浅谈风力发电机专用的轴承

浅谈风力发电机专用的轴承
浅谈风力发电机专用的轴承

浅谈风力发电机专用的轴承

风力发电机常年在野外工作,工况条件比较恶劣,温度、湿度和轴承载荷变化很大,风速最高可达23m/s,有冲击载荷,因此要求轴承有良好的密封性能和润滑性能、耐冲击、长寿命和高可靠性,发电机在2-3级风时就要启动,并能跟随风向变化,所以轴承结构需要进行特殊设计以保证低摩擦、高灵敏度,大型偏航轴承要求外圈带齿,因此轴承设计、材料、制造、润滑及密封都要进行专门设计。

1. 风机轴承技术要点分析

1.1 偏航轴承总成(660PME047)

偏航轴承总成是风机及时追踪风向变化的保证。风机开始偏转时,偏航加速度ε将产生冲击力矩M=Iε(I为机舱惯量)。偏航转速Ω越高,产生的加速度ε也越大。由于I非常大,这样使本来就很大的冲击力成倍增加。另外,风机如果在运动过程中偏转,偏航齿轮上将承受相当大的陀螺力矩,容易造成偏航轴承的疲劳失效。

根据风机轴承的受力特点,偏航轴承采用“零游隙”设计的四点接触球轴承,沟道进行特别设计及加工,可以承受大的轴向载荷和力矩载荷。偏航齿轮要选择合适的材料、模数、齿面轮廓和硬度,以保证和主动齿轮之间寿命的匹配。同时,要采取有针对性的热处理措施,提高齿面强度,使轴承具有良好的耐磨性和耐冲击性。

风机暴露在野外,因此对该轴承的密封性能有着严格的要求,必须对轴承的密封形式进行优化设计,对轴承的密封性能进行模拟试验研究,保证轴承寿命和风机寿命相同。风机装在40m的高空,装拆费用昂贵,因此必须有非常高的可靠性,一般要求20年寿命,再加上该轴承结构复杂,因此在装机试验之前必须进行计算机模拟试验,以确保轴承设计参数无误。

1.2 风叶主轴轴承(24044CC)

风叶主轴由两个调心滚子轴承支承。由于风叶主轴承受的载荷非常大,而且轴很长,容易变形,因此,要求轴承必须有良好的调心性能。

确定轴承内部结构参数和保持架的结构形式,使轴承具有良好的性能和长寿命。

1.3 变速器轴承

变速器中的轴承种类很多,主要是靠变速箱中的齿轮油润滑。润滑油中金属颗粒比较多,使轴承寿命大大缩短,因此需采用特殊的热处理工艺,使滚道表面存在压应力,降低滚道对颗粒杂质的敏感程度,提高轴承寿命。同时根据轴承的工况条件,对轴承结构进行再优化设计,改进轴承加工工艺方法,进一步提高轴承的性能指标。

1.4 发电机轴承

发电机轴承采用圆柱滚子轴承和深沟球轴承。通过对这两种轴承的结构设计、加工工艺方法改进、生产过程清洁度控制及相关组件的优选来降轴承振动的噪声,使轴承具有良好的低噪声性能。

1.5 轴承装机试验技术研究

轴承安装后的实际性能不仅与轴承自身性能有关,而且还与轴承的具体安装使用条件密切相关,因此,要对轴承安装时的配合形式、安装中心的对中性进行研究,使轴承在实际使用中能够得到较好的工作性能。

2. 风机轴承技术现状

目前,国内开发生产的风机轴承主要是变速器轴承和电机轴承,但性能和寿命还达不到要求。因此,90%左右的变速器轴承和电机轴承仍然依赖进口。偏航轴承总成和风叶主轴轴承总成还在研制之中,国内除洛轴、瓦轴等大型国有企业有少量试制外,很少有厂家生产,基本属国内空白。

风机轴承开发研制中,存在的主要技术难点是实现长寿命所需的密封结构和润滑脂、特殊的滚道加工方法和热处理技术、特殊保持架设计和加工制造方法等。国内目前的技术水平与国外先进水平相比存在较大差距,但近几年来我国的一些研究单位在这些方面已经取得了一些突破性的研究成果,这必须将加速风机轴承国产化的进程。

3. 风机轴承市场分析

我国风能资源十分丰富,理论储量1600000000KW,可开发利用的风能资源253000000KW。随着人们环保意识的增强和国家对可再生能源的重视,近年来风力发电在我国得到了长足发展。

我国从“七五”开始着手风电场建设,到“八五”末期共建立了19个风电场,总装机容量达166500KW,占全国电网总容量的0.07%。“九五”期间,我国又建成了21个风电场,新增装机容量223790KW,另有90300KW在建。根据我国电力工业总装机容量达到350000000KW,其中包括风力发电在内的新能源占0.7%,达到2450000KW。

以往我国的风力发电机主要依靠进口,设备投资昂贵,电价居高不下,影响了风力发电的市场化运行。据分析,如果600KW大型风力发电机组国产化以后,国产化率达到60%,设备造价可以降低15%-20%,风电成本可以降低10%-14%;国产化率达到80%,设备造价可以降低25%,风电成本可以降低18%。

目前全国共有81个研究单位及生产企业从事风力机械的开发、研究及制造,2001年全国共生产风力发电机组20903台,19735.2KW。其中,离网型机组20879台,4975.2KW,分别比上年增加64.79%和87.60%。2001年我国还首次生产并网型风力发电机组24台,14760KW。

