中承式钢管混凝土拱桥设计说明书

中承式钢管混凝土拱桥设计说明书
中承式钢管混凝土拱桥设计说明书

中承式钢管混凝土拱桥设计说明书

拱桥指的是在竖直平面内以拱作为主要承重构件的桥梁,是我国公路上使用较广泛的一种桥型,在我国已经有1800年的历史了。其与梁桥、刚构桥不仅外形不同,而且受力性能有较大差别。拱式结构在竖向荷载作用下,两端将产生轴向压力,从而大大减小了拱圈的截面弯矩,使之成为偏心受压构件,截面上的应力分布与受弯梁的应力相比较为均匀,因此可以充分利用主拱截面的材料的强度,使跨越能力大大增大。其主要优点是可充分的就地取材(砖石、混凝土结构时2),可节省大量的钢材和水泥,而且其受力性能好,维修费用少,外形美观,构造较简单。

此拱桥为中承式钢管混凝土拱桥,净跨径225m,主拱圈线型为二次抛物线。因为在竖向均布荷载作用下,拱的合理拱轴线为二次抛物线,而此拱桥自重集度较为均匀,且为大跨,故选用二次抛物线形式,其造型优美,构造较简单。桥梁全长316m,起终点至拱桥桥台处选用等截面梁布置,在跨中位置设置桥墩以分配受力。此拱桥拱肋截面为三角形桁式结构,主钢管为Φ610×13mm,连接钢管和横撑为Φ325×8mm,拱肋高3.7m,宽1.7m,吊索间距为6m,吊索下设30cm×30cm方形截面横梁。

此中承式钢管混凝土拱桥属钢-混凝土组合结构中的一种,主要用于受压为主的结构。它一方面借助内填混凝土增强钢管壁的稳定性,同时又利用钢管对核心混凝土的套箍作用,使核心混凝土处于三向受压状态,从而具有更高的抗压强度和抗变形能力。而且由于其承载能力大,正常使用状态是以应力控制设计,外表不存在混凝土裂缝问题。另外,钢管本身相当于混凝土的外板,它强度高,质量轻,易于吊装或转体,同时钢管兼做纵向主筋在施工过程中,可作为劲性承重骨架,方便施工,可先将空钢管拱肋合龙,再压注混凝土,从而降低施工难度,省去了支模、拆模等工序,简化了施工工艺,并可适应先进的混凝土泵送工艺。另外钢管混凝土使构件承载力大大提高,具有良好的塑形和韧性,降低了结构自重和造价,而且其防腐、防火性能好,结构造型美观。

但钢管混凝土拱桥也有其自身的缺点。此管壁外露的拱桥,在阳光照射下,钢管膨胀,容易造成钢管与内填混凝土之间出现脱空现象。另外,由于钢管先于管内混凝土受压,容易造成钢管应力偏高,而混凝土不能发挥应有的作用,而且其自重较大,相应的水平推力也较大,增加了下部结构的工程量,对地基要求高。而且虽然接头连接较为简便,但是接头进行焊接具有许多的难以避免的缺陷,钢管内灌注混凝土的密实度问题也较为突出,钢管的养护比较麻烦,钢管混凝土的动力性能和疲劳性能也必须考虑。

下承式钢管砼系杆拱桥施工技术

下承式钢管砼系杆拱桥施工技术 马卫明 (如皋市水利建筑安装工程有限公司,江苏南通,226500) 1 工程概况 如皋市蒲黄线通扬运河大桥位于蒲黄线K10+729处,上跨通扬运河。主桥采用80m钢管砼系杆拱结构,主桥纵向由拱肋、系杆并缀以吊杆,构成主要受力体系,为刚性系杆刚性拱结构。横向通过风撑、横梁和系杆将两片拱肋连城整体,并通过搁置在横梁上的桥面板及现浇层构成桥面行车系。 拱肋为本桥的主要受力构件,拱轴线为二次抛物线,计算跨径L=80m,计算矢高16m,矢跨比1/5。拱肋断面为哑铃型钢管混凝土,截面宽度0.75m,高度1.8m,宽度和高度沿拱轴线始终不变,拱肋上下弦管(Q345qC)直径均为750mm,壁厚16mm。通过两块缀板连接,坚缀板厚度为16mm,拱肋全断面填充C40微膨胀混凝土。 系杆作为纵向连接拱肋的主要受拉构件,为预应力混凝土箱型截面。系杆截面宽度1.2m,高度1.8m,系杆为矩形空箱断面,在系杆端头变为加高实心截面,系杆预应力钢束张拉须结合施工分批进行。 吊杆将桥面系重量传递给拱肋,本桥采用拉索结构。拉索外圆钢管Φ309×16mm,钢管上端焊接于拱肋下弦管下缘,钢管下端焊接于系杆顶面预埋钢板上,可以承受一定的压力。拉索内穿集束钢丝,承受拉力。吊杆下端为固定端,锚固于系杆内,上端为张拉端。 风撑连接两片拱肋,使其协同受力,并保持拱肋稳定。每道风撑由两根Φ500×10m钢管及多根Φ273×10mm腹杆组成,风撑所有钢管均不灌注混凝土。全桥共设5道风撑。 全桥横梁分为中横梁和端横梁。中横梁为工字型实心截面,端横梁为空心截面(与系杆交接处变为实心截面)。所有横梁顶面在行车道部分设双向2%横坡,以利用其上桥面板及铺装直接形成双向横坡,横梁底面水平。横梁均为预应力构件,横梁长度为17m,中横梁于系杆平面相交,每根中横梁由两根吊杆支承。中横梁采用预制安装、端横梁采用现浇施工,横梁预应力张拉应分批进行。 桥面板为22㎝厚的实心板,纵向搁置在横梁上,桥面板之间横向铰接,纵向主筋采用焊接,辅以22㎝厚现浇混凝土接头及10㎝混凝土桥面现浇层,构成桥面整体连续体系。桥面铺装为10㎝沥青混凝土。 2 施工难点 通扬运河为本市境内重要的水运通道,水上运输繁忙,来往船只多,给水上作业带来一定的困难。 钢管砼系杆拱桥工序多,交叉作业多。 系杆采用预制吊装技术,吊装长度16m,吊装重量达70t;拱肋采用分三段吊装,最大吊装长度29m,吊装重量达21t。 施工现场场地狭小,桥梁施工区外侧有民用码头,吊装条件差。 3 施工流程 下承式钢管砼系杆拱桥采用先梁后拱的少支架施工工艺,具体施工流程如下: (1)主墩基桩定位放样,搭设基础施工平台,安装钻机,进行桩基础施工,并对基桩进行无破损

