动态磁滞回线的测量实验报告

动态磁滞回线的测量实验报告
动态磁滞回线的测量实验报告

用示波器观察铁磁材料的动态磁滞回线_实验报告

图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S S RD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

铁磁质动态磁滞回线的测试

铁磁质动态磁滞回线的测试 一.实验目的 1.学会如何用示波器变相地测量非电压量的方法 2.了解用示波法测铁磁物质动态磁滞回线的基本原理 3.了解磁性材料的特性 二.实验原理 1.铁磁质和磁滞 在磁场的作用下,能发变化并能反过来影响磁场的媒质叫做磁介质,磁介质按其磁特性可分为铁磁质和非铁磁质(包括顺磁质和抗磁质)。工艺技术上广泛应用的磁性材料主要是铁磁性材料,铁,钴,镍及其许多合金以及含铁的氧化物(铁氧体)都属于铁磁质。磁化性能(或磁化规律)是指M 与B 之间的依从关系。由于 M U B H -=0 也可以说磁化性能是指M 与H 的关系或B与H的关系。实验易于测量B和H,所以我们用实验来研究B与H的关系。(图8-1)是一个典型的磁化曲线,表示磁化过程中磁化强度与磁场的变化关系。

OS表示对于未磁化的样品施加磁场H,随H增加磁化强度不断增加,当H增加到HS(称为饱和磁场强度)时磁化强度达到饱和强度M S,曲线OS称为起始磁化曲线。这条曲线的显著特点是它的非线性。达到饱和以后,再减小磁场,磁化强度并不是可逆地沿原始的磁化曲线下降,而是沿着图中SR变化,与起始磁化曲线并不重合在R点磁场已减为零,但磁化强度并没有消失。比较曲线OS段与SR段可知,虽然H减少时B也随时减少,但是B的减少“跟不上”H的减少,这种现象叫做磁滞(磁性滞后),B R称为剩磁。当磁场沿相反方向增加-H C到时,磁化才变为零,H C称为矫顽力。继续增加反向磁场到-H S可以使磁化强度将完成如图所示的回线SRCS’R’C’S,称为磁滞回线,上面的磁滞回线是令H从饱和磁化强度H S出发得到的,实际上,从起始磁化曲线上的任一点M(H M

核磁共振实验报告

核磁共振实验报告 一、实验目的: 1.掌握核磁共振的原理与基本结构; 2.学会核磁共振仪器的操作方法与谱图分析; 3.了解核磁共振在实验中的具体应用; 二、实验原理 核磁共振的研究对象为具有磁矩的原子核。原子核是带正电荷的粒子,其自旋运动将产生磁矩,但并非所有同位素的原子核都有自旋运动,只有存在自选运动的原子核才具有磁矩。原子核的自选运动与自旋量子数I有关。I=0的原子核没有自旋运动。I≠0的原子核有自旋运动。 原子核可按I的数值分为以下三类: 1)中子数、质子数均为偶数,则I=0,如12C、16O、32S等。 2)中子数、质子数其一为偶数,另一为基数,则I为半整数,如: I=1/2;1H、13C、15N、19F、31P等; I=3/2;7Li、9Be、23Na、33S等; I=5/2;17O、25Mg、27Al等; I=7/2,9/2等。 3)中子数、质子数均为奇数,则I为整数,如2H、6Li、14N等。 以自旋量子数I=1/2的原子核(氢核)为例,原子核可当作电荷均匀分布的球体,绕自旋轴转动时,产生磁场,类似一个小磁铁。当置于外加磁场H0中时,相对于外磁场,可以有(2I+1)种取向: 氢核(I=1/2),两种取向(两个能级): a.与外磁场平行,能量低,磁量子数m=+1/2; b.与外磁场相反,能量高,磁量子数m=-1/2;

正向排列的核能量较低,逆向排列的核能量较高。两种进动取向不同的氢核之间的能级差:△E= μH0(μ磁矩,H0外磁场强度)。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。三、实验仪器 400MHz超导傅里叶变换核磁共振波谱仪 (仪器型号:AVANCE III 400) 四、仪器构造、组成 1)操作控制台:计算机主机、显示器、键盘和BSMS键盘。 计算机主机运行Topspin程序,负责所有的数据分析和存储。BSMS键盘可以让用户控制锁场和匀场系统及一些基本操作。 2)机柜:AQS(采样控制系统)、BSMS(灵巧磁体系统),VTU(控温单元)、 各种功放。 AQS各个单元分别负责发射激发样品的射频脉冲,并接收,放大,数字化样品放射出的NMR信号。AQS完全控制谱仪的操作,这样可以保证操作不间断从而保证采样的真实完整。BSMS:这个系统可以通过BSMS键盘或者软件进行控制,负责操作锁场和匀场系统以及样品的升降、旋转。3)磁体系统:自动进样器、匀场系统、前置放大器(HPPR)、探头。 本仪器所配置的自动进样器可放置60个样品。磁体产生NMR跃迁所需的

