,他首先会在他手中所拿的三角形卡片上琢磨,对这个三角形进行加工处理。在不得要领,或是找到了办法,问题解决了,但心有余味,继续探索下去时才会考虑到利用其他内容扩展思考空间,再找一个一样的三角形牵线搭桥,把思路引到问题的外面。

圆锥曲线的焦半径公式及其应用

圆锥曲线的焦半径公式及其应用 圆锥曲线上任意一点到焦点的距离叫做圆锥曲线关于该点的焦半径。利用圆锥曲线的第二定义很容易得到圆锥曲线的焦半径公式。 1.椭圆的焦半径公式 (1)若P(x 0,y )为椭圆2 2 x a +2 2 y b =1(a>b>0)上任意一点,F 1 、F 2 分 别为椭圆的左、右焦点,则 1 PF=a+e x0,2PF=a-e x0. (2) 若P(x 0,y )为椭圆2 2 y a +2 2 x b =1(a>b>0)上任意一点,F 2 、F 1 分别为椭圆的上、下焦点,则 1 PF=a+e y0,2PF=a-e y0. 2.双曲线的焦半径公式 (1)若P(x 0,y )为双曲线2 2 x a -2 2 y b =1(a>0,b>0)上任意一点,F 1 、 F 2 分别为双曲线的左、右焦点,则 ①当点P在双曲线的左支上时, 1 PF=-e x0-a,2PF= -e x0+a. ②当点P在双曲线的右支上时, 1 PF=e x0+a,2PF= e x0-a. (2)若P(x 0,y )为双曲线2 2 y a -2 2 x b =1(a>0,b>0)上任意一点,F 2 、 F 1 分别为双曲线的上、下焦点,则 ①当点P在双曲线的下支上时, 1 PF=-e y0-a,2PF= -ey0+a. ②当点P在双曲线的上支上时, 1 PF=ey0+a,2PF= ey0-a. 3.抛物线的焦半径公式

(1)若P(x 0,y 0)为抛物线y 2=2px(p>0)上任意一点,则PF = x 0+2 p (2) 若P(x 0,y 0)为抛物线y 2=-2px(p>0)上任意一点,则PF = -x 0+2 p (3) 若P(x 0,y 0)为抛物线x 2=2py(p>0)上任意一点,则PF = y 0+2 p (4)若P(x 0,y 0)为抛物线x 2=-2py(p>0)上任意一点,则PF = -y 0+2 p 下面举例说明上述各公式的应用 例1.求椭圆2 16x +225 y =1上一点M(2.4,4)与焦点F 1、F 2的距离. 解:易知a=5,e=3 5且椭圆的焦点在轴上,∴1MF = a+ey 0=5+35 ×4= 375,2MF = a-e y 0=5-35×4=13 5 。 例2.试在椭圆2 25 x +29y =1上求一点P ,使它到左焦点的距离是它 到右焦点的距离的两倍. 解:由 1212 210 { PF PF PF PF =+=,得1220 3103{ PF PF = = 。 设P(x 0, y 0),则1PF =a+ex 0,即5+45 x 0=203,解之得x 0=2512 ,所以P( 25 12 , 119 4 ± ). 例3.在双曲线216x -2 9 y =1上求一点M ,使它到左、右两焦点的距