大跨度中承式钢管混凝土拱桥设计

大跨度中承式钢管混凝土拱桥设计 陈勇勤1,邢 燕2,杨洁琼1,胡亚琴1 (1.浙江省公路水运工程咨询公司,浙江杭州310004;2.大连市政设计院有限责任公司,辽宁大连116011) 摘 要:以大连市开发区滨海路四号桥为例,介绍大跨度中承式钢管混凝土拱桥的总体设计、平面静力分析、空间静力分析、稳定分析和施工工艺的要点。 关键词:拱桥;钢管混凝土结构;系杆拱;桥梁设计中图分类号:U444.22;TU528.59 文献标识码:A 文章编号:1671-7767(2007)03-0018-03 收稿日期:2007-02-01 作者简介:陈勇勤(1975-),女,工程师,1998年毕业于重庆交通学院桥梁工程系,工学学士,2001年毕业于重庆交通学院桥梁与隧道工程专业,工学硕士。 1 工程简介 大连开发区滨海路,是继大连市内滨海路之外 的又一条著名滨海景观旅游线路。滨海路四号桥位于这条旅游线路的中部,桥梁走向南北,背靠山峦,面临黄海。建设单位对该桥的景观要求极高,同时要求尽量降低造价,减少维修养护费用。该设计以美观、靓丽、新颖、独特为出发点,同时兼顾到实用经济、安全合理。该桥的自然条件如下。 (1)水文:桥址与海岸的距离为200m 左右,潮汐对该桥没有影响。 (2)气象:桥位紧靠黄海,历年最大风速为29m/s ,发生在4月;极大风速为48.7m/s ,发生在8 月。通常夏季盛行东南风,其它时节以西北风为主。8月平均最高气温为27.5℃,1月平均气温为-5.5℃,属寒冷地区。最大冻结深度0.5m 。 (3)地质:桥址处为沟谷,设计桥面和谷底的最 大高差约15m ,沟谷边坡坡度为1∶2,谷底为旱地。该地区石英岩广泛分布,地质钻孔由上至下依次为素填土、碎石、强风化石英岩、中风化石英岩。其中,中风化石英岩岩面较浅,岩层稳定,是良好的持力层。 综合考虑地质条件和周围景观环境,在方案设计中,共选择3个方案:自锚式悬索桥、V 形墩连续梁桥、中承式钢管混凝土拱桥。上述方案经开发区有关领导及专家讨论评审,最终选定主拱为160m 跨的中承式钢管混凝土拱桥,采用单索面、异型拱肋。桥面系采用三跨连续梁体系,桥梁全长180m ,主跨150m ,两边跨各15m 。滨海路四号桥布置示意见图1。 图1 滨海路四号桥布置示意 2 总体设计 2.1 主要设计技术标准 (1)桥面宽度:桥面总宽18.5m 。(2)设计速度:60km/h 。 (3)荷载标准:车辆荷载为公路-Ⅰ级;人群荷 载为2.5kN/m 2;温度影响力按年均升温15℃、降温25℃考虑;风载:基本风压强度取750Pa ;地震基本烈度为6度,按7度设防。2.2 拱肋 拱肋中段采用圆端形钢管混凝土[1],肋高1.5m 、宽3.2m 。拱轴线为二次抛物线,抛物线方程为 Y =6.6X 2 /1000(坐标原点位于拱顶中心线位置)。 拱肋两端为人字形,拱轴线为直线,采用直径为2m 的圆形钢管混凝土。中拱肋和边拱肋的拱轴线在相交处相切。 该中承式钢管混凝土拱桥计算跨径160m ,拱肋矢跨比1/4.32,矢高37.036m 。 8 1世界桥梁 2007年第3期

下承式系杆拱桥工程施工组织设计方案

50米下承式钢管拱桥施工方案 一、编制依据 1.第一公路勘察设计研究院2005年7月发出的至国家重点公路境泌阳至高速公路第二 标段两阶段施工图变更设计。 2.《公路工程技术标准》………………………………………J T G B01-2003 3.《公路桥涵施工技术规》…………………………………J T J041-2000 4.《硅酸盐水泥、普通硅酸盐水泥》…………………………G B/T175-2000 5.《公路工程施工安全技术规程》……………………………J T J O76-95 6.《钢筋混凝土用热轧光圆钢筋》………………………………GB13013-2000 7.《钢筋混凝土用热轧带肋钢筋》……………………………G B1499-2000 8.《公路工程金属试验规程》…………………………………J T L055-83 9.《钢筋焊接及验收规程》……………………………………J T J18-96 10.《公路工程水泥混凝土试验规程》…………………………J T J053-94 11.《预应力混凝土用钢绞线》…………………………………G B/T5224 12.《预应力筋用锚具、夹具和连接器》………………………G B/T14370 13.《公路工程质量检验评定标准》……………………J T G-F80/1-2004 14.《公路工程技术标准》……………………………(J T G B01-2003) 15.《公路桥涵设计通用规》……………………………(J T G D60-2004) 16.《钢结构设计规》……………………………(G B50017) 17.《钢结构工程施工及验收规》……………………………(GB50205-2001) 18.《铁路钢桥制造规》……………………………(T B10212-98) 19.《合金结构钢技术条件》……………………………(G B3077-82) 20.《焊接用钢丝》……………………………(G B1300-77)

钢管混凝土拱桥的施工方法和结构设计..