在国家对再生无污染能源的多项优惠政策的鼓励下,今后若干年内,我国风力发电工业必定会飞速发展。根据我国电力工业“十五”发展规划,风电将

以年均40%的速度发展,到2005年我国风力发电机组的生产量将达到80300台。

风力发电机配套轴承主要用在偏航系统、变浆系统、变速器和发动机等部位,其中每个机组主要包括偏航轴承1套,风叶主轴轴承2套,变速箱轴承15套左右,发电机轴承2套左右,轴承结构形式众多。以每台机组平均需配20套轴承计算,到2005年全国风力发电机需配套轴承166万套。即便按目前变速器和电机轴承10%的国产化率计算,也将会有16.6万套的市场空间。如果轴承国产化率提高到20%,将会有33.2万套的市场容量,大约是目前生的能力的提高,配套轴承的国产化率还将进一步提高,因此风力发电机专用轴承的市场前景广阔。

风力发电机用轴承大致可以分为三类

风力发电机用轴承大致可以分为三类,即:偏航轴承、变桨轴承、传动系统轴承(主轴和变速箱轴承)。偏航轴承安装在塔架与座舱的连接部,变桨轴承安装在每个叶片的根部与轮毂连接部位。每台风力发电机设备用一套偏航轴承和三套变桨轴承(部分兆瓦级以下的风力发电机为不可调桨叶,可不用变桨轴承)。 1代号方法 风力发电机偏航、变桨轴承代号方法采用了JB/T10471—2004中转盘轴承的代号方法,但是在风力发电机偏航、变桨轴承中出现了双排四点接触球式转盘轴承,而此结构轴承的代号在JB/T10471—2004中没有规定,因此,在本标准中增加了双排四点接触球转盘轴承的代号。由于单排四点接触球转盘轴承的结构型式代号用01表示,而结构型式代号02表示的是双排异径球转盘轴承结构,因此规定03表示双排四点接触球转盘轴承结构。 2技术要求 2.1材料 本标准规定偏航、变桨轴承套圈的材料选用42CrMo,热处理采用整体调质处理,调质后硬度为229HB—269HB,滚道部分采用表面淬火,淬火硬度为55HRC-62HRC。由于风力发电机偏航、变桨轴承的受力情况复杂,而且轴承承受的冲击和振动比较大,因此,要求轴承既能承受冲击,又能承受较大载荷。风力发电机主机寿命要求20年,轴承安装的成本较大,因此要求偏航、变桨轴承寿命也要达到20年。这样轴承套圈基体硬度为229HB-269HB,能够承受冲击而不发生塑性变形,同时滚道部分表面淬火硬度达到55HRC-62HRC,可增加接触疲劳寿命,从而保证轴承长寿命的使用要求。 2.2低温冲击功 本标准对偏航、变桨转盘轴承套圈低温冲击功要求:—20℃Akv不小于27J,冷态下的Akv值可与用户协商确定。风力发电机可能工作在极寒冷的地区,环境温度低至—40吧左右,轴承的工作温度在—20~C左右,轴承在低温条件下必须能够承受大的冲击载荷,因此,要求轴承套圈的材料在调质处理后必须做低温冲击功试验,取轴承套圈上的一部分做成样件或者是与套圈同等性能和相同热处理条件下的样件,在—20~C环境下做冲击功试验。 2.3轴承齿圈 由于风力发电机轴承的传动精度不高,而且齿圈直径比较大,齿轮模数比较大,因此,一般要求齿轮的精度等级按GB/T10095.2---2001中的9级或者10级。但是由于工作状态下小齿轮和轴承齿圈之间有冲击,因此,轴承齿圈的齿面要淬火,小齿轮齿面硬度一般在60HRC,考虑到等寿命设计,大齿轮的齿面淬火硬度规定为不低于45HRC。 2.4游隙 偏航、变桨轴承在游隙方面有特殊的要求。相对于偏航轴承,变桨轴承的冲击载荷比较大,风吹到叶片上震动也大,所以要求变桨轴承的游隙应为零游隙或者稍微的负游隙值,这

浅谈风力发电机专用的轴承(20200521122350)