焦半径公式的证明

焦半径公式的证明 FFaa>cFFc)2到两定点|=2,)(距离之和为定值22(|【寻根】椭圆的根在哪里?自然想到椭圆的定义:2121的动点轨迹(图形). ca. 和这里,从椭圆的“根上”找到了两个参数ca,就确定了椭圆的形状和大小.就确定了椭圆的位 置;再加上另一个参数比较它们的第一个参数“身,ca更“显贵”比份”来,. c的踪影,故有人开玩笑地说:椭圆方程有“忘本”遗憾的是,在椭圆的方程里,却看不到. 之嫌cc的“题根”. 为了“正本”,我们回到椭圆的焦点处,寻找,并寻找关于 一、用椭圆方程求椭圆的焦点半径公式 数学题的题根不等同数学教学的根基,数学教学的根基是数学概念,如椭圆教学的根基是椭圆的定义.但是在具体数学解题时,不一定每次都是从定义出发,而是从由数学定义引出来的某些已知结论(定理或公式)出发,如解答椭圆问题时,经常从椭圆的方程出发. FcFcPxy,0)((,0,)和)是椭圆上任意一点,是椭圆的两个焦(【例1】已知点-21 a PFPFa+-|=|=;|. .点求证:|21PFPFy”即可然后利用椭圆的方程“消. .可用距离公式先将||和||分别表示出来分析【】21【解答】由两点间距离公式,可知 PF (1) ||=1.解出从椭圆方程 (2) 代(2)于(1)并化简,得 axPFa) |(-≤|=≤1 aPF xa) |≤|=≤(-同理有2通过例1,得出了椭圆的焦半径公式【说明】 ea-ex ra+exr==( ) =21Px,yrxrx的减)横坐标的一次函数. 的增函数,从公式看到,椭圆的焦半径的长度是点是(是21a+ca-cx,y轴,关于原点)(关于. .从焦半径公式,函数,它们都有最大值还可得椭圆的对称性质,最小值 二、用椭圆的定义求椭圆的焦点半径

三角形面积公式

三角形的面积公式 一.教学内容分析 本课选自人教版五年级上册第五单元第84~85页内容,通过学习我们要探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。 三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的。学生已掌握了一定的学习方法,具备了将图形转化的初步推理能力。因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。主要是引导学生经历三角形面积公式的探索过程,理解三角形面积计算公式的推导过程。在教学中我注重学生自己动手操作,从操作中掌握方法,发现问题,解决问题。 培养学生应用已有知识解决新问题的能力,使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。 二.教学目标 1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。 2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。 3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。三.教学重难点 1.探索并掌握三角形的面积公式,能正确计算三角形的面积。 2.理解三角形面积公式的推导过程。 四.学习者分析 本节内容是在学生充分认识了三角形的特征以及掌握了长方形、平行四边形面积计算的基础上安排的。其推导方法与平行四边形面积公式的推导方法有相通之处。同时本课也是学习梯形、组合图形面积的基础,在实际生活中这部分的应用也非

焦半径公式

椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左准线为l,左右焦点分别为F1、F2,抛物线C2以F2为焦点,l为准线,点P是C1、C2的一个公共点,则 F1F2/PF1-PF1/PF2= 设点P的横坐标为m, 则由焦半径公式,PF1=a+em,PF2=a-em, 因为点P又在以F2为焦点,l为准线的抛物线上,l的方程为x=-a2/c; 所以,P到l的距离d=m-(-a2/c)=m+a2/c 抛物线满足:抛物线上的点到焦点的距离=到准线的距离; 所以d=PF2 即:m+a2/c=a-em 得:m=a2(c-a)/c(a+c) 所以,em=a(c-a)/(a+c) 所以,PF1=a+em=2ac/(a+c),PF2=2a2/(a+c) 所以,F1F2/PF1=(a+c)/a,PF1/PF2=c/a; F1F2/PF1-PF1/PF2=(a+c)/a-c/a=1; 椭圆的焦半径公式