钢管混凝土拱桥的施工方法 钢管砼结构,由于能通过互补使钢管和混凝土单独受力的弱点得以削弱甚至消除,管内混凝土可增强管壁的稳定性,钢管对混凝土的套箍作用,使砼处于三向受力状态,既提高了混凝土的承载力,又增大了其极限压缩应变,所以自钢管砼结构问世以来,是桥梁建筑业发展的一项新技术,具有自重轻、强度大、抗变形能力强的优点,因而得到突飞猛进的发展。在桥梁方面,已以各种拱桥发展到桁架梁等结构形式,并发展到钢管混凝土作劲性骨架拱桥。其施工方法发展很快,已经应用的有无支架吊装法,支架吊装法,转体施工法等。 1 拱肋钢管的加工制作 拱肋加工前,应依理论设计拱轴座标和预留拱度值,经计算分析后放样,钢管拱肋骨架的弧线采用直缝焊接管时,通常焊成1.2-2.0m的基本直线管节;当采用螺旋焊接管时,一般焊成12.0~20m弧形管节。对于桁式拱肋的钢管骨架,再放样试拼,焊成10m左右的桁式拱肋单元,经厂内试拼合格后即可出厂。具体工艺流程为:选材料进场材料分类材质确认和检验划线与标记移植编号码下料坡口加工钢管卷制组圆、调圆焊接非坡口检验附件装配、焊接单节终检组成10m左右的大节桁式拱肋焊接无损检验大节桁式拱肋终检 1:1大样拼装检验 防腐处理出厂。 当拱肋截面为组合型时,应在胎模支架上组焊骨架一次成型,经尺寸检验和校正合格后,先焊上、下两面,再焊两侧面(由两端向中间施焊)。

焊接采用坡口对焊,纵焊缝设在腔内,上、下管环缝相互错开。在平台上按1:1放样时,应将焊缝的收缩变形考虑在内。为保证各节钢管或其组合骨架拼组后符合设计线型,可在各节端部预留1cm左右的富余量,待拼装时根据实际情况将富余部分切除。钢管焊接施工以“GBJD05—83、钢结构施工和施工及验收规范”的规定为标准。焊缝均按设计要求全部做超声波探伤检查和X射线抽样检查(抽样率大于5%)。焊缝质量应达到二级质量标准的要求。 2 钢管混凝土拱桥的架设 2.1无支架吊装法 2.1.1缆索吊机斜拉扣挂悬拼法 具体做法与其他拱肋的架设相似,只是钢管混凝土拱肋无支架架设方案用于较大跨度,它可根据吊机能力把钢管拱肋合成几大段进行分段对称吊装,并随时用扣索和缆风绳锚固,稳定在桥位上,最后合拢。如净跨度150m 四川宜宾马鸣溪金沙江大桥,为钢筋混凝土箱拱,分五段吊装,吊重700KN。广西邕宁邕江大桥,主跨312m的钢管混凝土劲性骨架箱肋拱,每根拱肋的钢管骨架分9段吊装,吊重590KN。四川万县长江大桥,跨径420m的钢管混凝土劲性骨架上承式拱桥,分36段吊装,吊重612.5KN。 缆索吊机斜拉扣挂悬拼法施工是我国修建大跨度拱桥的主要方法之一。施工理论成熟,施工体系结构简单,施工调整与控制较方便。但这种方法起吊端要有一定的施工场地,缆索跨度较桥跨要大,用缆索较多,主塔架与扣索塔架相互分开,存在受压杆稳定要求塔高不能过高,并且要设置各种缆风索而占地面积较大。

钢管混凝土拱桥报告

《钢管混凝土拱桥》-----钢管混凝土拱桥的施工方法 福州大学土木工程学院 2014年06月16日

钢管混凝土拱桥的施工方法 摘要: 钢管混凝土拱桥以其强度高、跨越能力大、施工便捷、经济效果好、桥型美观等优点在我国桥梁中得到了广泛应用。钢管混凝土结构,是桥梁建筑业发展的一项新技术。在桥梁方面,已以各种拱桥发展到桁架梁等结构形式,并发展到钢管混凝土作劲性骨架拱桥。其施工方法发展很快,已经应用的有无支架吊装法,支架吊装法,转体施工法等。 1、引言 钢管混凝土拱桥的发展与应用在我国仅有十余年的历史,但发展很快,已遍及全国广大地区,目前已经建成的就达80余座,在建的也有30余座。这主要是因为钢管混凝土组合材料的优越性决定的。关于钢管拱肋的加工、拼装、成拱、吊装工艺,对此类结构的施工技术、施工规范、质检和监理程序与指标、施工定额及管理等方面的研究和经验虽然有所积累,但仍不多见。广泛交流施工经验,研究制定和完善该类桥梁统一可行的规范规程,探讨其施工经济技术指标,是目前建造此类桥梁急待解决的课题之一。 从目前国内的钢管混凝土拱桥的施工实践来看,其施工方案主要有:无支架缆索吊装;少支架缆索吊装;整片拱肋或少支架吊装;吊桥式缆索吊装;转体施工;支架上组装;千斤顶斜拉扣索悬拼。以上除千斤顶斜拉扣索悬拼施工外其余施工安案都与普通混凝土拱桥安装类似,本文主要介绍钢管混凝土拱大桥的施工方法及其注意事项。 2、钢管混凝土拱桥的施工方法及其注意事项 钢管混凝土拱桥施工的主要环节包括:钢管拱肋的加工制作、钢管拱肋的架设、钢管混凝土的灌注、安装桥面系等。 2.1 钢管拱肋的加工制作

为了保证加工质量,拱肋通常在工厂制作。首先由定尺的钢板卷制成长(分段长度视运输条件而定)的单节直管,再根据设计拱轴线、预留拱度等进行放样、煨弯、焊接组成拱肋。出厂前在刚性平台上进行大样拼组,验收合格后进行初级防腐,然后分段出厂。应钢管焊接采用坡口焊,焊管对接的纵缝及上下钢管的环节均需错开。焊接时及时对焊缝收缩及日照温差引起的误差进行修正,以防误差积累。对每条焊缝要进行严格的探伤检查,发现问题及时处理,确保拱肋加工质量。 2.2 钢管拱肋的架设 钢管混凝土拱桥通常是先架设空钢管形成裸拱,再在其中灌注混凝土形成钢管混凝土拱;或再将其作为劲性骨架,在外部包上钢筋混凝土形成复合拱肋。钢管拱肋的架设可以根据不同的施工条件采用不同的施工方法,主要有搭支架施工法、无支架缆索吊装法、平转法、竖转法、以及多种方法的综合运用的施工方法。 2.2.1 搭支架施工法 搭支架施工法就是在桥位处按照钢管拱肋的设计线型加预拱度,拼装好支架,在支架上就位拼装、焊接成拱的施工方法。支架可采用满堂式、或者分离式、或者两种方式的结合。如:三峡莲沱大桥的两边跨、天津彩虹大桥等。 支架的设置按拱肋的轴线和段接头位置及高程,在精确定位后,就每个段接头的高度设计相应的支架高度(该高度考虑了支架、支承结构的变形和施工预拱度),经计算确定支架的形式和材料,满足强度、稳定及刚度要求,支承处圆弧和坡度应和该处的拱肋设计完全吻合,以保证较大的支承面积和钢管拱肋的稳定。吊装时用索道吊运到位初步控制合格后,拱肋的一端采用焊搭板螺栓联接,另一端用两道临时缆风护设稳定,合拢段在准确测量出实际的长度和待合拢段拱肋的长度根据实际将多余的长度割掉后按吊装顺序吊装,到位后两端精确对位连接。吊装顺序如图1所示。

