水量供需平衡分析计算

水量供需平衡分析计算
水量供需平衡分析计算

第五章水量供需平衡分析计算

第一节分析计算的原则与方法

水量供需平衡分析计算,按现状(基准年)和近期、远期三个水平年进行。

规划可供水量在现状可供水量的基础上,考虑现有工程在不同供水情况下供水能力的增减和规划新建、配套、扩建工程增供的水量,同时注意水质变化对供应合格水能力的影响。

城镇需水量以最近批准的城市总体规划和供水规划计算的数值为主要参考,同时进行复核。

第二节不同供水工程可供水量分析

一、供水工程

温岭市各区域水库、堰坝、河网相互贯连和调节,已形成蓄、供、排相结合的一个较完整的灌溉供水系统。但是,近年来由于平原河道淤积和水污染严重,造成了河道蓄、供水能力不断降低,水源利用功能减少,城乡生活用水和工业用水已无法就地从河道提取,并由此造成地下水超采和地面沉降现象。因此,全市各区域仍然存在着亟待解决的城乡生活、工业用水水源工程和供水配套工程建设,以及水污染防治等问题。

1.蓄水工程

温岭市供水水源主要来自蓄水工程,约占总供水量的90%左右,主要包括河道、水库以及长潭水库引水。全市河道总长度为1284.44km,蓄水量3557万m3,主要担负境内灌溉用水。水库山塘153座,总库容7668.5万m3,担负境内生活用水和一部分灌溉用水。

2.引水工程

堰坝用来拦截水流,灌溉农田,为山区半山区群众所广泛采用。目前,全市共有堰坝33座,其中灌溉千亩以上的有大溪镇的中牛头潭堰坝,原江厦乡的七一堂滚水坝,原交陈乡的小交陈拦水坝和岙环

乡兰公岙坝等4座。全市一般年份可引水234.31万m3,灌溉面积7413亩,旱年引水量为133.38万m3,灌溉面积6503亩,丰水年可引水334.91万m3,灌溉面积7473亩。

3.地下水工程

地下水部分的可供水量主要计算机电井、民井供水,主要用于城市生活、农村生活和工业用水。2000年有各类机井71眼,民井3701眼。

二、可供水量

可供水量是不同水平年、不同保证率或不同频率不同需水要求下考虑来水、需水及水质情况,各项水利工程设施可提供的水量。温岭市水利工程设施主要包括蓄水工程(水库、山塘)、引水工程、调水工程和地下水井。

现状工况下,温岭市不同保证率各类型水利工程的可供水量见表5-1。

表5-1 现状工况下可供水量统计表

3

注:蓄水工程中包括长潭水库引水

第三节城乡水量供需平衡分析计算

一、现状供需分析

通过对现状城乡供水状况的调查分析,统计出城乡现状日需水量和日供水能力,如表5-2所列。

从表5-2可见,目前温岭市区及各镇的供水都不能满足需求,全市总体上缺水,尤其是东部沿海地区。

二、不同水平年城乡供需平衡分析

1.水量平衡分析

温岭市在现状水平下城乡水资源供需不能平衡(见表5-2),缺水7.84万吨/日。随着工业经济的发展,城市化水平的提高,人民生活水平的提高,城镇供水规模将不断扩大,同时,农村居民自来水的普及率也将大幅度的提高,由于城镇和农村需水量的增加,现有的供水规模已远远不能满足城乡发展的要求。

2.解决城乡缺水的基本思路

解决城乡供水紧缺矛盾的基本思路是:近期充分利用当地水资源,以开源为主;远期在开源的同时,加强节流措施。

根据温岭市地势西高东低、水资源西丰东少的特点,市域内城乡供水调配原则是:挖潜配套,充分利用本地水资源,并逐步开发西部山区水源,实施“西水东调”,引入长潭水库及市外水源,补充东部及城区供水。

XMLEncoder。引用类型和原始类型的行为完全不同,并且它们具有不同的语义。引用类型和原始类型具有不同的特征和用法,它们包括:大小和速度问题,这种类型

1 用水量计算表说明书

第一节设计用水量计算表说明书 基本数据: 由原始资料该城市位于湖南,在设计年限内人口数12万,查《室外排水设计规范》可知该城市位于一分区,为中小城市。 城市的未预见水量和管网漏失水量按最高日用水量的20%计算;1.1.1 居民最高日生活用水量Q1 : Q1=qNf Q1―—城市最高综合生活用水,m3/d; q――城市最高综合用水量定额,L/(cap.d); N――城市设计年限内计划用水人口数; f――城市自来水普及率,采用f=100% 所以:Q1。1 =230×12×104×100%/1000 =27600 m3/d 1.1.2 铁路车站每天用水量Q1.2 = 2000 m3/d 。 得Q1= Q1。1 +Q1.2 = 29600 m3/d 。 1.2 工业区的用水量计算 由所给资料得知,工厂No.1企业总用水量为2400 m3/d, 工厂No.2的企业总用水量为3600m3/d。 总计,Q2 = 2400+3600 = 6000 m3/d。 1.3 浇洒道路用水量计算 按城市浇洒道路用水量标准q=1L/(㎡.次),每天两次, 用水量公式: Q=qNn/1000(n代表次数,N代表浇洒道路面积),3 =1*1434721.162*2/1000 =2870m3。 1.4 绿化用水量计算

按城市大面积绿化用水量定额q=1.5L/(㎡.次),每天两次,用水量公式 Q=q N n/1000(n代表次数,N代表绿化用水面积),4 =1.5*454356.5206*2/1000 =1360 m3。 1.5 未预见用水量的计算 按最高日用水量的20%算。而最高日的用水量包括居民的综合生活用水量;工业区用水量;浇洒道路和绿化用水量。相应的未预见用水总量。 1.6 最高日设计流量Q d: Q d=1.2×(Q1+Q2+Q3+Q4) =1.2×(29600+6000+2870+1360) =47796 m3/d 1.7 最高日最高时用水量Q h Q h=K h×Qd/86.4(时变化系数由原始资料知K h=1.46) =1.46 ×47796/86.4 =807.66 L/s 1.8 消防用水量: 城镇、居住区室外的消防用水量: 火灾次数:2 一次灭火用水量:45L/s 城镇消防用水量为90 L/s