设M(xo,y0)是椭圆x^2/a^2+ y^2/b^2=1(a>b>0)的一点,r1和 r2分别是点M与点F1(-c,0),F2(c,0)的距离,那么(左焦半径)r1=a+ex0,(右焦半径)r2=a -ex0,其中e是离心率。 推导:r1/∣MN1∣= r2/∣MN2∣=e 可得:r1= e∣MN1∣= e(a^2/ c+x0)= a+ex0,r2= e∣MN2∣= e(a^2/ c-x0)= a-ex0。 同理:∣MF1∣= a+ex0,∣MF2∣= a-ex0。 编辑本段双曲线的焦半径公式 双曲线的焦半径及其应用: 1:定义:双曲线上任意一点M与双曲线焦点的连线段,叫做双曲线的焦半径。 2.已知双曲线标准方程x^2/a^2-y^2/b^2=1 点P(x,y)在左支上 │PF1│=-(ex+a) ;│PF2│=-(ex-a) 点P(x,y)在右支上 │PF1│=ex+a ;│PF2│=ex-a 编辑本段抛物线的焦半径公式 抛物线r=x+p/2 通径:圆锥曲线(除圆)中,过焦点并垂直于轴的弦 双曲线和椭圆的通径是2b^2/a焦准距为a^2/c-c 抛物线的通径是2p 抛物线y^2=2px (p>0),C(Xo,Yo)为抛物线上的一点,焦半径|CF|=Xo+p/2.

焦半径公式的证明

焦半径公式的证明 【寻根】椭圆的根在哪里?自然想到椭圆的定义:到两定点F1,F2(|F1F2|=2c)距离之和为定值2a(2a>2c)的动点轨迹(图形). 这里,从椭圆的“根上”找到了两个参数c和a. 第一个参数c,就确定了椭圆的位置;再加上另一个参数a,就确定了椭圆的形状和大小.比较它们的“身份”来,c比a更“显贵”. 遗憾的是,在椭圆的方程里,却看不到c的踪影,故有人开玩笑地说:椭圆方程有“忘本”之嫌. 为了“正本”,我们回到椭圆的焦点处,寻找c,并寻找关于c的“题根”. 一、用椭圆方程求椭圆的焦点半径公式 数学题的题根不等同数学教学的根基,数学教学的根基是数学概念,如椭圆教学的根基是椭圆的定义.但是在具体数学解题时,不一定每次都是从定义出发,而是从由数学定义引出来的某些已知结论(定理或公式)出发,如解答椭圆问题时,经常从椭圆的方程出发. 【例1】已知点P(x,y)是椭圆上任意一点,F1(-c,0)和F2(c,0)是椭圆的两个焦 点.求证:|PF1|=a+;|PF2|=a -. 【分析】可用距离公式先将|PF1|和|PF2|分别表示出来.然后利用椭圆的方程“消y”即可. 【解答】由两点间距离公式,可知 |PF1|= (1) 从椭圆方程解出 (2) 代(2)于(1)并化简,得

|PF1|=(-a≤x≤a) 同理有|PF2|=(-a≤x≤a) 【说明】通过例1,得出了椭圆的焦半径公式 r1=a+ex r2=a-ex (e=) 从公式看到,椭圆的焦半径的长度是点P(x,y)横坐标的一次函数. r1是x的增函数,r2是x的减函数,它们都有最大值a+c,最小值a-c.从焦半径公式,还可得椭圆的对称性质(关于x,y轴,关于原点). 二、用椭圆的定义求椭圆的焦点半径 用椭圆方程推导焦半径公式,虽然过程简便,但容易使人误解,以为焦半径公式的成立是以椭圆方程为其依赖的.为了看清焦半径公式的基础性,我们考虑从椭圆定义直接导出公式来. 椭圆的焦半径公式,是椭圆“坐标化”后的产物,按椭圆定义,对焦半径直接用距离公式即可. 【例2】P (x,y)是平面上的一点,P到两定点F1(-c,0),F2(c,0)的距离的和为2a(a>c>0).试用x,y的解析式来表示r1=|PF1|和r2=|PF2|. 【分析】问题是求r1=f(x)和r2=g(x).先可视x为参数列出关于r1和r2的方程组,然后从中得出r1和r2. 【解答】依题意,有方程组 ②-③得 代①于④并整理得r1-r2=⑤ 联立①,⑤得 【说明】椭圆的焦半径公式可由椭圆的定义直接导出,对椭圆的方程有自己的独立性.由于公式中含c而无b,其基础性显然. 三、焦半径公式与准线的关系