土木道桥毕业设计_30m上承式钢管混凝土拱桥

单跨30m上承式钢管混凝土拱桥设计 50m Single-span Concrete Filled Steel Tubular Arch Bridge Design

摘要 近几十年来,随着科学技术的进步,国民经济的蓬勃发展,国家基础设施建设规模的不断扩大,我国桥梁建设取得了举世瞩目的成就,桥梁建筑技术也有了很大的进展。其中钢管混凝土系杆拱桥是近年来我国桥梁建设新发展的桥型,具有强度大,自重轻,抗变形能力强的特点。钢管混凝土结构在桥梁上的应用,同时解决了高强度材料的应用和施工的不方便两大难题,因而,钢管混凝土系杆拱桥在我国得到了迅速的发展。现在钢管混凝土拱桥向着更大跨径、更大规模方向发展,同时应用区域和范围也不断扩大,在建的重庆朝天门大桥(钢桁架系杆拱)的跨径已达到552m,比上海卢浦大桥长2m,成为新的同类桥型世界之最。此次设计是一50m钢筋混凝土柔性系杆拱桥,桥全长54m,桥面净宽9+2×0.5m,矢跨比采用1/5,采用二次抛物线形式拱肋,拱肋截面为哑铃型,设计荷载为公路一级,双向四车道。运用Midas Civil软件完成建模和施工阶段受力分析。取分析数据作为结构设计的依据。通过此次设计,对桥梁设计的全过程有一个从概念上到实际上的了解,加深对桥梁设计规范的掌握程度,同时也学会了运用桥梁软件Midas Civil。 关键词:钢管混凝土;Midas Civil;上承式拱桥

ABSTRACT In recent decades,our country economy stability increases and the scientific technology develops quickly,more investment is put into the fundamental facilities,we accomplish a lot of great construction of bridges and a large improvement also be made in bridge construction technology.In our country,concrete fitted steel tubular (CFST) arch bridge is a new technique accompanied with bridge construction recently which are light deadweight,high strength and high resistance to deformation. It has solved two difficult of application and erection of high strength material in arch bridge. The CFST arch bridge has being developed quickly in our country. Now CFST arch bridge toward more and more large-scale direction, but also regional and scope of application expanded, Chaotianmen Bridge under construction (steel tied arch truss) the span has reached 552m, compared with the Lupu Bridge length 2m, a new kind of bridge in the world. The design is a 50m flexible reinforced concrete arch bridge, bridge length 54m, bridge clear width 9 +2 × 0.5m, span ratio is 1 / 5, with parabolic arch forms, arch cross section for the dumbbell type, design load for the road level, two-way four lanes. Complete the modeling software using Midas Civil and Mechanical Analysis of the construction phase. Analysis of data taken as a basis for structural design. With this design, bridge design process from concept to a practical understanding of the mastery of bridge design specifications, but also learned to use bridge software Midas Civil. Key words:concrete fitted steel tubular (CFST) arch bridge;Midas Civil;through arch

钢管混凝土拱桥吊杆长度计算范本

吊杆长度复核计算 1.1主拱预拱度 1.1.1成桥状态拱顶位移 图1.1.1成桥状态下全桥竖向变形(图中单位:m) 成桥状态下,拱顶截面在恒载以及计入十年收缩徐变期的作用下的最大挠度为29cm. 1.1.2活载作用下拱顶位移 图1.1.2活载作用下全桥竖向变形(图中单位:m) 成桥状态下,拱顶截面在汽车荷载和人群作用下的最大挠度为2.8cm。

1.1.3预拱度分配计算 根据现行设计规范规定,某某大桥拱顶预拱度为29+2.8/2=31.8cm,实际设计单位拱顶截面取40cm,两者相差不大,设计单位已将预拱度考虑到钢管的制作中,所以在施工中按设计单位提供的预拱度(图09)进行线性控制。 1.2吊杆理论长度与实际下料长度 吊杆长度与拱肋高度、吊杆横梁高度、吊杆锚点位置、主拱预拱度等因素。 对某某大桥,主拱还设置了双向0.5%纵坡,桥面纵坡通过吊杆长度来实现,此外,因双向纵坡,还设置了R=20000m,T=100m,E=0.25m 的竖曲线。这些因素都必需在计算吊杆长度时予以考虑。 吊杆理论计算长度示意图 下弦主管上弦主管吊杆横梁 钢垫块 钢垫块 1.2.1理论吊杆长度 1、竖曲线对吊杆长度的影响 图1.2.1某某大桥竖曲线要素计算图式 根据《公路勘测设计》,各几何要素计算公式如下:

12i i W -=(1.2.1) Rw L = (1.2.2) 2 L T = (1.2.3) R T E 22= (1.2.4) R x y 22= (1.2.5) 式中:R ——竖曲线半径,m ; T ——切线长,m ; L ——竖曲线长度,m ; E ——竖曲线外距,m ; x ——竖曲线上任意一点P 距离竖曲线起点或终点的水平距离,m ; y ——竖曲线上任意一点P 距切线(即坡度线)的纵距,m 。 对某某大桥,i 2=-i 1=0.005,w=0.01,E=0.25,L=200,T=L/2=100, R=L/w=20000 1#~12#吊杆因竖曲线引起的吊杆长度变化量如表1.2.1 所示。 表1.2.1 1#~12#吊杆因竖曲线引起的吊杆长度变化量