2016磁滞回线的测量(实验报告材料)

实验名称: 用示波器观测铁磁材料的动态磁滞回线 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1101 实验日期 2016年 月 日 节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs 、剩磁Br 和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1. 双踪示波器 2. DH4516C 型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成!

3、基本磁化曲线 对于同一铁磁材料,设开始时呈去磁状态,依次选取磁化电流I1、I2、….I n,则相应的磁场强度为H1、H2、….H3,在每一磁化电流下反复交换电流方向(称为磁锻炼),即在每一个选定的磁场值下,使其方向反复发生几次变化(如H1→- H1→H1→- H1….),这样操作的结果,是在每一个电流下都将得到一条磁滞回线,最后,可得一组逐渐增大的磁滞回线。我们把原点O和各个磁滞回线的顶点a1、a2、….所连成的曲线称为铁磁材料的基本磁化曲线,如图3所示。 图3基本磁化曲线 (二)利用示波器观测铁磁材料动态磁滞回线测量原理 1、示波器显示B—H曲线原理线路 由上述磁滞现象可知,要观测磁介质磁滞现象及相应的物理量,需要根据磁化过程测定材料部的磁场强度和磁感应强度。因此,测量装置必须具备三个功能: ①提供使样品磁化的可调强度的磁场(磁化场) ②可跟踪测量与磁化场有一一对应关系的样品的磁感应强度 ③可定量显示样品的磁化过程 图4 磁滞回线的测量原理图 图4是利用示波器观测铁磁材料动态磁滞回线测量装置原理图:首先将待测的铁磁物质制成一个环形样品,在样品上绕有原线圈即励磁线圈N1匝,由它提供磁化场;在样品上再绕副线圈即测量线圈N2匝,由它来跟踪测量与磁化场有一一对应关系的样品的磁感应强度;由示波器

2016磁滞回线的测量

实验名称:用示波器观测铁磁材料的动态磁滞回线姓名学号班级 桌号教室基础教学楼1101 实验日期 2016年月日节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读 本实验报告!并携带计算器,否则实验无法按时完成!

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几 个重要概念 1、饱和磁感应强度B S 、饱和磁场强度H S 和磁化曲线 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。 图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值 H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞 B H B ~H H μ B ~H S f d e

顺磁共振实验报告

近代物理实验报告 顺磁共振实验 学院 班级 姓名 学号 时间 2014年5月10日

顺磁共振实验 实验报告 【摘要】 电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是自旋磁矩的贡献所以又被称为电子自旋共振。简称“EPR ”或“ESR ”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。 【关键词】 顺磁共振,自旋g 因子,检波 【引言】 顺磁共振(EPR )又称为电子自旋共振(ESR ),这是因为物质的顺磁性主要来自电子的自旋。电子自旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。电子自旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反应过程中的结构和演变,以及材料的性能具有重要的意义。研究了解电子自旋共振现象,测量有机自由基DPPH 的g 因子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。 【正文】 一、实验原理 (1)电子的自旋轨道磁矩与自旋磁矩 原子中的电子由于轨道运动,具有轨道磁矩,其数值为: 2l l e e P m μ=- ,负号表示方向同l P 相反。在量子力学中(1)l P l l =+,因而 (1)(1)2l B e e l l l l m μμ=+=+,其中2B e e m μ=称为玻尔磁子。电子除了轨道运动外

2016磁滞回线的测量(实验报告)(1)

2016磁滞回线的测量(实验报告)(1)

石家 庄铁道大学物理实验中心 第2页 共24页 实验名称: 用示波器观测铁磁材料的动态磁滞回线 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1101 实验日期 2016年 月 日 节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。

3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 石家庄铁道大学物理实验中心第3页共24页

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几个重 要概念 1、饱和磁感应强度B S、饱和磁场强度H S和磁 石家庄铁道大学物理实验中心第4页共24页