三角形的面积计算公式的推导

“三角形的面积计算公式的推导”教学活动设计 一、活动主题的提出 数学实践活动是教师结合学生相关数学方面的生活经验和知识背景,引导学生以自主探索或合作交流的方式,展开形式多样、丰富多彩的学习活动。“三角形面积计算公式的推导”教材是通过拼的方法探究计算方法的,从表面上看,学生动手操作了,也探究了公式的形成过程,但实际上学生仅仅机械地拼了一拼,做了一次“操作工”,他们并没有自己的猜想和创造,没有真正参与知识的产生和形成,教材所提供的学习材料缺乏思维含量,缺少挑战性,学生体会不到思考的乐趣,思维得不到充分发展,为了培养学生的探究意识和探究水平,促动学生探究的有效性,特安排主题活动“三角形面积计算公式的推导”。 二、活动目标 1.探索并掌握三角形的面积计算公式,培养学生应用已有知识解决新问题的水平。 2.使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观点和初步的推理水平。 3.在探索活动中使学生获得积极地情感体验,感受数学的乐趣,体会成功的喜悦,进一步培养学生学习数学的兴趣。 三、课前准备 1.分组:每4人为一小组。 2.每人准备3张正方形纸片。 3.每位同学准备尺子、剪刀、铅笔。 四、时间:一课时(不包括活动前的准备) 五、活动过程 1.检查学生课前的准备情况。 2.揭示课题 师:三角形的面积能够怎样计算呢?这就是我们这节课要研究的问题。 板书课题:三角形面积的计算公式 3.探究操作 师:(先每4人一小组分好小组)每人拿出一张正方形纸片,在上面剪一刀,要求剪下一个三角形。当然你用笔和尺子把想剪的三角形在正方形上画出来,不剪也能够。(学生剪、画) 汇报展示。(选择如下三种图) ①②③ 师:这三种剪法中哪种剪法剪下的三角形面积你能计算?你是怎么知道的? 学生观察、思考、分析、推理、小组讨论、汇报。 第三种(图③)剪法剪下的三角形面积能计算,三角形面积正好是这个正方形面积的一半,只要把剪下的两个三角形重叠在一起,就能够发现他们完全一样(形状

焦半径公式

如图,F 为圆锥曲线的焦点,l 为相应于焦点F 的圆锥曲线的准线,过点F 作准线l 的垂线,垂足为k ,令||FK p =,M 为圆锥曲线上任意一点,MN l ⊥于 N ,FH MN ⊥于H ,设xFM θ∠=,依圆锥曲线的统一定义有 || || MF e MN =⑴,又||||||||||co ||s MN NH MH FK MH p MF θ=±=±=+,代入(1)有 ||cos || MF e p MF θ =+,1|c |os ep MF e θ = -⑵。 若直线MF 交圆锥曲线于另一点M ',同理可证|cos |1ep M F e θ '= +⑶,由此还可推出过焦点F 的弦长为222||||||1cos 1cos 1cos ep ep ep MM MF M F e e e θθθ''=+=+= -+-⑷,两焦半径的比为||1cos ||1cos MF e M F e θθ+='-⑸。 例1:过抛物线2(0)y ax a =>的焦点F ,作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别 为p 、q ,则11 p q +=4a 。 例2:已知椭圆长轴长为6, 焦距为过椭圆的左焦点1F 作直线交椭圆于M 、 N 两点,设21(0)F F M ααπ∠=≤≤,当α=566 ππ 或时,||MN 等于椭圆短轴长。 例3:过双曲线2 2 12 y x -=的右焦点作直线l 交双曲线于A 、B 两点,若实数λ使 得||AB λ=的直线l 恰有3条,则λ= 4 。 例4:过椭圆的一个焦点作一条与长轴夹角为30?的弦AB ,若||AB 恰好等于焦点到准线距离的2倍, 则此椭圆的离心率为2 3 。 例5:1F 、2F 分别是椭圆2212 x y +=的左、右焦点,过1F 作倾斜角为4π 的直线与椭圆交于P 、Q 两点, 求2F PQ 的面积。 解:首先求出边PQ 的长度,它是过焦点1F 的弦,其倾斜角 4π ,2a =,1b =,1c =, 故2|2 |PQ == - 而2F 到直线PQ 的距离为12sin ||4 F F π =2F PQ 的面积为14 23。 例6:过椭圆22 1 3x y +=的右焦点2F 作直线l 交椭圆于A 、B 两点,若22||:|2|AF BF =,则左焦点1F 到 直线 l 的距离d 。 例7:过双曲线222222b x a y a b -= P 、Q 两点,若OP OQ ⊥,||4PQ =,则双曲线的方程为2233x y -=。 解:设直线PQ 的倾斜角为θ,则tan θ= 23 sin 8 θ=,又设直线PQ 的方程为)y x c =-,11() ,P x y ,22(),Q x y ,OP OQ ⊥,1212 0x x y y ∴+=,即1212 0)()x x x c x c --=,化简得2121238()30c x x x x c +--=⑴,将直线方程代入双曲线方程,整理得22222222()()356350a b x a cx a c a b --++=,将上述方程的根与系数的关系代入⑴化简整理得2 2 3b a =⑵,由弦长公式④得2 22222 24|||/8| 5343ab b a ab b c =?-=-⑶,将⑵代入⑶化简,即得21a =,从而23b =,故所求双曲线方程为2233x y -=。