水资源平衡分析报告

水资源平衡分析 国家投资实施的土地开发整理项目,为了提高耕地质量,绝大多数都规划了灌溉工程。为此,这样的项目区地形图灌区必须进行水资源的平衡分析。 灌区的水资源平衡分析,包含着水质、水量和水位等方面内容,水位的来用水平衡分析比较简单,经过对地形与取用水位相互关系的分析,结合取水工程的设置,划定出自流区和扬水区(扬程大小)即可。这里侧重讨论水量平衡分析的内容。 灌区的水土资源平衡分析是根据水源来水过程和灌区用水过程进行的,这两个过程是逐年变化的,在规划设计时必须先确定用哪个年份的水源来水过程和灌区用水过程进行平衡计算,这个特定的水文年份叫设计典型年,简称设计年,而设计年又是根据灌溉设计标准确定的。 一、灌溉设计标准 选择设计年所依据的标准称为灌溉设计标准。它综合反映了水源对灌区用水的保证程度,关系到灌溉工程的规模、投资和效益。 国标(GB50288-99)规定,设计灌溉工程时,应首先确定灌溉设计保证率,南方小型水稻灌区的灌溉工程也可按抗旱天数进行设计。 (一)灌溉设计保证率 1.定义:指灌区用水量在多年期间能够得到充分满足的机率,一般用得到满足的年数占总年数的百分率表示。它综合反映了用水和

来水两方面的情况。 将多年(长系列)的年灌溉用水量按大小顺序排列,用数理统计方法计算并绘制年灌溉用水量频率曲线,在此曲线上选用的频率值即为灌溉设计保证率值。 如灌溉设计保证率P=80%,则表示频率P=80%对应的灌溉用水量出现的机会为P=80%,意味着每百年中有80年这样的年灌溉用水量可以得到保证,只有20年供水不足或中断,换一种说法(用重现期的语言)就是相当于平均每五年出现一次(五年一遇)供水不足或中断的情况。 2.灌溉用水保证率的确定 ①国标(GB50288-99)规定: 注:1、作物经济价值较高的地区,宜选用表中较大值;作物经

河南省抗旱应急水量供需平衡分析研究

第21卷第5期2010年10月 水资源与水工程学报 Journa l o fW ater R esources&W ater Eng i n eeri n g V o.l 21N o .5O ct .,2010 收稿日期:2010-05-25; 修回日期:2010-06-10 基金项目:河南省科技创新人才计划项目(10410050003);河南省教育厅自然科学研究计划项目(2009A610014)作者简介:张成才(1963-),男,河南郸城人,教授,博士生导师,主要研究方向:水利信息化技术。 河南省抗旱应急水量供需平衡分析研究 张成才1 ,孙园园1 ,王兴华 2 (1.郑州大学水利与环境学院,河南郑州450001;2.河南省水利厅农田水利技术推广站,河南郑州450001) 摘 要:抗旱应急(备用)水源是解决常规水源无法保证的受旱地区城乡居民饮水,以及重点工业、农业和生态核心区基本用水而建设的水源工程。本文在抗旱应急备用水源工程的基础上,对规划化水平年(2020年)进行抗旱应急供需水量平衡分析。结果表明:河南省存在严重的抗旱应急水量供需矛盾。结合河南省实际情况,从抗旱应急水源工程建设方面提出缓解抗旱应急水量供需矛盾的建议。关键词:抗旱应急;可供水量;需水量;抗旱应急备用水源 中图分类号:S423;TU991.31 文献标识码:A 文章编号:1672-643X (2010)05-0090-03 Ana l ysis of supply and de m and bal ance for drought e m ergency water in H enan Provi nce ZHANG Cheng -cai 1 ,S UN Yuan -yuan 1 ,W ANG X i n g -hua 2 (1.Schoo l of W ater Conservanc y and Environmen t Engineer i ng,Zhengzhou Universit y,Zhengzhou 450001China; 2.Irriga tion and W ater Conservancy T ec hnical A dv ice Stati on ,D epart m ent of W ater Conservanc y of H enan Province ,Zhengzhou 450001,China ) Abst ract :D r ough t e m ergency reserved w ater sources is a wa ter source pro j e ctwh ich is to guarantee dri n k w ater in t h e ur ban -r ura l drough-t hit areas ,and basic w ater needs f o r the key industries ,ag ricult u re and eco l o g ical co re areas .B ased on the current drought e m er gency w ater source projec,t th is thesis gave a drought e m ergency w ater supply and de m and balance f o r the p lann i n g year (2020).The resu lts sho w ed that there w ere seri o us contradiction for drought e m ergency w ater supply and de m and i n H enan .A ccord -i n g to the actua l situation ofH enan prov i n ce ,e m ergency w ater supply and droughtm iti g ation contradicto -ry reco mm endati o ns w as proposed fr o m drought e m ergency w ater pro j e ct construction .K ey w ords :drought e m ergency ;available supply wa ter ;de m anded w ater ;reser ved w ater sources for drought e m ergency 0 引 言 旱灾是河南发生频率最高的气候灾害之一,是制约经济和社会发展的一个重要因素,对于农业更是产生了重大的影响。河南省作为我国重要的农业生产基地之一,在国民经济中占有很重要的地位。因此,抗旱应急水量平衡分析对河南省经济的发展起着重要的作用。以往的水量供需平衡分析都是面向某地区供水工程总供水量及各行业总需水量的,不能很好的反应该地区的抗旱能力。本文使用指标分析法对抗旱应急需水量进行预测,并在此基础上进行了抗旱应急水量平衡分析。抗旱应急水量主要考虑抗旱时期的供需水量,反映一个地区抗旱时期 的供水能力及需水情况,从而正确评价该地区水源工程的抗旱能力。 1 抗旱应急用水量预测 抗旱应急用水量是指不同干旱年下,根据重点保护对象的不同而预测的各行业的总用水量。本文抗旱应急需水量采用指标分析法进行预测。指标分析法根据用水量的主要影响因素、变化趋势确定相应的用水指标及用水定额,再根据确定的用水定额和常住人口数(或工业产值等)计算远期的需水量[1] 。该方法常将用水部门划分为生活、农业、工业等用水部门,再对各部门的用水影响因素(人口、工业产值、灌溉面积等)及用水定额进行预测,在此