上承式拱桥施工方案

上承式拱桥施工方案 一、工程概况本合同段共有上承式钢筋砼拱桥4座,其一孔跨径为36.6m,桥梁全长54.08m,桥面总宽5.5m,组成:0.5m(防撞栏杆)+4.5m(行车道)+0.5m(防撞栏杆),其中K206+120为汽车天桥,桥面净宽为7m,总宽为8m;K211+400,K214+220,K218+841均为农机天桥,桥面总宽为5.5m。主体结构:基础、台身采用C20片石混凝土,桥台台帽、耳背墙、桥台搭板采用C30混凝土,上部构造及拱座采用C40砼,桥面铺装采用C30防水砼,防撞栏杆采用C30混凝土。 二、施工组织根据工程特点和工期要求,实行项目经理部、施工区、专业施工队三级管理,各工区所属天桥由其桥梁施工队负责。施工队行政和技术隶属于各施工区,总体安排和质量监督服从项目部。施工队配置专职队长、技术员、材料员和兼职安全员各一名。各施工队机械设备、工具、机具和专业技术工种配置满足施工要求,以高机械设备的利用率,缩短工期,加快进度。完成一道工序并达到标准后,再申请下道工序,依次循序推进。三、施工方案1、施工放样⑴、平面测量项目部测量组负责控制测量。当导线点与天桥间能直接通视时,用全站仪根据主导线点数据准确地放出天桥轴线控制桩。当不能通视时,应选择能与天桥通视且便于长久保存处布设支导点,在支导点成果得到监理工程师确认后,轴线控制桩的布设及放样方法同直接通视法。控制桩布置在天桥基坑开挖线外≥5m便于长期保存的地方,并用水泥混凝土加以保护,监理工程师复核签认后,作为细部放样的依据。施工队技术员负责构造物细部测量。根据测量组所交控制点,用经纬仪和钢尺在构造物台身两端沿轴线的法线方向放出细部放样控制桩,用水泥砼加固,以备基坑开挖、砼基础浇注、台身放样之用。项目部测量组应对每一构造物进行不少于四次控制测量检测,即基础砼施工前、台身砼施工前、砼拱圈浇注前及立墙施工前,检测施工技术员细部放样精度,确保天桥平面位置满足规范要求。⑵、高程测量施工临时水准点由测量组从四等水准点引入,并用水泥混凝土加以保护。临时水准点的闭合差应达到规范要求,进行总平差,并经监理工程师复核签认,作为临时基点高程。2、基坑开挖基础采用明挖扩大基础,基坑开挖范围为:底部为基础净尺寸每侧加0.5m工作道和0.3~0.5m的排水沟,上口为底部开挖对应边加H×M(H 为开挖深度,M为坡率,土边坡采用0.75~1坡率,石方为0.2~0.5坡率)。土质基坑用挖掘机配合人工开挖。开挖过程中,须加强排水,不使基坑泡水。开挖至距基底20cm时,由人工清理至设计标高。石质基坑采用松动控制爆破配合开挖,挖至设计标高后,凿出新鲜岩面,用砂浆找平。当基底基岩倾斜度大于150时,应将基底凿成多级台阶,台阶宽度不小于0.3m。开挖的土石方应堆放在基坑开挖线1m以外或运至指定位置。开挖完成后,要求地基承载力≥300KPa,基底摩擦系数≥0.3,各项指标符合要求即可进行基础砼施工。如承载力达不到设计要求,应按监理工程师批复方案处理。如基坑开挖过程中发现石芽、溶沟、溶洞等不良地质情况,应采取凿除石芽、清除换填等措施进行处理。3、基础施工⑴、模板安装及校验基础模板采用大平面钢模,模板使用前用磨光机将模板表面锈迹清除干净。为使砼表面光洁,棱角整齐,在砼浇注前模板表面应涂刷脱模剂。模板加强肋木用6×8cm或6×10cm两种,竖向中至中距80cm,横向上下端各一根,中间按1米间距加密。斜撑用木料以30~60度倾角支撑,并用缆风对拉。⑵、砼浇注混凝土采用JS500强制式搅拌机供料,在开盘前,应根据理论配合比和集料含水量计算施工配合比。集料采用称重法,施工中不得随意增减。上料顺序依次是石子、水泥、砂子。拌和时严格控制搅拌时间,保证拌和料混合均匀、颜色一致。施工过程中随时检查和校正混凝土的流动性,严格控制水灰比,不得任意增加用水量。为保证第二盘混凝土的质量,第一盘应拌制同等标号的砂浆。混凝土采用手推车运输,运输道路应平顺,防止混凝土产生离析、泌水和灰浆流失现象。在砼运输过程中造成离析或拌合时间不够的砼熟料不允许入模,应重新拌制后才能使用。砼倾落高度大于2m时应采用溜管、溜槽或串筒输送。摊铺时应注意分散倾倒时滚落于一处的骨料,靠模板

拱桥—钢管拱计算书(DOC)

潜江河大桥计算书 1.基本信息 1.1.工程概况 祥和路位于安庆市新城中心区,是安庆市城市规划中一条重要的东西走等主要城市道路交叉。顺安路至潜江路之间路基按38米设计,本桥——潜江河大桥位于顺安路和潜江路之间。 本桥位于规划河流潜江沟上,潜江沟规划河底宽度45m,上口宽度80~100m,设计采用1×60m下承式钢管混凝土系杆拱跨越。 1.2.技术标准 (1)设计荷载:公路-Ⅰ级,人群荷载集度3.5kN/m2。 (2)桥面横坡:双向1.5%。 (3)桥梁横断面:2×[4.5m(人行道)+4.5 m(非)+2.5m(隔离带)]+15m(车)=38m(全宽)。 (4)地震动峰值加速度0.1 g(基本烈度7度),按8度抗震设防。 (5)环境类别:I (6)年平均相对湿度:70% (7)竖向梯度温度效应:按现行规范规定取值。 (8)年均温差:按升温20℃。 (9)结构重要性系数:1 1.3.主要规范 《城市桥梁设计准则》(CJJ 11-93) 《公路桥涵设计通用规范》(JTG D60-2004) 《桥梁抗震设计细则》(JTG/T B02-01-2008) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JT GD62-2004) 《公路桥涵地基与基础设计规范》(JT GD63-2007)