浅谈风力发电机专用的轴承 风力发电机常年在野外工作,工况条件比较恶劣,温度、湿度和轴承载荷变化很大, 风速最高可达23m/s,有冲击载荷,因此要求轴承有良好的密封性能和润滑性能、耐冲 击、长寿命和高可靠性,发电机在2-3级风时就要启动,并能跟随风向变化,所以轴承结 构需要进行特殊设计以保证低摩擦、高灵敏度,大型偏航轴承要求外圈带齿,因此轴承设 计、材料、制造、润滑及密封都要进行专门设计。 1. 风机轴承技术要点分析 1.1 偏航轴承总成(660PME047) 偏航轴承总成是风机及时追踪风向变化的保证。风机开始偏转时,偏航加速度ε将产 生冲击力矩M=Iε(I为机舱惯量)。偏航转速Ω越高,产生的加速度ε也越大。由于I非常大,这样使本来就很大的冲击力成倍增加。另外,风机如果在运动过程中偏转,偏航齿 轮上将承受相当大的陀螺力矩,容易造成偏航轴承的疲劳失效。 根据风机轴承的受力特点,偏航轴承采用“零游隙”设计的四点接触球轴承,沟道进行 特别设计及加工,可以承受大的轴向载荷和力矩载荷。偏航齿轮要选择合适的材料、模 数、齿面轮廓和硬度,以保证和主动齿轮之间寿命的匹配。同时,要采取有针对性的热处 理措施,提高齿面强度,使轴承具有良好的耐磨性和耐冲击性。 风机暴露在野外,因此对该轴承的密封性能有着严格的要求,必须对轴承的密封形式 进行优化设计,对轴承的密封性能进行模拟试验研究,保证轴承寿命和风机寿命相同。风 机装在40m的高空,装拆费用昂贵,因此必须有非常高的可靠性,一般要求20年寿命,再加上该轴承结构复杂,因此在装机试验之前必须进行计算机模拟试验,以确保轴承设计参 数无误。 1.2 风叶主轴轴承(24044CC) 风叶主轴由两个调心滚子轴承支承。由于风叶主轴承受的载荷非常大,而且轴很长, 容易变形,因此,要求轴承必须有良好的调心性能。 确定轴承内部结构参数和保持架的结构形式,使轴承具有良好的性能和长寿命。 1.3 变速器轴承 变速器中的轴承种类很多,主要是靠变速箱中的齿轮油润滑。润滑油中金属颗粒比较 多,使轴承寿命大大缩短,因此需采用特殊的热处理工艺,使滚道表面存在压应力,降低 滚道对颗粒杂质的敏感程度,提高轴承寿命。同时根据轴承的工况条件,对轴承结构进行 再优化设计,改进轴承加工工艺方法,进一步提高轴承的性能指标。 1.4 发电机轴承 发电机轴承采用圆柱滚子轴承和深沟球轴承。通过对这两种轴承的结构设计、加工工 艺方法改进、生产过程清洁度控制及相关组件的优选来降轴承振动的噪声,使轴承具有良 好的低噪声性能。 1.5 轴承装机试验技术研究

风力发电机轴电压轴电流的研究。

风力发电机轴电压轴电流对轴承影响及防范措施 摘要:风力发电机轴承失效频繁发生,在研究应用条件和调查轴承失效的基础上,基本确认了造成轴承失效的根本原因:双馈感应发电机变频驱动所导致的轴承过电流和相应的电腐蚀及润滑、磨损等。本文概述分析了轴电压轴电流产生的原理和造成的危害,详述了对轴电压的抑制措施,并在风电场推广应用,实践验证了轴电流抑制技术的有效性。 关键词:风力发电;轴承;轴电流;解决方案 Wind turbine generator shaft voltage and shaft current on the bearing and preventive measures CHEN Guo-qiang,CHEN Guo-zhong,XXX Shen Hua Ji Tuan Guo Hu(TongLiao)Wind power Abstract:Bearing failures of windturbine generator are occurring frequently. Based on application studies and bearing investigations main root causes have been identified: electrical current passage, electrical erosion respectively, due to frequency converter supply of doubly-fedinduction generator sand lubrication and wear related problems.This paper analyzed the cause of shaft voltage and shaft current and its related harm in doubly-fed wind turbine architecture. Measures to suppress the shaft voltage and shaft current are detailed and put into practice in pilot wind farms. The effectiveness of the measures are approved by field data. Key words:wind power generation;Bearing;Shaft current;The solution 一、研究背景 xx风电场,装有56台华锐SL1500机组,于2015年1月并网发电,在运行的2年中由于发电机轴承的损坏给机组正常运行产生了严重的影响,造成一定的经济损失。经统计2013年共计更换发电机驱动侧轴承19次,年损坏率达28%,更换非驱动侧轴承22次,年损坏率达33%,造成直接和间接经济损失近百万元,因此,研究发电机轴承的损坏原因并提出改进措施显得尤为重要。 二、研究目的