施工临时用水量管径计算方法

施工临时用水量及管径计算方法 1、假定背景 某工程,建筑面积为18133㎡,占地面积为4600㎡。地下一层,地上9层。筏形基础,现浇混凝土框架剪力墙结构,填充墙空心砌块隔墙;生活区与现场一墙之隔,建筑面积750㎡,常住工人330名。水源从现场南侧引入,要求保证施工生产,生活及消防用水。

2、问题 ⑴ 当施工用水系数15.12=K ,年混凝土浇筑量 11743m 3,施工用水定额2400L/ m 3 ,年持续有效工作日为150d ,两班作业,用水不均衡系数5.12 =K 。要求计算现场施工用水? S L K t T N Q K q /626.53600 85.1215024001174315.136008211111=?????=???=

⑵ 施工机械主要是混凝土搅拌机,共4台,包括混凝土输送泵的清洗用水、进出施工现场运输车辆冲洗等,用水定额平均台/3002L N =。未预计用水系数15.11=K ,施工不均衡系数0.23=K ,求施工机械用水量? s L K N Q K q /0958.03600 80.2300415.136********=????=?=∑

⑶ 假定现场生活高峰人数,P 人3501 =施工现场生活用水定额,L N 班/403=施工现场生活用水不均衡系数,。K 514=每天用水2个班,要求计算施工现场生活用水量? s L t K N P q /365.03600 825.140350360084313=????=????=

⑷ 假定生活区常住工人平均每人每天消耗水量为L N 1204=,生活区用水不均衡系数K 5按2.5计取;计算生活区生活用水量? s L K N p q /15.13600245 .21203303600245 424=???=???=

城市给水管网设计计算说明书要点

华侨大学化工学院 课程论文 某城市给水管网的设计 课程名称给水排水 姓名 学号 专业2007级环境工程 成绩 指导教师 华侨大学化工学院印制 2010 年06 月25 日

目录 第一章设计用水量 (3) 1.1用水量的计算 (3) 1.2管网布置图 (4) 1.3 节点流量计算 (4) 第二章管网水力计算 (5) 1.1 初始流量分配 (6) 1.3事故流量校正 (9) 1.2消防流量校正 (12) 第三章水泵的选取 (15) 第四章设计总结 (15) 4.1 设计补充 (16) 4.2 设计总结 (16)

第一章设计用水量 一、用水量的计算 : 1、最高日居民生活用水量Q 1 城区规划人口近期为9.7万,按居民生活用水定额属于中小城二区来计算,最高日用水量定额在100~160L/cap.d,选用Q=130L/cap.d,自来水普及率为1。 故一天的用水量为Q1=qNf=130×9.7×104×1=12610m3/d 。 : 2、企业用水量Q 2 企业内人员生活用水量和淋浴用水量可按:生活用水,冷车间采用每人每班25L,热车间采用每人每班35L;淋浴用水,冷车间采用每人每班40L,热车间采用每人每班60L。 企业甲: 冷车间生活用水量为:3000×25=75000L=75m3/d 冷车间淋浴用水量为:700×40×3=84000L=84m3/d 热车间生活用水量为:2700×35=94500L=94.5m3/d 热车间生活用水量为:900×60×3=162000L=162m3/d 则企业甲用水量为75+84+94.5+162=415.5m3/d 企业乙: 冷车间生活用水量为:1800×25=45000L=45m3/d 冷车间淋浴用水量为:800×40×2=64000L=64m3/d 热车间生活用水量为:1400×35=49000L=49m3/d 热车间生活用水量为:700×60×2=84000L=84m3/d 则乙车间用水量为:45+64+49+84=242m3/d 则企业用水量Q =415.5+242=657.5m3/d 2 : 3、道路浇洒和绿化用水量Q 3 ⑴、道路浇洒用水量: 道路面积为678050m2 道路浇洒用水量定额为1~1.5L/(m2·次),取1.2L/(m2·次)。每天浇洒2~3次,取3次 则道路浇洒用水量为687075×1.2×3=2473470L=2473.47m3/d ⑵绿化用数量 绿化面积为城市规划总面积的1.3%,城市规划区域总面积为3598300m2,