《公路桥涵施工技术规范》(JTG/T F50-2011) 《城市桥梁工程施工与质量验收规范》(CJJ2-2008) 《公路桥涵钢结构及木结构设计规范》(JTJ025-86) 《钢管混凝土结构设计与施工规程》(CECS28:90) 《钢管混凝土结构技术规范》(DBJ 13-51-2003)福建省地方标准 《钢结构设计规范》(GB 50017-2003) 其他相关的国家标准、规范 1.4.结构概述 桥梁横向布置:4.5m(人行道)+4.5m(非机动车道)+2.5m(隔离带)+15m(机动车道)+2.5m(隔离带)+4.5m(非机动车道)+4.5m(人行道),桥梁总宽38m。采用1×60m下承式钢管拱结构,计算跨径60m,矢跨比1/4。拱肋采用D=150cm,t=2cm单圆形钢管,内灌微膨胀混凝土;系梁采用150cm×180cm预应力混凝土结构,系梁在拱脚位置加宽到200cm,加高到240cm宽;端横梁采用360cm×190cm双室箱梁,腹板厚度50cm;中横梁采用底宽65cmT梁,梁高135cm;桥面板厚25cm。系梁、横梁及桥面板采用整体支架现浇,结构整体性好;吊杆间距4m,采用新型低应力防腐拉索PESFD7-109;横向设五道风撑,风撑D=80cm,t=16mm钢管。 1.5.主要材料及材料性能 (1)混凝土:C50,重力密度γ=26.0kN/m3,弹性模量为Ec=3.45×104MPa; (2)钢管混凝土:Q345C钢管,内部填充C50微膨胀混凝土,计算内力时,刚度直接叠加;计算挠度与一类稳定时,考虑混凝土折减,折减系数0.8。 (3)预应力钢筋:弹性模量E p=1.95×105MPa,松驰率ρ=0.035,松驰系数ζ=0.3; (4)锚具:锚具变形、钢筋回缩取6mm(一端); (5)金属波纹管:摩擦系数:u=0.25;偏差系数:κ=0.0015;

钢管混凝土拱桥结构设计探讨(新版)

钢管混凝土拱桥结构设计探讨 (新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0331

钢管混凝土拱桥结构设计探讨(新版) 【摘要】钢管混凝土拱桥在我国的应用发展很快。本文对刚架系杆拱桥型、助供横向结构、拱助我面设计和桥面系构造等问题进行探讨。 【关键词】钢管混凝土拱桥结构设计探讨 钢管混凝土拱桥近十年来在我国发展迅速,随着数量的增多,跨径与规模也不断增大,分布区域也越来越广,除了钢管混凝土拱桥具有材料强度高、施工方便、造型美观等优点的原因外,与我国正处于大规模的交通基础设施建设时期的大环境有密切的关系[2]。本文将根据钢管混凝土拱桥在我国的应用情况与近几年的发展趋势,对结构的合理设计进行定性的讨论。 一、刚架系杆拱桥型 钢管混凝土拱桥结构形式丰富多样,承载形式上、中、不承式

均有。按拱的推力,又可分为有推力供和无推力供。无推力供又有拱架组合体系和刚架系杯供。钢管混凝土拱桥以中下承式为主,有推力拱和元推力拱均占相当的比重。在无推力拱中,以刚架系杆拱为主。这些都是钢管混凝土拱桥的构造特点,与我国传统的石拱桥、钢管混凝土拱桥均有明显的不同。 刚架系杆拱是在钢管混凝土拱桥中出现的拱桥新的结构形式。我国建成的第一座钢管混凝土拱桥--四川旺苍东河大桥采用的就是刚架系杆拱。与拱架组合体系不同,刚架系杆供中拱助与桥墩团结,不设支座,采用预应力钢绞线作为拉杆来平衡换的推力,拉杆独立于桥面系之外,不参与桥面系受力,而桥面系为局部受力构件。这种结构由于拱和墩连接处为刚结点,属刚架结构,又带有系杆,故称之为刚架系杆拱。 刚架系杯拱为超静定结构,桥梁上部、下部以及基础甚至地基连成一体,结构的超静定次数较多,受力复杂。由于其系杆刚度与供梁组合体系中的系杯梁刚度相比小很多,特别对于大跨径桥梁,系杆拉力增量将产生很大的变形,而供助、系杆和墩往团结在一起,

上承式拱桥施工方案

沪蓉国道主干线湖北省恩施至利川高速公路第一合同段 上承式拱桥施工方案 一、工程概况 本合同段共有上承式钢筋砼拱桥4座,其一孔跨径为36.6m,桥梁全长54.08m,桥面总宽5.5m,组成:0.5m(防撞栏杆)+4.5m(行车道)+ 0.5m(防撞栏杆),其中K206+120为汽车天桥,桥面净宽为7m,总宽为8m;K211+400,K214+220,K218+841均为农机天桥,桥面总宽为5.5m。 主体结构:基础、台身采用C20片石混凝土,桥台台帽、耳背墙、桥台搭板采用C30混凝土,上部构造及拱座采用C40砼,桥面铺装采用C30防水砼,防撞栏杆采用C30混凝土。 二、施工组织 根据工程特点和工期要求,实行项目经理部、施工区、专业施工队三级管理,各工区所属天桥由其桥梁施工队负责。施工队行政和技术隶属于各施工区,总体安排和质量监督服从项目部。 施工队配置专职队长、技术员、材料员和兼职安全员各一名。各施工队机械设备、工具、机具和专业技术工种配置满足施工要求,以高机械设备的利用率,缩短工期,加快进度。完成一道工序并达到标准后,再申请下道工序,依次循序推进。 三、施工方案 1、施工放样 ⑴、平面测量 项目部测量组负责控制测量。当导线点与天桥间能直接通视时,用全站仪根据主导线点数据准确地放出天桥轴线控制桩。当不能通视时,应选择能与天桥通视且便于长久保存处布设支导点,在支导点成果得到监理工程师确认后,轴线控制桩的布设及放样方法同直接通视法。控制桩布置在天桥基坑开挖线外≥5m便于长期保存的地方,并用水泥混凝土加以保护,监理工程师复核签认后,作为细部放样的依据。 施工队技术员负责构造物细部测量。根据测量组所交控制点,用经纬仪和钢尺在构造物台身两端沿轴线的法线方向放出细部放样控制桩,用水泥砼加固,以备基坑开挖、砼基础浇注、台身放样之用。 项目部测量组应对每一构造物进行不少于四次控制测量检测,即基础砼施工前、