石家庄铁道大学物理实验中心 第5页 共24页 化曲线 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。

石家庄铁 道 大 学 物 理 实 验 中 心 第6页 共24页 图 1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、 磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化

核磁共振实验报告

1、前言和实验目的 核磁共振是指受电磁波作用的原子核系统在外磁场中磁能级之间发生共振跃迁的现象。本实验的样品在外磁场中,外磁场使样品核能级因核自旋不同的取向而分裂,在数千高斯外磁场下核能级的裂距一般在射频波段,样品在射频电磁波作用下,粒子吸收电磁波的能量,从而产生核能级的跃迁。1932年发现中子后,才认识到核自旋是质子自旋和中子自旋之和,质子和中子都是自旋角动量为2 的费米子,只有质子数和中子数两者或其一为奇数时,核才有非零的核磁矩,正是这种磁性核才能产生核磁共振。 核磁共振信号可提供物质结构的丰富信息,如谱线的宽度、形状、面积、谱线在频率或磁场刻度上的准确位置、谱线的精细结构、超精细结构、弛豫时间等,加之是对样品的无损测量,广泛的应用于分子结构的确定、液相和固相的动力学研究、医用诊断、固体物理学、分析化学、分子生物学等领域,是确定物质结构、组成和性质的重要实验方法。核磁共振还是磁场测量和校准磁强计的标准方法之一,其不确定度可达001.0±%。 实验目的: (1)掌握核磁共振的实验原理和方法 (2)用核磁共振方法校准外磁场B ,测量氟核的F g 因子以及横向驰豫时间2T 2、实验原理 如原子处在磁场中会发生能级分裂一样,许多原子核处在磁场中也会发生能级的分裂,因为 原子核也存在自旋现象。质子和中子都是自旋角动量等于2 的费米子,当质子数和中子数都为偶数时原子核的磁矩为0,当其一为奇数时原子核磁矩为半整数,当两个都为奇数时核磁矩为整数。只有具有核磁矩的原子核才有核磁共振现象。 我们知道在微观世界里物理量都只能取分立的值,即都是量子化的。原子核的角动量也只能取分立的值 )1(+= I I p ,I 为自旋量子数,取分立的值。对于本实验用到的H 1和F 19,自旋量 子数I 都为1/2。沿z 方向的角动量为 m p z =,在这里m 只能取1/2或-1/2。而自旋角动量不为0的核具有核磁矩p m e g p 2F =,考虑沿z 轴方向则有N z p Z mgF p m e G F ==2,其中以 γ== p z m e F 2为原子核磁矩的基本单位,p m e 2=γ。 在没有磁场作用时,原子核的能量时一样的,但处于磁场中则会发生能级分裂, B m γ-B -F B F E Z =?=?-=,本实验中1=?m ,故有B E γ=?。外加一射频场,当满足一定 的条件时就会发生共振吸收,条件为πγγυ2hB B E h = =?= ,从而有共振频率B π γ υ2= 。通过

物理实验报告2_用示波器测动态磁滞回线

实验名称:用示波器测动态磁滞回线 实验目的: a .研究铁磁材料的动态磁滞回线 b .了解采用示波器测动态磁滞回线的原理; c .利用作图法测定磁性材料的饱和磁感应强度s B 、剩磁r B 、矫顽力c H 的值。 实验仪器: V252双踪示波器、自耦变压器、隔离变压器、互感器毫安表、电容等。 实验原理和方法: 铁磁材料除了具有高的导磁率外,另一重要的特点就是磁滞。当材料磁化时,磁感应强度B 不仅与当时的磁场强度H 有关,而且与以前的磁化状态有关。 如右图所示,曲线OA 表示铁磁材料从没有磁性开始磁化,磁感应强度B 随H 增加,称为磁化曲线。当H 增加到某一值S H 时,B 的增加速度将极其缓慢。和前段曲线相比,可看成B 不再增加,即达到磁饱和。当磁性材料磁化后,如H 减小,B 将不沿原路返回,而是沿另外一条曲线r A 下降。如果H 从S H 变到-S H ,再从-S H 变回S H ,B 将随H 变化而形成一条磁滞回线。其中当H = 0时,r B B =。r B 称为剩余磁感应强度。要使磁感应 强度为零,就必须加一反向磁场-c H ,c H 称为矫顽力。按一般分类,矫顽力小的称为软磁材料,大的称为硬磁材料。必须注意的是:反复磁化(S S S H H H →-→)的开始几个循环内,每次循环的回路才相同,形成一个稳定的磁滞回线。只有经过“磁锻炼”后所形成的磁滞回线,才能代表该材料的磁滞性质。 由以上可知,要测定材料的磁滞回线,需要根据磁化过程测定材料内部的磁场强度H 及其相应的磁感应强度B 。 磁性材料的磁滞回线能较全面地反应该材料的磁特性,譬如剩磁r B 、矫顽力c H 等。因此,实用上常常借助磁滞回线来粗略了解材料的磁特性。测量磁滞回线的基本线路图如下图所示:

用示波器观察铁磁材料的动态磁滞回线-实验报告

用示波器观察铁磁材料的动态磁滞回线-实验报告

2 B a B B s c a' b' H H m o B r H c 图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S SRD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

示波器观测动态磁滞回线

示波器观测动态磁滞回线 一、用示波器观测动态磁滞回线简介: 1. 实验原理。 参照《新编基础物理实验》实验四十三《磁滞回线的测量》的实验原理。 2. 测量电路。 3. 相关公式 1R 1 1N H R u =l 2C 2R C B N S u = l ,铁磁样品的磁路长度;S ,铁磁样品磁路的横截面积;N 1,N 2,初级、次级绕组匝数。 对样品1(铁氧体):l = 0.130m ,S = 1.24×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。 对样品2(硅钢片):l = 0.075m ,S = 1.20×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。 4. 名词术语: 1) 磁中性状态:磁化场H 为零时磁感应强度B 也为零的状态,称为磁中性状态。 对铁磁样品加一个振幅足够大的交变磁场,并逐渐将振幅减小到零,铁磁样品即可被磁中性化。 2) 磁滞回线:磁化场H 循环变化时(-H 0H + )B 的变化轨迹称为磁滞回

线。它是相对于原点对称的闭合曲线。(样品测量前需要先磁中性化) 3) 饱和磁滞回线:磁化场H 在循环变化过程中可以达到足够大,使铁磁材料的磁化强度0B M H μ=?随H 的增大不再增大,由这样的循环变化磁化场得到的 磁滞回线称为饱和磁滞回线。 饱和磁滞回线上磁感应强度最大的值称为饱和磁感强度,用B S 表示。 饱和磁滞回线上B=0所对应的磁化场称为矫顽力,用H C 表示。 饱和磁滞回线上H=0所对应的磁感应强度称为剩余磁感应强度,用B r 表示。 4) 基本磁化曲线:将振幅不同的循环变化磁化场下所得到的磁滞回线的顶点连接 起来的曲线。(样品测量前需要先磁中性化) 5) 起始磁导率i μ:磁导率μ定义为0B H μμ=,通常铁磁材料的μ是温度T 、磁化场H 、频率f 的函数。在很低的磁化场下,磁化是可逆的,H 和B 之间呈线性关系,没有滞后现象,在此区域中,磁导率为常数,该磁导率称为起始磁导率,即i H 00 B lim H μμ→=。 6) 可逆磁导率r μ:当一个直流磁场H 和一个很弱的交变磁场h 同时作用在铁磁材料上时,直流磁场H (也称为直流偏磁场)使铁磁材料偏离磁中性化状态,h 引起磁感应强度B 的交流变化b 。当h 0→ 时,由h 产生的退化磁滞回线(即一条斜线)的斜率与0μ的比值称为可逆磁导率r μ,即00 lim r h b h μμΔ→Δ=Δ,其中h Δ和b Δ分别是h 和b 的变化范围。r μ是H 的函数,一般H 越大,r μ越小。 二、实验内容: 1. 观测样品1(铁氧体)的饱和磁滞回线。 1) 取1R 2.0=Ω,2R =50k Ω,C 10.0F μ=,100Hz f =,调节励磁电流大小 及示波器的垂直、水平位移旋钮,在示波器显示屏上调出一个相对于坐标原点对称的饱和磁滞回线。在回线的上半支上,从-B S 到B S 选取9个以上测量点(其中必须包括S B ,B 0=,H 0=三个点),测量各点的H 和B 。根据测量的数据在坐标纸上画出饱和磁滞回线。给出S B ,r B ,C H 的测量值。 2) 保持1R ,R 2C 不变,测量并比较f =50Hz 和150Hz 时的r B 和C H 。