完整word版水平衡计算

工艺水取水量就是各工艺取用的新鲜水量. 整个项目新鲜水量用于全厂工业用水重复利用率的计算里. 工艺水回用率计算中,生产线1和生产线2为工艺水,其回用水400+600,新水200+200。 工业用水重复利用率中,新鲜水700,重复用水1600+600+400。 间接冷却水循环率中,循环水为600,新水为200。 污水回用率中,污水站污水回用量400,直接排放的污水90+380。图中冷却塔的50为冷却水,可直排,不算污水。 水平衡中各种水量的核算 工业企业用水的定义、水源、分类、以及用水管理和水量计量应遵循CJ19-87规定。 1、取水量 工业用水的取水量是指自地表水、地下水、自来水、海水、城市污水及其他水源的总水量。现有生产厂,以水表读取为准,乘以实际用水时间,得出用水量(日和年)。对于拟建工程项目则应按用水装置(生产单元)汇总,一般化工生产装置取水量包括生产用水和生活用水两大方面;生产用水又包括间接冷却水、工艺用水和锅炉给水。各种用水关系见图4-7。 工业取水量=间接冷却水量+工艺用水量+锅炉给水量+生活用水量 2、重复利用水量 重复利用水量系指生产厂(建设项目)内部循环使用和循环使用的总水量。在化工建设项目中主要是间接冷却水系统的循环水量和工艺过程中循环多次使用的水之和,可由项目建议书或可行性报告中获取这些数据。对现有生产厂,可用水泵的额定流量计算,即: 重复利用水量=水泵额定流量×实际开泵时间 3、耗水量 耗水量是整个工程项目消耗掉的新鲜水量总和,即:H=Q1+Q2+Q3+ Q4+ Q5+ Q6式中,Q1――产品含水,即由产品带走的水,Q1=产品产量(t/h或t/a)×产品含水量,%; Q2――间接冷却水系统补充水量,亦即循环冷却水系统补充水量,耗水量; 洗涤用水和直――洗涤用水、直接冷却水和其他工艺用水量之和。Q3 接冷却水均为与物料直接接触的水。工艺水用量由生产装置、工艺水回用和工艺水取水量相加得到。工艺用水量和直接冷却水量可从项目建议书或可行性报告的水平衡图中,按各工艺装置依次汇总。洗涤用水应包括装置和生产区地坪的冲洗水; Q4――锅炉运转消耗的水量,可由蒸汽吨数核算,或由可行性报

浅谈水资源供需平衡

浅谈水资源供需平衡分析 摘要:在当今资源紧张的大背景下,利用有限的资源创造出尽可能多的价值是人们不断追求的目标。而作为基础性资源之一的水资源,它不仅是环境组成的基本要素,更是一种支持生态系统正常运转的不可代替的重要自然资源,然而,从近几年我国较为严重的洪涝灾害和干旱灾害来看,有限的水资源要想得到充分的利用,必须处理好供需之间的平衡问题,这在城市供水系统中更是与人们的生活密切相关的,因此,我们有必要对水资源的供需平衡做基本的分析和预测,从而使有限的水资源得到充分的利用。 关键字:水资源供需平衡充分利用 一、基本概述 所谓水资源供需平衡就是指可供水量与实际需水量间的关系,而水资源供需平衡分析则指的是,在一定的行政、经济(流域)范围内,各个时期的需水量总和与供水量总和的供求关系分析。它是在流域规划和水资源综合评价分析的基础上,以水资源的供需现状、国民经济发展和社会发展与国土整治规划为依据,运用一定的数学模型和分析方法,测算今后各个时期的用水量和需水量,制定综合平衡、供需协调的水资源长期供求计划和水资源开源节流的总体规划。 具体来讲,水资源的可供给量与其开发的程度和技术水平有关;而实际需水量与工业发展程度、人民正常生产生活水平以及利用水资源的技术等有关。因此,在不同时期,可供水量与实际需水量是在不断变化的,而两者之间的关系也是可变的。供需关系基本表现出3种情况:①供大于需。这说明可利用的水资源还有一定的被进一步利用的潜力;②供等于需。这是一种比较理想的供需状态,说明水资源的开发利用程度与同一阶段人们的生产、生活需要相适应;③供小于需。说明水资源量的短缺,需进一步寻求增加供应量的方法,及时采取开源节流等措施,以缓解供需矛盾。由此我们可以看出,水资源供需之间的平衡只是相对而言的,两者之间的不平衡现象是始终存在的,如果想要利用尽可能少的资源取得尽可能大的效益,我们就需不断研究分析、变动调整供需关系,为制定水资源宏观决策及合理分配与调度奠定基础。 二、水资源供需平衡分析的基本原则 水资源供需平衡分析是一个涉及面很广的一个问题,它不仅要研究供水量与需水量,而且还要结合当地的实际情况,充分分析社会、经济、环境等多方面的因素,因此,在进行水资源供需平衡分析时有用一定的原则做引导。 ⑴流域和地区相结合 通常在研究水资源时都是以流域为基本研究对象的,这也是研究可供水量的起点。而需水量的研究则是要结合所研究区域的经济、社会、环境等的发展情况,具有一定的地区分布特点。然而,我国的经济或行政区域通常与流域分布是不一致的,因此,在进行水资源平衡分析时,要将两者尽可能的统一,划好分区,把小区和大区,区域和流域结合起来。实际上,我国在进行水资源评价时,就已经做到过这一点。在进行具体的水资源供需平衡分析时,要结合以前水资源评价时的经验,使两者充分衔接。如果牵涉到跨流域调水(如南水北调),则更是要注意大小区域的结合,流域与地区的结合。 ⑵近期与远期相结合

临时用水计算方法

临时用水计算方法 3. 施工临水总量计算 1) 计算公式: q1=K1ΣQ1.N1/(T1 .t) ×K2/(8×3600) q1——施工用水量(L/S) K1——未预计的施工用水系数(1.05 —1.15) Q1——年(季)度工程量(以实物计量单位表示) N1——施工用水定额 T1——年(季)度有效作业天数 t——每天工作班数 k2——用水不均衡系数 2) 工程实物工程量及计算系数确定 由于工程结构施工阶段相对于装修阶段施工用水量大,故Q1主要以混凝土工程量为计算依据,据统计混凝土实物工作量约为23000立方米,混凝土为(商混)不考虑现场搅拌,混凝土养护用水定额取700升/立方米;拟定结构及前期阶段施工工期为300天;每天按照1.5各工作班计算;因此: K1=1.1 Q1=23000立方米 N1=750 升/立方米 T1=120天 t =1.5班 k2=1.5 3) 工程用水计算 q1=K1Σ Q1.N1/(T1 .t) ×K2/(8×3600) =1.1×(23000×950)/(120×1.5)×1.5/(8×3600) =5.12L/S 4. 工人生活区用水 1) 计算公式 q3=(ΣP2N3K4)/(24×3600) q3——生活区生活用水量(L/S) P2——生活区居住人数(拟定500人); N2——生活区生活用水定额(20升/人.班) t——每天工作班数(班) k3——用水步均衡系数(2.00—2.50) 2) 工人生活用水系数确定 生活区生活用水定额其中包括:卫生设施用水定额为25升/人;食堂用水定额为15升/人;洗浴用水定额为30升/人(人数按照出勤人数的30%计算);洗衣用水定额为30升/人;因此: 3) 用水量计算 q3 =(ΣP2N3)K/(24×3600) =(500×25+500×15+500×30%×30+500×30)×2.00/(24×3600) =0.91L/S 5. 总用水量计算: 因为该区域工地面积小于5公顷(约1公顷),如果假设该工地同时发生火灾的次数为一次,则消防用水的定额为10—15L/S,取 q4= 10L/S (q4——消防用水施工定额) ∵ q1+ q2+q3=5.12+0.91=6.03L/S< q4= 10L/S ∴计算公式:Q= q4 Q= q4 =10L/S 6. 给水主干管管径计算