三角形面积公式的五种推导方法

三角形面积公式的五种 推导方法 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

三角形面积公式的五种推导方法 摘自:《小学数学网》六年制小学数学第九册《三角形面积的计算》一节,教材上是这样安排的:一、明确目标;二、用数格的方式不能确定三角形的面积;三、能否转化成以前学过的图形进行计算四、拿两个全等的直角三角形可以拼成以前学习过的学习过的长方形和平行四边形,直角三角形的面积是长方形和平行四边形面积的一半;五、验证锐角三角形和钝角三角形是否也能拼成平行四边形;六、三次试验确定所有类型的三角形能转化成平行四边形,两者的关系是“等底等高,面积一半”;七、总结三角形的面积公式。 我们在多次的课堂教学实践和课下辅导过程中,发现上面的几个“环节”有些地方不太符合学生的认知特点。具体分析一下: 第一步没什么问题,每个教师都有自己的导入新课的方式。 第二步也没有什么:学生在学习长方形和正方形的面积时用的是“数格”的方式。学习平行四边形时用的是切割再组合的方式,就是所谓的“转化”。在大部分学生对面积这个概念的理解还不十分透彻的情况下,面对三角形,学生们的首选方法就是“数格”。因为这是学生学习有关面积计算的第一经验,第一印象,第一个技巧。也是最简单,最直接(当然也是最麻烦)的方法。关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其内涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。

圆锥曲线的极坐标方程焦半径公式焦点弦公式

圆锥曲线的极坐标方程焦半径公式焦点弦公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线的极坐标方程 极坐标处理二次曲线问题教案 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.? 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系.? 椭圆、双曲线、抛物线统一的极坐标方程为:θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0. 当0<e <1时,方程表示椭圆;? 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线

(2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需令0θ=, 右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义,简洁而有 力,充分体现了极坐标处理问题的优势。下面的弦长问题的解决使极坐标处理的优势显的淋漓尽致。 (2)圆锥曲线弦长问题 若圆锥曲线的弦MN 经过焦点F ,

椭圆焦半径公式及应用

椭圆焦半径公式及应用 . 椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 一、公式的推导 设P(,)是椭圆上的任意一点,分别是椭圆的左、右焦点,椭圆,求证,。 证法1: 。 因为,所以 ∴ 又因为,所以 ∴, 证法2:设P到左、右准线的距离分别为,由椭圆的第二定义知 ,又,所以,而 。 ∴,。 二、公式的应用 例1 椭圆上三个不同的点A()、B()、C()到焦点F(4,0)的距离成等差数列,求的值。