风力发电原理

▲1-3 风能具有哪些特点? (1)风能蕴藏量大、分布广。(2)风能是可再生能源。(3)风能利用基本没有对环境的直接污染和影响。(4)风能的能量密度低。(5)不同地区风能差异大。(6)风能具有不稳定性。 ▲1- 风力发电技术的发展状况 当前风电技术和设备的发展主要呈现大型化、变速运行、变桨距、无齿轮箱等特点。 (1)水平轴风电机组技术成为主流。(2)风电机组单机容量持续增大。(3)变桨距技术得到普遍应用。(4)变速恒频技术得到快速推广。(5)直驱式、全功率变流技术得到迅速发展。(6)大型风电机组关键部件的性能日益提高。(7)智能化控制技术广泛应用。(8)叶片技术不断进步。(9)适应恶劣气候环境的风电机组得到重视。(10)低电压穿越技术得到应用。 (11)海上风电技术成为重要发展方向。(12)标准与规范逐步完善。 ▲2-8 为什么国际上通行的计算平均的时间间隔都取在10min至2h范围? 由范德豪芬的平均风速功率谱曲线可知,在10min至2h范围的平均风速功率谱低而平坦,平均风速基本上是稳定值,可以忽略湍流的影响。 ▲2-9 什么是风速廓线? 在大气边界层中,由于空气运动受地面植被、建筑物等得影响,风速随距地面的高度增加而发生明显的变化,这种变化规律成为风剪切或风速廓线。▲2-11 什么是风向玫瑰图? 风向玫瑰图常用来表示某一风向一年或一个月出现的频率。 ▲2-15 风在静止叶片上的空气动力是如何形成的? 由于叶片上方和下方的气流速度不同(上方速度大于下方速度),因此叶片上、下方所受的压力也不同(下方压力大于上方压力),总得合力F即为叶片在流动空气所受到的空气动力。 ▲2- 风的测量设备? 风向:风向标、光电管、码盘。风速:皮托管、热线风速仪、风杯、螺旋叶片。 ▲2- 风能资源评估及风电场选址 评估参数:平均风速、主要风向分布、风功率密度、年风能可利用小时。宏观选址:(1)风能质量好(2)风向基本稳定(3)风速变化小(4)尽量避开灾难性天气频发地区(5)发电机组高度范围内风速的垂直变化小。(6)地形条件好。(7)地址情况能满足塔架基础、房屋建筑施工的要求,远离强地震带等。(8)对环境的不利影响小。(9)尽可能接近电网并考虑并网可能产生的影响。(10)交通方便。微观选址:(1)考虑地形的影响(2)考虑机组的排列方式。 ▲4-7 什么是并网风力发电机变速恒频运行方式?哪些类型的发电机? 在不同风速下,为了实现最大风能捕获,提高风电机组的效率,发电机的转速必须随着风速的变化不断进行调整,处于变速欲行状态,其发出的频率需通过一定的恒频控制技术来满足电网要求。双馈异步交流发电机,永磁低速交流发电机 ▲4-8 双馈异步发电机的基本工作原理。 (公式)n2为转自中通入频率为f2的三项对称交流励磁电流后所产生的旋转磁场相对于转自本身的旋转速度(r\min),改变f2,即可改变n2。设n1为对应于电网频率50Hz时发电机的同步转速,而n为发电机转自本身的旋转速度,只要n+n2=n1,则定子绕组感应出的电动势的频率将始终维持为电网频率f1不变。由转差率公式s=。。。可得f2=sf1。所以只要在转子的三相对称绕组中通入转差频率的电流,双馈异步发电机可实现变速恒频运行的目的。 双馈型异步发电机实行交流励磁,励磁电流的可调量为其幅值、频率和相位。调节频率,可保证发电机转速变化时发出电能频率的稳定;调节幅值,可调节发出的无功功率;改变转子励磁电流的相位,调节了发电机的功率角。在一定工况下,转子也向电网馈送能量。 ▲4-9 叙述双馈异步发电机的功率流向。 (1)亚同步状态当n

风力发电原理

力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。 现状:风力发电正在世界上形成一股热潮,风力发电在芬兰、丹麦等国家很流行;我国风能资源十分丰富,我国也在西部地区大力提倡,管理滞后影响风电“进步” 首先,我国对风能资源的普查、评价、规划管理严重滞后,资源分散,缺少整合,没有形成全国统一的国家级风电产业研机机构,缺少对产业资源的集中和整合。 其次,单位kW造价高,火电平均4500元/kW,风电平均每8000~9000元/kW,平均造价高于火电。火电平均电价0.36元/千瓦时,风电平均电价为0.56元/千瓦时,在我国南方地区电价,还要略高于北方地区。影响电网并网发电的积极性。 第三,目前市场和产业化基本上没有形成,风电机组和系统设计技术、设备性能、效率以及技术工艺水平与欧洲相比存在很大差距。国产风电关键部件,如液压系统、联合器、电控等可靠性差,技术不够成熟。 改善“环境”加快风电步伐 前景:它的优势不需要燃料、不占耕地、没有污染,运行成本低。;风力发电产业发展前景非常广阔, 为风力发电没有燃料问题,也不会产生辐射或空气污染。 我国风能资源十分丰富,它是一种干净的可再生能源;风力发电产业发展前景非常广阔, 优缺点:它的优势不需要燃料、不占耕地、没有污染,运行成本低,我国风力资源丰富,缺点,效率低,造价昂贵,技术有待改进,管理不够完善 回答者:31373674 - 见习魔法师二级 7-18 11:08 提问者对于答案的评价:很好,谢谢评价已经被关闭目前有 1 个人评价 好 100% (1)不好 0% (0) 其他回答共 1 条 风力发电是继IT等产业后的又一个朝阳产业,发展和利用风能等可再生资源已经成为国际电力发展的大趋势。据报道,到2020年,风力发电可提供世界电力需求的12%,可创造180万个就业机会,可在全球范围内减少二氧化硫等废气的排放100多亿吨。 根据世界风能委员会(GWEC)的报道,2004年世界风能工业增长20%,新装机的风电能力为7976MW,风力发电总能力已经达到47407MW。2004年,欧洲新装机的风力发电能力约占全球新增风力发电装机容量的71.46%。其次是亚洲、北美和太平洋地区,分别为15.9%、6.4%、4.1%。德国、西班牙、美国、丹麦和印度是风力发电装机能力最大的国家。 据统计,2004年欧洲继续统治着全球风力发电市场,新建风力发电装备价值57亿欧元,新增风力发电能力5744MW,大约有5700MW的新增风电并入欧洲电网,使得欧洲风力发电的装机容量达到34205MW。在欧洲,利用风能最成功的国家是德国、西班牙和丹麦。在这些国家,风力发电能力占本国总发电量分别为7%、6.5%、20%。欧洲的电力供应一直在增长,1997年增长率为14%,估计2010年将达到21%,在新增的装机容量中,大约有二分之一的电力将由风能提供。

风力发电机后轴轴承更换作业指导书(修正)