用水量计算说明书

B城用水量计算和分析(A城最高日用水量计算表见附件一) 1、最高日用水量计算 (1)居民综合生活用水 该城市为中小型城市,人口仅18万,城市分区为二区,查《给水工程》(第四版)第522页附表2(b),取最高日用水定额为200L/cap·d。 由任务书可知,该城城区居民人口为18万。 故最高日综合用水量为:Q=qNf=200/1000*18*10000*100%=36000(m3/d)(2)工业区职工生活用水量计算 根据《工业企业设计卫生标准》,工作人员生活用水量应根据车间性质决定,一般车间采用每人每班30L/cap·d,高温车间采用每人每班50L/cap·d。故工业区1:高温车间:0.6*10000*50/1000=300(m3/d) 一般车间:1.2*10000*30/1000=360(m3/d)工业区2:高温车间:1.0*10000*50/1000=500(m3/d) 一般车间:1.1*10000*30/1000=330(m3/d) (3)工业区职工淋浴用水量计算 查《给水工程》(第四版)第522-523页附表2,高温车间淋浴用水量取60L/cap·班,一般车间淋浴用水量取40L/cap·班。 本次设计中工厂的上班制度是三班制,所以选取每班中的一个时段作为上一班员工洗澡的时间,即0-1,8-9,16-17,则淋浴用水总量计算如下:工厂区1为: (0.6*10000*60/1000*100%+1.2*10000*40/1000*60%)/3=216(m3/d) 工厂区2为: (1.0*10000*60/1000*100%+1.1*10000*40/1000*60%)/3=288(m3/d)(4)工业区生产用水量计算 由任务书可知,工业区1的生产用水量为1.6万(m3/d),工业区2的生产用水量为1.8万(m3/d)。 (5)工业区工厂村生活用水计算 由任务书可知,工业区1的工厂村人口为1.0万,工厂区2的工厂村人口为0.6万。

水平衡计算

工艺水取水量就是各工艺取用的新鲜水量 . 整个项目新鲜水量用于全厂工业用水重复利用率的计算里 工艺水回用率计算中,生产线 1和生产线 2 为工艺水,其回用水 400+600,新水 200+200 。 间接冷却水循环率中,循环水为 污水回用率中,污水站污水回用量 水,可直排,不算污水。 水平衡中各种水量的核算 工业企业用水的定义、水源、分类、以及用水管理和水量计量应遵循 CJ19-87 规 1、取水量 工业用水的取水量是指自地表水、地下水、自来水、海水、城市污水及其他水源 的总水量。现有生产厂,以水表读取为准,乘以实际用水时间,得出用水量(日 和年)。对于拟建工程项目则应按用水装置(生产单元)汇总,一般化工生产装 置取水量包括 生产用水和生活用水两大方面;生产用水又包括 间接冷却水 、工艺 用水和锅炉给水 。各种用水关系见图 4-7。 工业取水量二间接冷却水量+工艺用水量+锅炉给水量+生活用水量 2、重复利用水量 重复利用水量系指生产厂 (建设项目) 内部循环使用和循环使用的总水量。 在化 工建设项目中主要是 间接冷却水系统的循环水量和工艺过程中循环多次使用的 水之和,可由项目建议书或可行性报告中获取这些数据。 对现有生产厂, 可用水 泵的额定流量计算,即: 重复利用水量=水泵额定流量X 实际开泵时间 3、耗水量 耗水量是整个工程项目消耗掉的新鲜水量总和, 即:H=Q1+Q2+Q3+ Q4+ Q5+ Q6 式中,Q1――产品含水,即由产品带走的水,Q1=产品产量(t/h 或t/a )x 产品 含水量,%; Q2――间接冷却水系统补充水量,亦即循环冷却水系统补充水量,耗 水量; Q3——洗涤用水、直接冷却水和其他工艺用水量之和。 洗涤用水和直 接冷却水均为与物料直接接触的水。工艺水用量由生产装置、工艺水回用 工业用水重复利用率中,新鲜水 700,重复用水 1600+600+400 。 600,新水为 200。 400,直接排放的污水 90+380 。图中冷却塔的 50 为冷却

黄河山东灌区水量供需平衡分析(一)