磁共振实验报告

近代物理实验题目磁共振技术 学院数理与信息工程学院 班级物理082班 学号08220204 姓名 同组实验者 指导教师

光磁共振实验报告 【摘要】本次实验在了解如光抽运原理,弛豫过程、塞曼分裂等基本知识点的基础上,合理进行操作,从而观察到光抽运信号,并顺利测量g因子。 【关键词】光磁共振光抽运效应塞曼能级分裂超精细结构 【引言】光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。这种方法是卡斯特勒在巴黎提出并实现的。由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。光磁共振方法现已发展成为研究原子物理的一种重要的实验方法。它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。 【正文】 一、基本知识 1、铷原子基态和最低激发态能级结构及塞曼分裂 本实验的研究对象为铷原子,天然铷有两种同位素;85Rb(占72.15%)和87Rb(占27.85%).选用天然铷作样品,既可避免使用昂贵的单一同位素,又可在一个样品上观察到两种原子的超精细结构塞曼子能级跃迁的磁共振信号.铷原子基态和最低激发态的能级结构如图1所示.在磁场中,铷原子的超精细结构能级产生塞曼分裂.标定这些分裂能级的磁量子数m F=F,F-1,…,-F,因而一个超精细能级分裂为2F+1个塞曼子能级. 设原子的总角动量所对应的原子总磁矩为μF,μF与外磁场B0相互作用的能量为 E=-μF·B0=g F m FμF B0(1) 这正是超精细塞曼子能级的能量.式中玻尔磁子μB=9.2741×10-24J·T-1 ,朗德因子g F= g J [F(F+1)+J(J+1)-I(I+1)] ? 2F(F+1)(2) 图1 其中g J= 1+[J(J+1)-L(L+1)+S(S+1)] ? 2J(J+1)(3) 上面两个式子是由量子理论导出的,把相应的量子数代入很容易求得具体数值.由式(1)可知,相邻塞曼子能级之间的能量差 ΔE=g FμB B0(4) 式中ΔE与B0成正比关系,在弱磁场B0=0,则塞曼子能级简并为超精细结构能级.

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告 铁磁材料的磁滞回线和基本磁化曲线【实验目的】1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。2测定样品的基本磁化曲线作H 曲线。3测定样品的Hc、Br、Bm和 Hm?6?1Bm等参数。4测绘样品的磁滞回线。【实验原理】1起始磁化曲线和磁滞回线铁磁物质是一种性能特异用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。其特征是在外磁场作用下能被强烈磁化故磁导率很高。另一特征是磁滞即磁化场作用停止后铁磁质仍保留磁化状态图2-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。图2-1 铁磁质起始磁化曲线和磁滞回线图2-2 同一铁磁材料的一簇磁滞回线图中的原点O表示磁化之前铁磁物质处于磁中性状态即BH0当磁场H从零开始增加时磁感应强度B随之缓慢上升如线段Oa所示继之B随H迅速增长如ab所示其后B的增长又趋缓慢并当H增至Hm时B到达饱和值BmOabs称为起始磁化曲线。图2-1表明当磁场从Hm逐渐减小至零磁感应强度B并不沿起始磁化曲线恢复到“O”点而是沿另一条新的曲线SR下降比较线段OS和SR可知H减少B相应也减小但B 的变化滞后于H的变化这现象称为磁滞磁滞的明显特征是当H0时B 不为零而保留剩磁Br。当磁场反向从0逐渐变至Hc时磁感应强度B消失说明要消除剩磁必须施加反向磁场Hc称为矫顽力它的大小反映铁磁材料保持剩磁状态的能力线段RD称为退磁曲线。图2-1还表示当磁场按Hm→0→Hc→-Hm→0→Hc→Hm次序变化相应的磁感应强度B则沿闭合曲线SRDS’R’D’S变化这闭合曲线称为磁滞回线。