风力发电机后轴轴承更换作业指导书 注:机舱作业注意事项见附件一 作业所使用工具见附件二 作业所使专用工具见附件三 具体作业流程如下: 一、发电机后轴承拆卸 1、进入风机前,在该检修机位后台由运行人员对该风机打维护;进入风机后,在塔底屏上使用维护钥匙打硬维护,顺时针旋转30°。 图一风机硬维护 2、登塔后,在机舱柜内断开208F5 24V电源(向下扳,高速轴刹车盘抱死),断开后检查高速后刹车盘确已抱死;在机舱柜内断开所有24V电源和400V电源(逆时针旋转90°),并挂“禁止合闸,有人工作”标示牌。 图一机舱柜24V电源

图二机舱柜400V电源 3、使用大十字起子拆卸发电机空空冷却器导风罩,使用17#开口扳手拆卸碳粉收集罩,拆卸后把电机空空冷却器导风罩妥善绑扎,把碳粉收集罩放于机舱底部,并使用盖板盖上孔 洞。 图一导风罩图二导风罩绑扎 图三收集罩

4、使用大一字拆卸编码器,10#开口拆卸编码器支架。 图一拆编码器 5、分别拆卸集电环罩左侧发电机转子接线盒端盖、右侧主碳刷侧端盖,后侧编码器侧端盖,三个端盖均使用13#开口扳手或电动套筒扳手;拔出主碳刷。 图一拆主碳刷侧端盖图二接线盒端盖图三拔主碳刷 6、使用24#开口扳手和套筒扳手拆卸空空冷却器与发电机连接接地线及连接螺栓,后使用千斤顶在发电机后端顶起空空冷却器,并用木块垫起。 图一拆地线、螺栓图二顶起冷却器图三垫起冷却器

7、使用24#开口扳手/套筒扳手/电动扳手拆卸发电机转子接线盒内转子进线电缆。 图一转子进线电缆 8、使用19#开口扳手拆卸主碳刷刷架上的转子侧电缆接线;拆掉主碳刷与接地碳刷信号线;使用12#开孔扳手拆卸轴承PT100。 图一转子进线电缆

风力发电轴承

从2005年至2010年,中国的风电市场呈现高速增长,每年装机量几近翻番。截止到2011年底,中国的风电总装机量已经在全球排名第一。 风力发电机作为清洁能源的发电设备,会经历各种环境的多重考验,如何确保风力发电机组的正常运行,除了和设计、材料、制造、安装、维护等因素有关,润滑所起的作用不容忽视。文中重点介绍了风力发电机组变桨/偏航轴承的润滑要求及配套润滑脂的选择和测试方法。 变桨轴承的工作原理是当风向发生变化时,通过变桨驱动电机带动变桨轴承转动来改变叶片的迎角,使叶片保持最佳的迎风状态,从而控制叶片的升力,达到控制作用在叶片上的扭矩和功率的目的。 偏航轴承的工作原理是将风向仪的风速与机舱位置夹角输入到主控,主控计算得出偏航角度。偏航电机开始工作时,一般由4个偏航电机通过偏航减速箱带动偏航轴承旋转,从

而带动整个机舱旋转。不偏航时由偏航刹车片通过液压制动来刹车,使风机机舱不至于晃动,以准确对风。 变桨/偏航轴承的受力情况复杂,而且轴承承受的冲击和振动也比较大,因此要求轴承既能承受冲击,又能承受较大载荷。风力发电机主机寿命要求20年,轴承安装的成本较大,因此要求变桨/偏航轴承寿命也要达到20年。偏航轴承一般采用四点接触球轴承结构。变桨轴承一般采用双排四点接触球轴承结构。 FAG轴承创造风力发电机主轴轴承支撑 的新理念 (2010/06/05 08:58) 目录:公司动态 浏览字体:大中小

舍弗勒集团展示了应用于风力发电机主轴轴承支撑的新概念产品,该产品由具有角度调整装置的圆锥滚子轴承、圆柱滚子轴承组成。该解决方案可对电机主轴进行特别精确的轴向引导。这就意味着轴的位移和振动效果可以显著降低。该解决方案集合了圆锥滚子轴承作为定位轴承和圆柱滚子轴承作为浮动轴承的卓越特性;轴承座的设计可以通过要求的角度调节补偿轴承位置之间的不同心。 目前的大游隙调心滚子轴承 截至到目前,采用两个调心滚子轴承分别作为定位和浮动轴承做为主轴轴承的轴承支撑,这两个轴承有分别的轴承座。调心滚子

风力发电机轴承

风力发电机专用轴承风力发电机用轴承大致可以分为三类,即:偏航轴承、变桨轴承、传动系统轴承(主轴和变速箱轴承)。偏航轴承安装在塔架与座舱的连接部,变桨轴承安装在每个叶片的根部与轮毂连接部位。每台风力发电机设备用一套偏航轴承和三套变桨轴承(部分兆瓦级以下的风力发电机为不可调桨叶,可不用变桨轴承)。 代号方法 风力发电机偏航、变桨轴承代号方法采用了JB/T10471—2004中转盘轴承的代号方法,但是在风力发电机偏航、变桨轴承中出现了双排四点接触球式转盘轴承,而此结构轴承的代号在JB /T10471—2004中没有规定,因此,在本标准中增加了双排四点接触球转盘轴承的代号。 风力发电机专用轴承 由于单排四点接触球转盘轴承的结构型式代号用01表示,而结构型式代号02表示的是双排异径球转盘轴承结构,因此规定03表示双排四点接触球转盘轴承结构。 技术要求