黄河山东灌区水量供需平衡分析(一) 摘要:黄河山东灌区从70年代开始出现枯水期水资源供需紧张的矛盾,特别是90年代有9年断流,年均断流达89天,给山东沿黄地区社会经济发展和基本生态环境带来了严重危害。根据黄河天然来水规律和上中游用水发展趋势,预测现状和2010年水平灌区的可供水量将进一步减少,而需水量稳定增加,供需矛盾将更加突出,一般干旱年份,冬季和春季明显缺水,只有对水资源加强统一管理,并采取综合的开源节流和水质保护措施,才能确保山东沿黄地区社会经济的可持续发展。 关键词:黄河山东灌区水量供需平衡 山东省是北方严重缺水的省份之一,年人均水资源占有量仅为全国平均的六分之一。黄河是其最大的客水资源,目前全省每年引黄水量占全流域的四分之一,已有11个市(地)68个县(市、区)不同程度地引用了黄河水,引黄供水范围内的土地、耕地、人口分别占全省的51%、58%和48%,黄河水资源已成为沿黄地区国民经济和社会发展的命脉。 1历年供需情况 1.1灌区及引黄概况 山东省引黄灌区工程建设始于50年代后期,灌溉面积仅为16万,50年代至80年代以每十年翻一番的速度递增,90年代受自然条件和来水量减少的影响,发展速度有所减慢,基本稳定在170万hm2,其中1993年达193万hm2。 随着全省引黄灌溉面积的稳步发展,引黄水量逐年递增,50年代为16.2亿m3;60年代为22.2亿m3;70年代为48.2亿m3;80年代为76.3亿m3;90年代因黄河上游来水偏少,引黄量有所减少,年均引水量为72.8亿m3。汛期(7~10月)引水量占全年的28%,冬季(11~次年2月)占全年的14%,春季(3~6月)占全年的58%。引水量中的90%以上用于农业灌溉。1.2来水及断流 山东黄河天然年均径流量为570亿m3。受中上游大中型水库的调节及引黄影响,黄河来水发生了很大的变化。50、60年代为486亿m3;70、80年代为367亿m3;90年代仅为222亿m3。汛期来水量占全年的57%。 黄河下游自70年代以来,春季就因水资源供需矛盾而不断发生断流现象,1972~1999年的28年中,利津站有21年出现断流,占总年份的75%,累计断流79次,共1061天,21年中平均每年断流51天,其中断流天数最多的年份是1997年,为226天,占全年时间的62%,1981、1995~1997年甚至出现了全境断流。 90年代长时间的断流致使因农田减产造成的年均经济损失达10亿元;工业年均经济损失超过15亿元,其中1995年仅原油减产造成的损失超过30亿元;河口三角洲地区的生态平衡受到严重威胁;沿黄城乡居民生活用水发生严重困难,成为威胁社会稳定的大问题。 2现状水平供需平衡分析 2.1可供水量预测 根据干流大型工程对径流影响、引黄发展变化及黄河径流变化规律分析,选择1980~1995年小浪底站实测系列,扣除近十年水库以上用水增加值后,按照小浪底水库的调水调沙及防凌运用方式,进行调节计算,求出汛期和冬季的蓄水量作为春季的补水量。扣除河南的引水量后,推求出现状水平高村站的年来水量,考虑洪水期、高含沙期、冰凌期无法引水的情况和维持入海流量不小于50m3/s,并扣除高村以下河道蒸发、渗漏,推求50%、75%、95%保证率下相应的可引水量分别为181亿m3、122亿m3和86亿m3,可引水量约占来水量的62%。 2.2需水量分析 山东省工农业发展对黄河水资源的需求变化,一方面与沿黄地区干旱程度、供水范围有关,另一方面还必须符合全流域水资源配水方案。从现状用水情况看,一般干旱年份在85亿

消火栓压力计算思路

摘要:室内消火栓给水系统的水力计算,我们做的可以算是多的了,可是对于如何系统而规范的计算确定各项参数,许多新入行的朋友却不太清楚。原因其实很简单,许多学校在教学的时候,只是局限在对教材的说教,缺乏和建筑防火规范的有机结合,故而导致许多毕业生对这一块的思考缺乏逻辑性。 关键词:室内消火栓给水系统水力计算 进行消火栓给水系统水力计算包括了流量和压力的计算,计算前提首先是建立在满足规范要求的基础上进行,规范对建筑灭火主要规定了2条,一条是同时使用水枪支数,一条是每支水枪最小流量。 (一)流量计算: 现分析流量计算步骤及程序如下: 一、首先分析在满足同时使用水枪支数条件下的充实水柱计算: 1、查建筑防火规范:第8.5.2条-室内消火栓用水量应根据同时使用水枪数量和充实水柱长度,由计算决定(可见不是纯粹查表得来的),但不应小于表8.5.2的规定(可见查表所得为规定的最小值,并不一定就是适合你手上建筑的正确值,如果经计算所得你的消火栓用水量大于表格内对应的消防水量,则应取较大的计算值)。 2、计算室内消火栓用水量的已知条件:同时使用水枪数量(可查表得到,一般为2支);未知条件:充实水柱长度 3、如何来计算充实水柱长度? 水枪充实水柱概念:水枪向上垂直射流,在26mm~38mm直径圆断面内、包含全部水量75%~90%的密实水柱长度称为充实水柱长度,以Hm表示(一般控制在7米~15米范围内)。 那么建筑所需充实水柱高度该如何来计算呢?对一定层高h的建筑来说,它所要求的消防要求是:当水柱的倾角控制在45~60度范围时可以喷到天花板上(上层楼板),如图

所示: Hm=(h-1)/sina,这个公式在很多规范及教材中都出现过。 这里我们取a=45度,Hm=√2(h-1) 接下来,我们做一个统计,对由于Hm在7米~15米之间,我们来计算建筑层高控制在多少。 当Hm=7时,h=5.95米,意味着当h小于5.95米时,Hm仍取7米; 当Hm=15时,h=11.6米,意味着当h大于11.6米时,Hm超过15米,需选择其他灭火方式,消火栓系统不适用; 二、现在在满足了建筑防火规范要求的同时使用水枪支数的前提下给出了充实水柱的计算方法,接下来我们要校核,以上得出的充实水柱是否可以满足规范要求的每支水枪最小流量的要求呢?如果在该充实水柱条件下能同时满足规范要求的(1、同时使用水枪支数;2、每支水枪最小流量;)2个要求,那么这个充实水柱高度是正确的。 1、水枪流量对充实水柱有什么影响呢? 根据孔口出流公式:qxh=3.14udf2√2gHq/4=0.003477udf2√Hq,令 B=(0.003477udf2)2,则:qxh=√BHq,Hq=qxh2/B -(1*) B是水枪水流特性系数,与水枪喷嘴口径有关,可查表4-8(建筑给水排水工程、、中国建筑工业出版社)得到不同口径水枪喷嘴对应的B值。 Hq=af*Hm/(1-∮*af*Hm) (MH2O).-(2*) af-试验系数,af=1.19+80(0.01*Hm)4