所以当铁磁材料处于交变磁场中时如变压器中的铁心将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量并以热的形式从铁磁材料中释放这种损耗称为磁滞损耗可以证明磁滞损耗与磁滞回线所围面积成正比。2基本磁化曲线应该说明当初始态为HB0的铁磁材料在交变磁场强度由弱到强依次进行磁化可以得到面积由小到大向外扩张的一簇磁滞回线如图2-2所示这些磁滞回线顶点A1、A2、A3、…的连线为铁磁材料的基本磁化曲线由此可近似确定其磁导率因B与H非线性故铁磁材料的不是常数而是随H而变化如图2-3所示。铁磁材料的相对磁导率可高达数千乃至数万这一特点是它用途广泛的主要原因之一。图2-3 铁磁材料μ与H 关系曲线图2-4 不同铁磁材料的磁滞回线可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据图2-4为常见的两种典型的磁滞回线其中软磁材料的磁滞回线狭长、矫顽力、剩磁和磁滞损耗均较小是制造变压器、电机、和交流磁铁的主要材料。而硬磁材料的磁滞回线较宽矫顽力大剩磁强可用来制造永磁体。3利用示波器观测磁滞回线的原理图2-5 原理电路图利用示波器观测磁滞回线的原理电路如图2-5所示。待测样品为EI型矽钢片其上均匀地绕以磁化线圈N及副线圈n。交流电压u加在磁化线圈上线路中串联了一取样电阻R1。将R1两端的电压UH加到示波器的X输入端上对DC4322B 示波器为通道Ⅰ。副线圈n与电阻R2和电容C串联成一回路。电容C两端的电压UB加到示波器的Y输入端上对DC4322B示波器为通道Ⅱ。下面我们来说明为什么这样的电路能够显示和测量磁滞回线。

最新核磁共振实验报告

一、实验目的与实验仪器 1.实验目的 (1)了解核磁共振的基本原理; (2)学习利用核磁共振校准磁场和测量因子g 的方法: (3)掌握利用扫场法创造核磁共振条件的方法,学会利用示波器观察共振吸收信号; (4)测量19F 的g N 因子。 2.实验仪器 NM-Ⅱ型核磁共振实验装置,水 样品和聚四氟乙烯样品。 探测装置的工作原理:图一中绕 在样品上的线圈是边限震荡器电路 的一部分,在非磁共振状态下它处在 边限震荡状态(即似振非振的状态), 并把电磁能加在样品上,方向与外磁 场垂直。当磁共振发生时,样品中的 粒子吸收了震荡电路提供的能量使振荡电路的Q 值发生变化,振荡电路产生显著的振荡,在示波器上产生共振信号。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 原子核自旋角动量不能连续变化,只能取分立值即: P = 其中I 称为自旋量子数,I=0,1/2,1,3/2,2,5/2,…本实验涉及的质子和氟核 F 19 的自旋量子数I 都等于1/2。类似地原子核的自旋角动量在空间某一方向,例如z 方向的分量不能连续变化,只能取分立的数值 自旋角动量不为零的原子核具有与之相联系的核自旋磁矩, 其大小为: P 2M e g =μ 核磁共振 实验报告

其中e 为质子的电荷,M 为质子的质量,g 是一个由原子核结构决定的因子,对不同种类的原子核g 的数值不同,g 成为原子核的g 因子。由于核自旋角动量在任意给定的z 方向的投影只可能取(2I+1)个分立的数值,因此核磁矩在z 方向上的投影也只能取(2I+1)个分立的数值: 2M e g p 2M e g m z z ==μ 原子核的磁矩的单位为: 2M e N =μ 当不存在外磁场时,原子核的能量不会因处于不同的自旋状态而不同。通常把B 的方向规定为z 方向,由于外磁场B 与磁矩的相互作用能为: B B P B B E z z m γγμμ-=-=-=?-= 核磁矩在加入外场B 后,具有了一个正比于外场的频率。量子数m 取值不同,则核磁矩的能量也就不同。原来简并的同一能级分裂为(2I+1)个子能级。不同子能级的能量虽然不同,但相邻能级之间的能量间隔 却是一样的,即: B E γ=? 而且,对于质子而言,I=1/2,因此,m 只能取m=1/2和m= -1/2两个数值。简并能级在磁场中分开。其中的低能级状态,对应E 1=-mB ,与场方向一致的自旋,而高的状态对应于E 2=mB ,与场方向相反的自旋。当核自旋能级在外磁场B 作用下产生分裂以后,原子核在不同能级上的分布服从玻尔兹曼分布。 若在与B 垂直的方向上再施加一个高频电磁场(射频场),且射频场的频率满足一定条件时,会引起原子核在上下能级之间跃迁。这种现象称为共振跃迁(简称共振)。 发生共振时射频场需要满足的条件称为共振条件: B π γν2= 如果用圆频率ω=2πν 表示,共振条件可写成:B γω=

磁滞回线的测量(实验报告记录)()

磁滞回线的测量(实验报告记录)()