材料 本标准规定偏航、变桨轴承套圈的材料选用42CrMo,热处理采用整体调质处理,调质后硬度为229HB—269HB,滚道部分采用表面淬火,淬火硬度为55HRC-62HRC。由于风力发电机偏航、变桨轴承的受力情况复杂,而且轴承承受的冲击和振动比较大,因此,要求轴承既能承受冲击,又能承受较大载荷。 风力发电机主机寿命要求20年,轴承安装的成本较大,因此要求偏航、变桨轴承寿命也要达到20年。这样轴承套圈基体硬度为229HB-269HB,能够承受冲击而不发生塑性变形,同时滚道部分表面淬火硬度达到55HRC-62HRC,可增加接触疲劳寿命,从而保证轴承长寿命的使用要求。 低温冲击功 本标准对偏航、变桨转盘轴承套圈低温冲击功要求:—20℃Akv不小于27J,冷态下的Akv 值可与用户协商确定。 风力发电机可能工作在极寒冷的地区,环境温度低至—40吧左右,轴承的工作温度在—20~C左右,轴承在低温条件下必须能够承受大的冲击载荷,因此,要求轴承套圈的材料在调质处理后必须做低温冲击功试验,取轴承套圈上的一部分做成样件或者是与套圈同等性能和相同热处理条件下的样件,在—20~C环境下做冲击功试验。

风力发电机结构和原理

风力发电机结构原理 杜容熠 太阳辐射到地球的热能中有约2%被转变成风能,全球大气中总的风能量约为1014MW(10亿亿千瓦)。其中可被开发利用的风能理论值约有3.5×109MW(3.5万亿千瓦),比世界上可利用的水能大10倍。 把风能转变为电能是风能利用中最基本的一种方式。风力发电机一般有叶轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。风力发电机的工作原理比较简单,叶轮在风力的作用下旋转,它把风的动能转变为叶轮轴的机械能,发电机在叶轮轴的带动下旋转发电。 1.风力发电原理: 1.1 风能的概念: 风能:空气因为太阳能辐射,造成压力差,而发生运动的动能称为“风能”,风能的计算公式为: E=0.5ρsV3 式中: E-风能(W) ρ-空气密度(kg/m3) S-气流截面积(m2) V-风速(m/s) 风能密度(W):单位时间内通过单位面积的风能,W=0.5ρV3。 有效风能密度:指风机可利用的风速范围内的风能密度(对应的风速范围大约是3~25m/s)。 1.2 风能发电的动力学原理 风力发电采用空气动力学原理,并非风推动叶轮叶片,而是风吹过叶片形成叶片正反面的压力差,这种压力差会产升力,令叶轮旋转并不断横切风流。该原理类似于飞机上升时的原理,空气通过机翼,产生向上的升力和向前的阻力。

如果将一块薄板放在气流中,则在沿气流方向将产生一正面阻力F D和一垂直于气流方向的升力F L其值分别由下式确定L: F D=0.5CdρSV2 F L=0.5C LρSV2 式中:CD-阻力系数 C-升力系数 L S-薄板的面积 ρ-空气的密度阻力型叶轮 V -气流速度 如果把薄片当作叶片,将其装在轮毂上组成叶轮,那么风的作用力旋转中心线就会使叶轮转动。由作用于叶片上的阻力FD而使其转动的叶轮,称为阻力型叶轮;而由升力FL而使其转动的叶轮,称为升力型叶轮。目前为止现代风力机绝大多数采用升力型叶轮。 2.风力发电机的组成部分及特点:

风力发电原理

风能发电的主要形式有三种:一是独立运行;二是风力发电与其他发电方式(如柴油机发电)相结合;三是风力并网发电。由于并网发电的单机容量大、发展潜力大,故本文所指的风电, 未经特别说明,均指并网发电。 1、小型独立风力发电系统 小型独立风力发电系统一般不并网发电,只能独立使用,单台装机容量约为100瓦-5千瓦,通常不超过10千瓦。它的构成为:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。因风量不稳定,故小型风力发电机输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市 电,才能保证稳定使用。 2、并网风力发电系统 德国、丹麦、西班牙等国家的企业开发建立了评估风力资源的测量及计算机模拟系统,发展变桨距控制及失速控制的风力机设计理论,采用新型风力机叶片材料及叶片翼型,研制出变极、变滑差、变速恒频及低速永磁等新型发电机,开发了由微机控制的单台及多台风力发电机组成的机群的自动控制技术,从而大大提高了风力发电的效率及可靠性。在此基础上,风力发电机单机装机容量可以达到600千瓦以上。不少国家建立了众多的中型及大型风力发 电场,并实现了与大电网的对接。 现代风力发电机多为水平轴式。一部典型的现代水平轴式风力发电机包括叶片、轮毂(与叶片合称叶轮)、机舱罩、齿轮箱、发电机、塔架、基座、控制系统、制动系统、偏航系统、液压装置等。其工作原理是:当风流过叶片时,由于空气动力的效应带动叶轮转动,叶轮透过主轴连结齿轮箱,经过齿轮箱(或增速机)加速后带动发电机发电。目前也有厂商推出无齿轮箱式机组,可降低震动、噪音,提高发电效率,但成本相对较高。 风力发电机并不能将所有流经的风力能源转换成电力,理论上最高转换效率约为59%,实际上大多数的叶片转换风能效率约介于30-50%之间,经过机电设备转换成电能后的总输出效率约为20-45%。一般市场上风力发电机的启动风速约为2.5-4米/秒,于风速12-15米/秒时达到额定的输出容量。当风速更高时,风力发电机的控制机构将电力输出稳定在额定容量左右,为避免过高的风速损坏发电机,大多于风速达20-25米/秒范围内停机。一般采用旋角节制或失速节制方式来调节叶片之气动性能及叶轮的输出。依据目前的技术,3米/秒左右的风速(微风的程度)便可以进行发电。但在进行风场评估时,通常要求离地10米高 的年平均风速达到5-5.5米/秒以上。