用水量计算说明书

最高日用水量计算 ()居民综合生活用水 该城市为中小型城市,人口仅万,城市分区为二区,查《给水工程》(第四版)第页附表(),取最高日用水定额为·.文档收集自网络,仅用于个人学习 由任务书可知,该城城区居民人口为万. 故最高日综合用水量为:***()文档收集自网络,仅用于个人学习 ()工业区职工生活用水量计算 根据《工业企业设计卫生标准》,工作人员生活用水量应根据车间性质决定,一般车间采用每人每班·,高温车间采用每人每班·. 故工业区:高温车间:**()文档收集自网络,仅用于个人学习 一般车间:**() 工业区:高温车间:**() 一般车间:**() ()工业区职工淋浴用水量计算 查《给水工程》(第四版)第页附表,高温车间淋浴用水量取·班,一般车间淋浴用水量取·班.文档收集自网络,仅用于个人学习 本次设计中工厂地上班制度是三班制,所以选取每班中地一个时段作为上一班员工洗澡地时间,即,,,则淋浴用水总量计算如下:文档收集自网络,仅用于个人学习 工厂区为: (******)()文档收集自网络,仅用于个人学习 工厂区为: (******)()文档收集自网络,仅用于个人学习 ()工业区生产用水量计算 由任务书可知,工业区地生产用水量为万(),工业区地生产用水量为万().文档收集自网络,仅用于个人学习 ()工业区工厂村生活用水计算 由任务书可知,工业区地工厂村人口为万,工厂区地工厂村人口为万. 故工厂区地工厂村生活用水为:**() 工厂区地工厂村生活用水为:**() ()浇洒道路用水量计算 查《给水工程》(第四版)第页,浇洒道路用水量一般为每平方米路面每次,取. 故该城浇洒道路用水量为:****() ()绿化用水量计算 查《给水工程》(第四版)第页,大面积绿化用水可采用(·),由于该市地绿化面积较大,故选用.文档收集自网络,仅用于个人学习 故该城绿化用水用水量为**() 管网漏水量计算 管网漏失水量为居民区综合生活用水、工业区生产用水、工业区车间生活 用水、工业区职工淋浴用水、工业区工厂村生活用水、道路浇洒用水、绿 化用水总和地—,取进行计算.故 该城地管网漏失水量为()*文档收集自网络,仅用于个人学习 ()未预见水量计算 查《给水工程》(第四版)第页,城市未预见水量可按最高日用水量地合并计算.此处按最高日用水量地计算.文档收集自网络,仅用于个人学习

水量供需平衡分析计算

第五章水量供需平衡分析计算 第一节分析计算的原则与方法 水量供需平衡分析计算,按现状(基准年)和近期、远期三个水平年进行。 规划可供水量在现状可供水量的基础上,考虑现有工程在不同供水情况下供水能力的增减和规划新建、配套、扩建工程增供的水量,同时注意水质变化对供应合格水能力的影响。 城镇需水量以最近批准的城市总体规划和供水规划计算的数值为主要参考,同时进行复核。 第二节不同供水工程可供水量分析 一、供水工程 温岭市各区域水库、堰坝、河网相互贯连和调节,已形成蓄、供、排相结合的一个较完整的灌溉供水系统。但是,近年来由于平原河道淤积和水污染严重,造成了河道蓄、供水能力不断降低,水源利用功能减少,城乡生活用水和工业用水已无法就地从河道提取,并由此造成地下水超采和地面沉降现象。因此,全市各区域仍然存在着亟待解决的城乡生活、工业用水水源工程和供水配套工程建设,以及水污染防治等问题。 1.蓄水工程 温岭市供水水源主要来自蓄水工程,约占总供水量的90%左右,主要包括河道、水库以及长潭水库引水。全市河道总长度为1284.44km,蓄水量3557万m3,主要担负境内灌溉用水。水库山塘153座,总库容7668.5万m3,担负境内生活用水和一部分灌溉用水。 2.引水工程 堰坝用来拦截水流,灌溉农田,为山区半山区群众所广泛采用。目前,全市共有堰坝33座,其中灌溉千亩以上的有大溪镇的中牛头潭堰坝,原江厦乡的七一堂滚水坝,原交陈乡的小交陈拦水坝和岙环

乡兰公岙坝等4座。全市一般年份可引水234.31万m3,灌溉面积7413亩,旱年引水量为133.38万m3,灌溉面积6503亩,丰水年可引水334.91万m3,灌溉面积7473亩。 3.地下水工程 地下水部分的可供水量主要计算机电井、民井供水,主要用于城市生活、农村生活和工业用水。2000年有各类机井71眼,民井3701眼。 二、可供水量 可供水量是不同水平年、不同保证率或不同频率不同需水要求下考虑来水、需水及水质情况,各项水利工程设施可提供的水量。温岭市水利工程设施主要包括蓄水工程(水库、山塘)、引水工程、调水工程和地下水井。 现状工况下,温岭市不同保证率各类型水利工程的可供水量见表5-1。 表5-1 现状工况下可供水量统计表 3 注:蓄水工程中包括长潭水库引水 第三节城乡水量供需平衡分析计算 一、现状供需分析 通过对现状城乡供水状况的调查分析,统计出城乡现状日需水量和日供水能力,如表5-2所列。