中承式钢管混凝土拱桥设计说明书

中承式钢管混凝土拱桥设计说明书 拱桥指的是在竖直平面内以拱作为主要承重构件的桥梁,是我国公路上使用较广泛的一种桥型,在我国已经有1800年的历史了。其与梁桥、刚构桥不仅外形不同,而且受力性能有较大差别。拱式结构在竖向荷载作用下,两端将产生轴向压力,从而大大减小了拱圈的截面弯矩,使之成为偏心受压构件,截面上的应力分布与受弯梁的应力相比较为均匀,因此可以充分利用主拱截面的材料的强度,使跨越能力大大增大。其主要优点是可充分的就地取材(砖石、混凝土结构时2),可节省大量的钢材和水泥,而且其受力性能好,维修费用少,外形美观,构造较简单。 此拱桥为中承式钢管混凝土拱桥,净跨径225m,主拱圈线型为二次抛物线。因为在竖向均布荷载作用下,拱的合理拱轴线为二次抛物线,而此拱桥自重集度较为均匀,且为大跨,故选用二次抛物线形式,其造型优美,构造较简单。桥梁全长316m,起终点至拱桥桥台处选用等截面梁布置,在跨中位置设置桥墩以分配受力。此拱桥拱肋截面为三角形桁式结构,主钢管为Φ610×13mm,连接钢管和横撑为Φ325×8mm,拱肋高3.7m,宽1.7m,吊索间距为6m,吊索下设30cm×30cm方形截面横梁。 此中承式钢管混凝土拱桥属钢-混凝土组合结构中的一种,主要用于受压为主的结构。它一方面借助内填混凝土增强钢管壁的稳定性,同时又利用钢管对核心混凝土的套箍作用,使核心混凝土处于三向受压状态,从而具有更高的抗压强度和抗变形能力。而且由于其承载能力大,正常使用状态是以应力控制设计,外表不存在混凝土裂缝问题。另外,钢管本身相当于混凝土的外板,它强度高,质量轻,易于吊装或转体,同时钢管兼做纵向主筋在施工过程中,可作为劲性承重骨架,方便施工,可先将空钢管拱肋合龙,再压注混凝土,从而降低施工难度,省去了支模、拆模等工序,简化了施工工艺,并可适应先进的混凝土泵送工艺。另外钢管混凝土使构件承载力大大提高,具有良好的塑形和韧性,降低了结构自重和造价,而且其防腐、防火性能好,结构造型美观。 但钢管混凝土拱桥也有其自身的缺点。此管壁外露的拱桥,在阳光照射下,钢管膨胀,容易造成钢管与内填混凝土之间出现脱空现象。另外,由于钢管先于管内混凝土受压,容易造成钢管应力偏高,而混凝土不能发挥应有的作用,而且其自重较大,相应的水平推力也较大,增加了下部结构的工程量,对地基要求高。而且虽然接头连接较为简便,但是接头进行焊接具有许多的难以避免的缺陷,钢管内灌注混凝土的密实度问题也较为突出,钢管的养护比较麻烦,钢管混凝土的动力性能和疲劳性能也必须考虑。

中承式钢管混凝土拱桥

宝汉高速公路坪坎至汉中(石门)段 石门水库特大桥 专项监理细则 陕西公路交通工程监理咨询有限公司 宝汉高速公路汉坪段PH-J5监理工程师办公室

二O—四年十月编制: 审核: 审批:

目录 第一章、工程概况 (5) 一、工程概况 (5) 二、工程地形地貌地质 (5) 三、气象 (6) 四、工程内容 (8) 第二章、监理依据及目标 (10) 一、监理依据 (10) 二、监理范围 (10) 三、监理内容 (11) 四、监理方针 (13) 五、监理目标 (13) 第三章、监理人员及设备 (15) 一、监理人员 (15) 二、监理设备配置 (20) 第四章、监理细则 (22) 一、质量监理细则 (22) 监理工作要点.............................................. .22 施工准备阶段监理.......................................... .30 施工阶段监理.............................................. .31 1、................................................... 一般要求31 2、 (32) 3、 (36) 4、 (40) 5、 (43) 6、 (56) 7、 (59) & (68) 9、 (82) 10、.......................................................... .83 二、安全及环保监理........................................ .84 1、安全监理 (84)

钢管混凝土拱桥设计与施工

摘要:介绍了上海城市轨道交通明珠线特殊大桥-苏州河桥(25m+64m+25m)的三跨中承式钢管混凝土梁-拱组合体系桥的设计特点,施工阶段划分及结构分析过程和施工难点处理措施。 关键词:钢管混凝土结构; 拱桥;设计与施工;徐变控制; 1 概述苏州河桥位于上海城市轨道交通明珠线跨越既有沪杭铁路苏州河桥桥位,与苏州河正交。桥梁需跨越苏州河及两岸的万航渡路和光复西路。河道通航标准为通航水位3.5m,ⅵ级航道,净宽20m,净高&=4.5m;两岸滨河路规划全宽20m(机非混行),其中机动车道宽8m;两侧非机动车道宽各3m;人行步道宽各3m;两岸滨河路机动车道净高&=4.50m,非机动车道净高&=3.50m,人行道净高&=2.5m。桥式采用25+64+25m三跨中承式钢管混凝土梁-拱组合体系桥,桥梁全长114m,宽12.5m。外部结构体系为连续梁,即拱脚与桥墩处以支座连接,内部为由主纵梁、小纵梁和横梁及钢管混凝土拱肋的组合结构体系。 2 钢管混凝土拱桥设计 2.1桥型选择本方案设计的主导思想是在现有桥梁结构的技术水平发展的基础上有所创新,桥梁造型与周围环境相协调,桥式方案力求新颖独特,并充分体现现代化大都市的节奏与气派。拱桥是一种造型优美的桥型,它的主要特点是能充分发挥材料的受压性能,而钢管混凝土的特点是在钢管内填充混凝土,由于钢管的套箍作用,使混凝土处于三向受压状态,从而显著提高混凝土的抗压强度。同时钢管兼有纵向主筋和横向套箍的作用,同时可作为施工模板,方便混凝土浇筑,施工过程中,钢管可作为劲性承重骨架,其焊接工作简单,吊装重量轻,从而能简化施工工艺,缩短施工工期。苏州河桥的桥型方案经过研究分析、结构优化及评估论证,最后采用25+64+25m飞鸟式钢管拱桥的设计方案。以抗压能力高的钢管混凝土作为主拱肋,以抗拉能力强的高强钢绞线作为系杆,通过边拱肋的重量,随着施工加载顺序逐号张拉系梁中的预应力筋以平衡主拱所产生的水平推力,最终在拱座基础中仅有很小的水平推力。拱脚与桥墩的连接由固接改为铰接,以避免由于轨道交通无缝线路产生的纵向水平力和温度应力引起拱脚过大的推力而导致拱脚处混凝土开裂,克服了拱桥对基础的苛刻要求。全桥总布置如图1: 2.2上部结构主桥为中承式拱桥,主拱理论轴线为二次抛物线,矢跨比为1:4,其中桥面以下部分采用c50钢筋混凝土结构,截面为带圆角的矩形截面。桥面以上部分采用钢管混凝土结构,钢管截面为圆端形,采用a3钢,钢管壁厚16mm,外涂桔红色漆,内填c55微膨胀混凝土。边拱矢跨比为1:7.4,理论轴线为二次抛物线,截面采用钢筋混凝土矩形截面,按偏心受压构件设计。拱上立柱采用圆形截面钢管混凝土立柱,下端与边拱肋固结,上端设聚四氟乙烯球冠形铰支座,与边纵梁铰接。主拱每侧设7根吊杆,间距约6.4m,吊杆采用挤包双护层大节距扭铰型拉索,吊杆钢索双护层均为高密度聚乙烯护层(pe+pe桔红色),锚具为冷铸墩头锚。吊杆上端锚固在钢管混凝土拱肋内,下端锚固在横梁底部。主拱桥面以上部分共设三道一字型风撑,每侧边拱设三道横撑,主拱设一道横撑,以增加全桥的稳定性。拱座采用钢筋混凝土结构,每墩设两个拱座。通过横撑相连。拱座施工时应预先埋好立柱钢管、主拱及边拱伸入拱座内的钢筋,准确对位。桥面系为由边纵梁、横梁、小纵梁及现浇桥面板组成。边纵梁为箱形断面,边孔与边拱肋相接部分及中拱与边纵梁连接部分为矩形断面,采用c50级部分预应力混凝土结构,在恒载及自重作用下为全截面受压构件。横梁采用c50级预应力混凝土结构,全桥共设小横梁15片,端横梁2片,中横梁与边纵梁接合处2片。全桥共设四片小纵梁(全桥通长)与横梁固结在一起形成格构体系。桥面板采用c40级钢筋混凝土板,桥面板采用在格构系上现浇的方法处理。桥面板的钢筋布置应采取防迷流措施。桥面排水原则上采用“上水下排”,即横坡加导水槽方式,在桥梁横断面内设0.5%的横坡。承轨台每隔一定的距离断开,向两侧排水。桥面上部建筑设施包括混凝土道床及轨道、通信信号电缆支架、隔音屏、防噪柱及接触网腕臂柱。桥面布置有:聚氨脂防水层、0.5%双向排水