风力发电机工作原理

风力发电机工作原理 基础知识 2007-04-16 15:57 阅读1139 评论1 字号:大中小 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这 样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在 停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系 统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上 的12级飓风,其风速范围也仅为32.7-36.9米/秒。 风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停 机,属于无人值守独立发电系统单元。

风力发电的基本原理

风力发电的基本原理 5.1风能 5.11风的形成 风的形成及其特点:空气的流动现象称为风。风是空气由于受热或受冷而导致的从一个地方向另一个地方的移动。空气的运动遵循大气动力学和热力学变化的规律。 5.12风能密度—慨念 风能密度,是气流垂直通过单位截面积(风轮面积)的风能,空气在1秒内以速度为V流过单位面积产生的动能称为风能密度,是表征一个地方风能资源多少的一个指标。 中国风能密度资源分布图 5.13风能密度—简介 风能密度 风能密度(wind-power density)是气流在单位时间内垂直通过单位面积的风能W=0.5ρV3瓦/米2,通过单位截面积的风所含的能量称为风能密度,常以瓦/平方米来表示。它是描述一个地方风能潜力的最方便最有价值的量,但是在实际当中风速每时每刻都在变化,不能使用某个瞬时风速值来计算风能密度,只有长期风速观察资料才能反映其规律,故引出了平均风能密度的概念。

风能密度是决定风能潜力大小的重要因素。风能密度和空气的密度有直接关系,而空气的密度则取决于气压和温度。因此,不同地方、不同条件的风能密度是不同的。一般说,海边地势低,气压高,空气密度大,风能密度也就高。在这种情况下,若有适当的风速,风能潜力自然大。高山气压低,空气稀薄,风能密度就小些。但是如果高山风速大,气温低,仍然会有相当的风能潜力。所以说,风能密度大,风速又大,则风能潜力最好。 5.14风能密度—定义 风能密度:空气在1秒内以速度为V流过单位面积产生的动能称为风能密度。5.15风能密度—公式 风能密度公式 式中:E为风能(瓦); 为空气密度(公斤/立方米); V为风速(米/秒); F为垂直于风速的截面积(平方米)。 5.16风能密度公式: 在与风能公式相同的情况下,将风轮面积定为1平方米(A=1m2)时所具有的功率为 式中ρ为空气密度,V为风速。衡量一地风能大小,要视常年平均风能的多少而定,即 式中为平均风能密度,T为总时数。 5.17风能密度—分类 5.171平均风能密度 因为风速的随机性很大,用某一瞬时的风速无法来评估某一地区的风能潜力,因此将平均风速代入W=0.5ρV3瓦/米2式得出平均风能密度。 W=1/T∫0.5ρV3dt W――该段时间0-T内的平均风能密度 ρ――空气密度(ρ的变化可以忽略不计) V――对应T时刻的风速 W=ρ/2T∫V3dt=ρ/2N∑Vi3 5.172有效风能密度

风力发电机工作原理

风力发电机工作原理 2008/05/08 21:42:09来源:中国风力发电网我要投稿风力发电机工作原理简单的说是:风的动能(即空气的动能)转化成发电机转子 的动能,转子的动能又转化成电能。风力发电机工作原理是利用风能可再生能源的部分。由1995年到2005年之间的年增长率为28.5%。根据德 风力发电机工作原理简单的说是:风的动能(即空气的动能)转化成发电机转子的动能,转子的动能又转化成电能。 风力发电机工作原理是利用风能可再生能源的部分。由 1995 年到2005 年之间的年增长率为 28.5 %。根据德国风能会( DEWI )的估计,风能发电的年增长率将保持高增长率,在 2012 年或之前全球风力发电装机容量可能达到 150 千兆瓦。 发电风力发电机最初出现在十九世纪末。自二十世纪八十年代起,这项技术不断发展并日渐成熟,适合工业应用。近二三十年,典型的风力发电机的风轮直径不断增大,而额定功率也不断提升。 在二十一世纪 00 年代初,风力发电机最具经济效益的额定输出功率范围在 600 千瓦至 750 千瓦之间,而风轮直径则在40 米至 47 米之间。当时所有制造商都有生产这类风力发电机。新一代的兆瓦级风力发电机是以这类机种作为基础发展出来的。

二零零七年初,有一些制造商开始生产额定功率为几兆瓦而风轮直径达到约 90 米的风力发电机(例如 Vestas V90 3.0 兆瓦风电机, Nordex N90 2.5 兆瓦风电机等等),甚至有些直径达100 米 ( 如 GE 3.6 兆瓦风电机 ) 。这些大型风力发电机主要市场是欧洲。在欧洲,适合风电的地段日渐减少,因此有逼切性安装发电能力尽量高的风力发电机。 另一类更大型的为海上应用而设计的风力发电机,已经完成设计并制成原型机。例如 RE Power 公司设计的风力发电机风轮直径达 126 米,功率达 5 兆瓦。 1) 风的功率 风的能量指的是风的动能。特定质量的空气的动能可以用下列公式计算。