给排水说明及工程量计算规则

册说明 一、第八册《给排水、采暖、燃气工程》(以下简称本定额)适用于新建、扩建项目中的生活用给水、 排水、燃气、采暖热源管道以及附件配件安装,小型容器制作安装。 二、本定额主要依据的标准、规范有: 1.《采暖与卫生工程施工及验收规范》GBJ242-82。 2.《室外给水设计规范》GBJ13-86(97版)。 3.《建筑给水排水设计规范》GBJ15-88(97版)。 4.《建筑采暖卫生与煤气工程质量检验评定标准》GBJ302-88。 5.《城镇燃气设计规范》GB50028-93(98版)。 6.《城镇燃气输配工程施工验收规范》CJJ33-89。 7.《浙江省施工机械台班费用参考单价(2002)》。 8.《全国统一安装工程基础定额》。 9.《全国统一建筑安装劳动定额》(1988年)。 三、以下内容执行其他册相应定额: 1.工业管道、生产生活共用的管道、锅炉房和泵类配管以及高层建筑物内加压泵间的管道 执行第六册《工业管道工程》相应项目。 2.刷油、防腐蚀、绝热工程执行第十一册《刷油、防腐蚀、绝热工程》相应项目。 四、关于下列各项费用的规定: 1.脚手架搭拆费按人工费的5%计算,其中人工工资占25%(室外埋地管道工程不得计取此项费用)。 2.高层建筑增加费(指高度在6层或20m以上的工业与民用建筑)按下表计算(其 中人工工资50%,机械50%):

层数9层以下(30m)12层以下(40m) 15层以下(50m)18层以下(60m)21层以下(70m)24层以下(80m) 27层以下(90m)30层以下(100m)33层以下(110m) 按人工费的%3 4.5 6 9 12 15 19.5 24 28.5 层数36层以下(120m)39层以下(130m)42层以下(140m)45层以下(150m) 48层以下(160m)51层以下(170m)54层以下(180m)57层以下(190m)60层以下(200m) 按人工费的%33 37.5 42 46.5 51 55.5 60 64.5 69 3.超高增加费:定额中操作高度均以3.6m为界限,如超过3.6m时,其超过部分 (指由3.6m至操作物高度)的定额人工费乘以下列系数: 标高±(m) 3.6~8 3.6~12 3.6~16 3.6~20 超高系数1.10 1.15 1.20 1.25 4.采暖工程系统调试费按采暖工程人工费的15%计算,其中人工工资占20%。 5.设置于管道井、封闭式管廊内的管道、阀门、法兰、支架安装,人工乘以系数1.3。 第一章管道安装 说明及工程量计算规则 一、本章适用于室内外生活用给水、排水、雨水、采暖热源管道、法兰、套管、伸缩器等的安装。 二、界线划分: 1.给水管道: (1)室内外界线以建筑物外墙皮1.5m为界,入口处设阀门者以阀门为界; (2)与市政管道界线以水表井为界,无水表井者,以与市政管道碰头点为界。

消防管道计算用水量

1、临时消防及生活给水设计 本生活区临时用水由厂区市政管网引入,管径为DN100,材质为镀锌钢管,该管接入生活区后加水表计量。 生活用水和消防用水按北京市临设管理规定,根据生活区3#及5#宿舍设消火栓接口,水管线沿食堂边设置。 施工临水总量计算 给水主干管管径计算 计算公式 D=√4Q/(πv.1000) 其中:D——水管管径(m) Q——耗水量(m/s) V——管网中水流速度(m/s) 消防主干管管径计算 D=√4Q/(πv.1000) =√4×20/(3.14×2.5×1000) =101mm 其中:根据消防用水定额:Q=20L/s 消防水管中水的流速经过查表:V=2.5m/s 根据北京市消防管理的有关规定,消防用管的主干管管径不得小于100mm,因此,消防供水主干管确定为100mm焊接钢管。 施工现场用水: 因为新生活区面积小于25公顷,如果假设两根消防立管同时发生火灾的次数为一次,则消防用水的定额为20L/S,取q4=10L/S(q4—一根消防立管用水施工定额) 计算公式: Q=2q4=20L/S 工人生活用水 计算公式 q 3=(ΣP 2 N 3 K 4 )/(24×3600) q 3 ——生活区生活用水量(L/S) P 2 ——生活区居住人数(拟定1536人); N 2 ——生活区生活用水定额(20升/人.班)t——每天工作班数(班) k3——用水步均衡系数(2.00—2.50) 工人生活用水系数确定

生活区生活用水定额其中包括:卫生设施用水定额为25升/人;食堂用水定额为15升/人;洗浴用水定额为30升/人(人数按照出勤人数的30%计算);洗衣用水定额为30升/人;因此: 用水量计算 q3=(ΣP2N3)K/(24×3600) =(1536×25+1536×15+1536×30%×30+1536×30)×2.00/(24×3600)=2。84L/S 总供水管计算: D=√4Q/(πv.1000) =√4×6.94/(3.14×1.5×1000) =76.8mm 折合DN80,材质为镀锌管。 2、临时排水设计 生活区的食堂临时排水,经过隔油池、沉淀池处理后排入市政管网,盥洗用水经过沉淀池处理后排入市政管网。生活区厕所的污水经过化粪池分解后定期由市政抽走。各分包单位安装各自生活区范围内的排水管道。 3、临时用水系统的维护与管理 生活区应注意保证消防管路畅通,消防设施完备且箱前道路畅通,无阻塞或堆放杂物。 生活区应及时清扫,保证干净、无积水。

用水量计算方法

1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第、条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第条和第条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第条计算管段流量和按第条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量; 2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量; 3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。

3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算: (3.6.4-1) 1 根据住宅配置的卫生器具给水当量、使用人数、用水定额、使用时数及小时变化系数, 可按式(3.6.4-1)计算出最大用水时卫生器具给水当量平均出流概率: 式中: uo——生活给水管道的最大用水时卫生器具给水当量平均出流概率(%);qo——最高用水日的用水定额,按本规范表3.1.9取用;

相关文档
最新文档