解:在已知椭圆中,右准线方程为,设A、B、C到右准线的距离为 ,则、、。 ∵,,,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 评析:涉及椭圆上点到焦点的距离问题,一般采用焦半径公式求解,即利用焦半径公式可求出A、B、C三点到焦点的距离,再利用等差数列的性质即可求出 的值。 例2 设为椭圆的两个焦点,点P在椭圆上。已知P、、 是一个直角三角形的三个顶点,且,求的值。 解:由椭圆方程可知a=3,b=2,并求得,离心率。 由椭圆的对称性,不妨设P(,)()是椭圆上的一点,则由题意知应为左焦半径,应为右焦半径。 由焦半径公式,得,。 (1)若∠为直角,则,即 ,解得,故。 (2)若∠为直角,则,即 = ,解得,故。

评析:当题目中出现椭圆上的点与焦点的距离时,常利用焦半径公式把问题转化,此例就利用焦半径公式成功地求出值。 例3 已知椭圆C:,为其两个焦点,问能否在椭圆C上找 一点M,使点M到左准线的距离|MN|是与的等比中项。若存在,求出点M的坐标;若不存在,请说明理由。 解:设存在点M(),使,由已知得a=2,,c=1,左准线为x=-4,则,即 +48=0,解得,或。 因此,点M不存在。 评析:在涉及到椭圆上的点与其焦点的距离时,如果直接用两点间距离公式,运算将非常复杂,而选用焦半径公式可使运算简

三角形的面积计算公式

三角形的面积计算公式 三角形的面积计算公式1.已知三角形底a,高h,则 S=ah/22.已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)S=√[p(p-a)(p-b)(p-c)]=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]3.已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC4.设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/25.设三角形三边分别为a、b、c,外接圆半径为R则三角形面积=a bc/4R6.S△=1/2 *| a b 1 || c d 1 || e f 1 || a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!7.海伦--秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.8.根据三角函数求面积S= &frac12;ab sinC=2R&sup2; sinAsinBsinC= a&sup2;sinBsinC/2sinA注:其中R为外切圆半径。9.根据向量求面积SΔ)= &frac12;√(|AB|*|AC|)&sup2;-(AB*AC)

焦半径公式的三角形式及其应用

焦半径公式的三角形式及其应用 重庆清华中学 张 忠 焦半径是圆锥曲线中很重要的几何量,与它相关的问题是各类考试的热点,常考常新,故值得我们进一步总结与研究。 焦半径公式的代数形式:设21,F F 是曲线的左、右焦点,点),(00y x P 在曲线上,记 11PF r =、22PF r =为左、右焦半径。则在椭圆中:0201,ex a r ex a r -=+=;在双曲 线中:a ex r a ex r -=+=0201,;在抛物线)0(22 >=p px y 中:2 0p x r + =。 若焦点在y 轴上时,则把相应的0x 改为0y 即可。因应用情形比较常见,不再叙述。,本文介绍它的三角形式及其应用。 定理1:若椭圆的离心角为θ,则 (1)|PF 1|=a +ccosθ; (2)|PF 2|=a -ccosθ. 证明:∵ 椭圆的离心角为θ,由椭圆参数方程知点P 的横坐标为acosθ,依焦半径的代数形式知:|PF 1|=a +ex p =a +ea·cosθ=a +c·cosθ,|PF 2|=a -ex p =a -c·cosθ. 例1. F 1、F 2是椭圆+y 2 =1的左右焦点,点 P 在椭圆上运动,则|PF 1|·|PF 2|的最大值 是______, 最小值是_________. (1996年第七届“希望杯”赛) 解:设椭圆的离心角为θ,又知a =2,c 2 =3,由定理1得 |PF 1|c·|PF 2|=a 2 -c 2 cos 2 θ=4-3cos 2 θ ∵ 0≤cos 2 θ≤1 故知 |PF 1|c·|PF 2|max =4-3·0=4 |PF 1|·|PF 2|min =4-3·1=1 例2. 椭圆的左右焦点为F 1、F 2,试问此椭圆的离心率e 在什么值范围内,椭圆上恒存在点