《风力发电原理》教案(2014版)

第1章 绪论 ● 风力发电过程中,风轮将风能转化机械能,发电机将机械能转化电能 ● 在能量转化与传递过程中,风能的特性是决定因素 ● 自然风是一种随机的湍流运动,影响风电机组中机械设备、电气设备的稳定性,对电网 造成冲击 ● 风能是太阳能的一种表现形式 ● 风能密度高低关系到风电度电成本高低 1.1 风的形成 ● 温度不是独立参量,而是系统的几何参量、力学参数、化学参数和电磁参量的函数 ● 大气运动遵循大气动力学和热力学变化的规律。空气运动与大气压力的分布及变化 ● 静力学方程: pgdz dp -= 1. 当dz>0时,dp<0,即气压是随高度的增加而减小的。 2. 气压随高度增加而减少的快慢主要取决于空气的密度。 3. 某一高度z 上的气压等于从该高度直到大气上界的单位截面积空气柱的重量。这是 大气静力学气压定义。 ● 单位气压高度差(气压差):在垂直气柱中,每改变单位气压时所对应的高度差 ()t p g dp dz h αρ+? ?- =18000 1 1. 气压愈低(即温度愈高),单位气压高度差愈大 2. 温度愈高,单位气压高度差愈大 1.1.1 大气环流 ● 环流原因:日地距离和方位不同,所接受的太阳辐射强度各异 ● 科氏力:由于地球自转形成的地球偏向力的存在,这种力称为科里奥利力,简称偏向力 或科氏力。在此力作用下,在北半球使气流向右偏转,在南半球使气流向左偏转。

三圈环流

1.1.2 季风环流 1.季风环流 季风:在一个大范围地区内,它的盛行风向或气压系统有明显的季风变化。这种在一年内随着季节的不同,有规律转变风向的风 东北亚季风和南亚季风对我国天气气候变化都有很大影响 ●形成季风环流的因素: ?海陆差异:冬季,风从大陆吹向海洋;夏季,风从海洋吹向大陆 ?行星风带的季节转换转换:5个风带在北半球的夏季向北移动,冬季向南移动 ?地形特征:青藏高原 ●季风指数 ?它是由地面冬夏盛行风向之间的夹角来表示的,当夹角在120°-180°之间,认为是 属于季风,然后1月和7月盛行风向出现的频率相加除以2,即I=(f1+f2)/2为 季风指数 I>40%季风区 I=40%-60%为较明显区季风区 I>60%为明显季风区。 2.局地环流 1.海陆风:以日为周期(湖陆风) 2.山谷风

风力发电原理及风力发电的工艺流程

风力发原理及风力发电的工艺流程 发电风力发电机最初出现在十九世纪末。自二十世纪八十年代起,这项技术不断发展并日渐成熟,适合工业应用。近二三十年,典型的风力发电机的风轮直径不断增大,而额定功率也不断提升。 在二十一世纪00 年代初,风力发电机最具经济效益的额定输出功率范围在600 千瓦至750 千瓦之间,而风轮直径则在40 米至47 米之间。当时所有制造商都有生产这类风力发电机。新一代的兆瓦级风力发电机是以这类机种作为基础发展出来的。

二零零七年初,有一些制造商开始生产额定功率为几兆瓦而风轮直径达到约90 米的风力发电机(例如Vestas V90 3.0 兆瓦风电机,Nordex N90 2.5 兆瓦风电机等等),甚至有些直径达100米( 如GE 3.6 兆瓦风电机) 。这些大型风力发电机主要市场是欧洲。在欧洲,适合风电的地段日渐减少,因此有逼切性安装发电能力尽量高的风力发电机。 另一类更大型的为海上应用而设计的风力发电机,已经完成设计并制成原型机。例如RE Power 公司设计的风力发电机风轮直径达126 米,功率达5 兆瓦。 1) 风的功率 风的能量指的是风的动能。特定质量的空气的动能可以用下列公式计算。 能量= 1/2 X 质量X ( 速度)^2 吹过特定面积的风的的功率可以用下列公式计算。 功率= 1/2 X 空气密度X 面积X ( 速度)^3 其中, 功率单位为瓦特; 空气密度单位为千克/ 立方米;

面积指气流横截面积,单位为平方米; 速度单位为米/ 秒。 在海平面高度和摄氏15 度的条件下,乾空 气密度为1.225 千克/ 立方米。空气密度随气压 和温度而变。随著高度的升高,空气密度也会 下降。 於上述公式中可以看出,风的功率与速度 的三次方〔立方〕成正比,并与风轮扫掠面积 成正比。不过实际上,风轮只能提取风的能量 中的一部分,而非全部。 2) 风力发电机的工作原理 现代风力发电机采用空气动力学原理,就 像飞机的机翼一样。风并非" 推" 动风轮叶片,而是吹过叶片形成叶片正反面的压差,这种 压差会产生升力,令风轮旋转并不断横切风流。 风力发电机的风轮并不能提取风的所有功率。根据Betz 定律,理论上风电机能够提取的 最大功率,是风的功率的59.6% 。大多数风电机只能提取风的功率的40% 或者更少。 风力发电机主要包含三部分∶风轮、机舱和 塔杆。大型与电网接驳的风力发电机的最常见

相关文档
最新文档