下承式钢管拱桥施工方案

下承式钢管拱桥施工方案 K162+703钢管拱桥全长53m,单跨长度48m,拱桥桥台采用砼重力式U型台,上部结构采用钢管系杆结构,拱肋、系梁、风撑、拉杆采用D140×10、D299×8、D500×18三种规格无缝钢管总长520.84m,横梁采用240×240×12×12工字钢总长145.467m,200mm砼桥面宽度5.5m。 1.1桥台施工 ⑴定位放线 在施工前完成桥台的定位测量,并分别放出桥台中心线及法线,按规定埋设护桩,复核跨度,确认无误后供施工使用。 ⑵钢筋绑扎 钢筋采用现场加工,现场绑扎,并严格按照设计和规范进行。绑扎前先调整好基础的预留的插筋间距,确保钢筋的保护层厚度及间距符合设计、规范要求。 ⑶模板与支撑 模板采用钢模板,现场拼装。采用钢管架支撑,并在根部外侧施做一条水泥砂浆带,确保在混凝土浇筑过程中不漏浆。 ⑷混凝土浇筑 桥台混凝土采用搅拌站集中拌制混凝土,砼运输车运输,泵送分层浇筑,插入式振捣器振捣。 桥台混凝土浇注过程中,设专人护模,如果发现跑模、胀模以及漏浆等情况要及时处理;混凝土浇筑前要对振捣工进行技术交底,做到不过振、不漏振,以保证混凝土施工质量。 ⑸养护 在混凝土终凝后开始洒水养护,混凝土达到设计强度后,开始拆模,模板拆除后继续养护,养护时间一般不小于28天。 1.2钢管拱系安装 ⑴钢管拱系安装流程 拱肋→风撑→系梁→拉杆→横梁 ⑵拱系的制作 1、主要工艺流程

原材料检验→放样→下料→加工→装配与焊接→火工微弯→节段组装与腹板焊接→吊杆相关部(附)件组装→焊接过程检测→拱肋预拼装→涂装防锈。 2、加工方案要点 节段划分:为便于吊装,拱肋钢管分段制作。本桥结合现场吊装能力,每片拱肋划分为2个拱脚预埋段和3个中间吊装段,K型风撑每个为一段。 制作方法:采用卷板机将钢板卷制成圆管;装配焊接成6m和17m左右拱肋管及设计基本长度的风撑管;上下拱肋管采用火工微弯方法形成设计轴线,其后在设定专用胎架上完成定位、焊接和节段组装;各风撑管节段在另外平面胎架上完成组装。 大接头余量加放:为保证各步施工方案和工艺都能满足设计要求,达到规定的偏差精度,上下拱肋管大接头加放80mm余量,该余量节段组装时保留,只在分段计算长度处作出正作线。焊接补偿量加放:考虑节段组装时,腹板焊接将使各拱肋节段上下管的距离受到影响,可沿径向线方向加放5mm作为焊接补偿,以保证设计几何尺寸。 标记线:标明拱肋管0℃和180℃径向线,作为火工、节段组装、检验的标记线。 安装标示:为便于工地安装,在拱肋预拼装前,通过径向线与站号线测定,标明各接头在工地安装时的控制点,做出标记,涂装时采取一定的保护措施。 1.3施工控制要点 (1)依据设计文件提供的相关验收规范、工艺要求,编制出各工序的具体验收项目与标准。 (2)放样保证所有配套表、套料卡、下料草图的正确性与完整性,标明后续工序的样板、样棒的角度、尺寸、名称、数据等。 (3)所有零部件的下料前进行报检,超差零件不得流入下道工序;火焰切割零件须清渣、打磨处理,产生热变形的均须矫正后方可使用。 (4)坡口边缘直线度及角度符合公差要求。 (5)工装胎架应具有足够刚度,以控制结构变形,对胎架中心线、定位基准线、辅助线等作必要标记。 (6)所有装配不得强制进行,避免母材损伤,严格对线安装并控制好间隙,焊接完成后及时矫正。

相关文档
最新文档