小学数学《三角形的面积计算公式》

小学数学《三角形面积计算公式》教学设计 刘河小学李志强 教学内容:人教版九年义务教育六年制小学数学第九册P84 -P85. 教材分析: 人教版五年级上册84、85页三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。 学情分析: 学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。 教学目标: 1、让学生经历三角形面积计算公式的探索过程,理解三角形面积公式的来源;并能灵活运用公式解决简单的实际问题。 2、在学习活动中,培养学生的实践动手能力,合作探索意识和能力,培养创新意识和能力。 3、通过实践操作,自主探究,使学生进一步学习用转化的思想方法解决新问题培养团结互助的合作思想品质。 教学重点:三角形面积计算公式的推导。 教学难点:运用拼、剪、平移、旋转等方法,发现正方形、长方形、平形四边形及三角形面 积的相互联系推导出三角形面积计算公式。 教具准备:多媒体课件一套。 学具准备:工具(尺、剪刀),三组学具(①完全相同的锐角三角形、直角三角形、钝角三

焦点三角形面积公式

焦点三角形面积公式 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

椭圆焦点三角形面积公式的应用 定理 在椭圆122 22=+b y a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任 意一点,θ=∠21PF F ,则2 tan 221θ b S PF F =?. 证明:记2211||,||r PF r PF == 在△21PF F 中,由余弦定理得:2(cos 2212 22 1r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θ θ?=?=+?== ?b b b r r S PF F . 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 典题妙解 例1 若P 是椭圆 164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积. 解法一:在椭圆 164 1002 2=+y x 中,,6,8,10===c b a 而.60?=θ记.||,||2211r PF r PF == 点P 在椭圆上, ∴由椭圆的第一定义得:.20221==+a r r 在△21PF F 中,由余弦定理得:.)2(cos 22212 221c r r r r =-+θ

2020年焦半径公式的证明

作者:旧在几 作品编号:2254487796631145587263GF24000022 时间:2020.12.13 焦半径公式的证明 【寻根】椭圆的根在哪里?自然想到椭圆的定义:到两定点F1,F2(|F1F2|=2c)距离之和为定值2a(2a>2c)的动点轨迹(图形). 这里,从椭圆的“根上”找到了两个参数c和a. 第一个参数c,就确定了椭圆的位置;再加上另一个参数a,就确定了椭圆的形状和大小.比较它们的“身份”来,c比a更“显贵”. 遗憾的是,在椭圆的方程里,却看不到c的踪影,故有人开玩笑地说:椭圆方程有“忘本”之嫌. 为了“正本”,我们回到椭圆的焦点处,寻找c,并寻找关于c的“题根”. 一、用椭圆方程求椭圆的焦点半径公式 数学题的题根不等同数学教学的根基,数学教学的根基是数学概念,如椭圆教学的根基是椭圆的定义.但是在具体数学解题时,不一定每次都是从定义出发,而是从由数学定义引出来的某些已知结论(定理或公式)出发,如解答椭圆问题时,经常从椭圆的方程出发. 【例1】已知点P(x,y)是椭圆上任意一点,F1(-c,0)和F2(c,0) 是椭圆的两个焦点.求证:|PF1|=a+;|PF2|=a -.

【分析】可用距离公式先将|PF1|和|PF2|分别表示出来.然后利用椭圆的方程 “消y”即可. 【解答】由两点间距离公式,可知 |PF1|= (1) 从椭圆方程解出 (2) 代(2)于(1)并化简,得 |PF1|=(-a≤x≤a) 同理有|PF2|=(-a≤x≤a) 【说明】通过例1,得出了椭圆的焦半径公式 r1=a+ex r2=a-ex (e=) 从公式看到,椭圆的焦半径的长度是点P(x,y)横坐标的一次函数. r1是x的增函数,r2是x的减函数,它们都有最大值a+c,最小值a-c.从焦半径公式,还可得椭圆的对称性质(关于x,y轴,关于原点). 二、用椭圆的定义求椭圆的焦点半径 用椭圆方程推导焦半径公式,虽然过程简便,但容易使人误解,以为焦半径公式的成立是以椭圆方程为其依赖的.为了看清焦半径公式的基础性,我们考虑从椭圆定义直接导出公式来. 椭圆的焦半径公式,是椭圆“坐标化”后的产物,按椭圆定义,对焦半径直接用距离公式即可. 【例2】P (x,y)是平面上的一点,P到两定点F1(-c,0),F2(c,0)的距离的和为2a(a>c>0).试用x,y的解析式来表示r1=|PF1|和r2=|PF2|.

椭圆焦半径公式及应用

椭圆焦半径公式及应用 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

椭圆焦半径公式及应用 . 椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 一、公式的推导 设P(,)是椭圆上的任意一点,分别是椭圆的左、右焦点,椭圆,求证,。 证法1: 。 因为,所以 ∴ 又因为,所以 ∴, 证法2:设P到左、右准线的距离分别为,由椭圆的第二定义知 ,又,所以,而 。 ∴,。 二、公式的应用 例1 椭圆上三个不同的点A()、B()、C()到焦点F(4,0)的距离成等差数列,求的值。

解:在已知椭圆中,右准线方程为,设A、B、C到右准线的距离为,则、、。 ∵,,,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 评析:涉及椭圆上点到焦点的距离问题,一般采用焦半径公式求解,即利用焦半径公式可求出A、B、C三点到焦点的距离,再利用等差数列的性质即可求出的值。 例2 设为椭圆的两个焦点,点P在椭圆上。已知P、、 是一个直角三角形的三个顶点,且,求的值。 解:由椭圆方程可知a=3,b=2,并求得,离心率。 由椭圆的对称性,不妨设P(,)()是椭圆上的一点,则由题意知应为左焦半径,应为右焦半径。 由焦半径公式,得,。 (1)若∠为直角,则,即 ,解得,故。 (2)若∠为直角,则,即 = ,解得,故。 评析:当题目中出现椭圆上的点与焦点的距离时,常利用焦半径公式把问题转化,此例就利用焦半径公式成功地求出值。

正余弦定理与三角形面积公式

正余弦定理与三角形面积公式(2009-7-7 16:45:00) 【收藏】【评论】【打印】【关闭】 这两天在看代码时发现关于三角形的这些基本定理和公式很有用,所以从网上搜了下,主要有三角形的正弦定理,余弦定理,以及三角形面积公式(包括海伦公式)。 正弦定理(引自百度百科) Sine theorem 在一个三角形中,各边和它所对角的正弦的比相等。 即a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的半径的两倍) 这一定理对于任意三角形ABC,都有 a/sinA=b/sinB=c/sinC=2R R为三角形外接圆半径 证明 步骤1. 在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB

同理,在△ABC中, b/sinB=c/sinC 步骤2. 证明a/sinA=b/sinB=c/sinC=2R: 如图,任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。 意义 正弦定理指出了任意三角形中三条边与对应角的正弦之间的一个关系式,又由正弦函数在区间上的单 调性可知,正弦定理非常好的描述了任意三角形中边与角的一种数量关系。 余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 对于任意三角形三边为a,b,c 三角为A,B,C 满足性质 (注:a*b、a*c就是a乘b、a乘c 。a^2、b^2、c^2就是a的平方,b的平方,c的平方。) a^2=b^2+c^2-2*b*c*Cos A b^2=a^2+c^2-2*a*c*Cos B c^2=a^2+b^2-2*a*b*Cos C Cos C=(a^2+b^2-c^2)/2ab Cos B=(a^2+c^2-b^2)/2ac Cos A=(c^2+b^2-a^2)/2bc 证明: ∵如图,有a→+b→=c→ ∴c·c=(a+b)·(a+b) ∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ) 整理得到c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式) 再拆开,得c^2=a^2+b^2-2*a*b*Cos C

相关文档
最新文档