————————————————————————————————作者:————————————————————————————————日期: 2

实验名称:用示波器观测铁磁材料的动态磁滞回线 姓名学号班级 桌号教室基础教学楼1101 实验日期2016年月日节 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成! 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 石家庄铁道大学物理实验中心第3页共15页

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几个重要概念 1、饱和磁感应强度B S、饱和磁场强度H S和磁化曲线 石家庄铁道大学物理实验中心第4页共15页

石家庄 铁道大学物理实验中心 第5页 共15页 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。 图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现B H B ~H H μB ~H S f d e

核磁共振实验报告

应物0903班 核磁共 振实验报告 王文广U8 苏海瑞 U8

核磁共振实验报告 一、实验目的 1.了解核样共振的基本原理 2.学习利用核磁共振测量磁场强度和原子核的g 因子的方法 二、实验内容 1.在加不同大小扫场情况下仔细观察水样品的核磁共振现象,记录每种情况下的共振峰形和对应的频率 2.仔细观察和判断扫场变化对共振峰形的影响,从中确定真正能应永久磁铁磁场0B 的共振频率,并以此频率和质子的公认旋磁比值 ()267.52MHz /T γ=计算样品所在位置的磁场0B 3.根据记录的数据计算扫场的幅度 4.研究射频磁场的强弱对共振信号强度的影响 5.观察聚四氟乙烯样品的核磁共振现象,并计算氟核的g 因子 三、实验原理 1.核磁共振现象与共振条件 原子的总磁矩j μ和总角动量j P 存在如下关系 22B j j j j e e B e g P g P P m h e e m πμμγμγ=-==为朗德因子,、是电子电荷和质量,称为玻尔磁子,为原子的旋磁比

对于自旋不为零的原子核,核磁矩j μ和自旋角动量j P 也存在如下关系 22N I N I N I I p e g P g P P m h πμμγ=-== 按照量子理论,存在核自旋和核磁矩的量子力学体系,在外磁场 0B 中能级将发生赛曼分裂,相邻能级间具有能量差E ?,当有外界条 件提供与E ?相同的磁能时,将引起相邻赛曼能级之间的磁偶极跃迁,比如赛曼能级的能量差为02B h E γπ ?= 的氢核发射能量为h ν的光子,当0= 2B h h γνπ 时,氢核将吸收这个光子由低塞曼能级跃迁到高塞曼能级,这种共振吸收跃迁现象称为“核磁共振” 由上可知,核磁共振发生和条件是电磁波的圆频率为 00B ωγ= 2.用扫场法产生核磁共振 在实验中要使0= 2B h h γνπ 得到满足不是容易的,因为磁场不是容易控制,因此我们在一个永磁铁0B 上叠加一个低频交谈磁场 sin m B B t ω=,使氢质子能级能量差 ()0sin 2m h B B t γωπ +有一个变化的区域,调节射频场的频率ν,使射频场的能量h ν能进入这个区域,这样在某一瞬间等式 ()0sin 2m h B B t γωπ +总能成立。如图,

大学物理实验报告-磁滞回线研究

磁滞回线研究 班级 姓名 学号 一、 实验目的:a. 研究磁性材料的动态磁滞回线; a) b.了解采用示波器测动态磁滞回线的原理; b) c. 利用作图法测定磁性材料的饱和磁感应强度B,磁场强度H 二、 实验仪器:普通型磁滞回线实验仪DH 4516。 实验原理:当材料磁化时,磁感应强度B 不仅与当时的磁场强度H 有关,而且决定于磁化的历史情况,如图2.3.2-1所示。曲线OA 表示铁磁材料从没有磁性开始磁化,磁感应强度B 随H 的增加而增加,称为磁化曲线。当H 增加到某一值H S 时,B 几乎不再增加,说明磁化已达到饱和。材料磁化后,如使H 减小,B 将不沿原路返回,而是沿另一条曲线ACA 下降。当H 从-H S 增加时,B 将沿A ’C ’A 曲线到达A ,形成一闭合曲线称为磁滞回线,其中H=0时,r B B ,B r 称为剩余磁感应强度。要使磁感应强度B 为零,就必须加一反向磁场-H c , H c 称为矫顽力。为了使样品的磁特性能重复出现,也就是指所测得的基本磁化曲线都是由原始状态(H=0,B=0)开始,在测量前必须进行退磁,以消除样品中的剩余磁性。 1 .示波器测量磁滞回线的原理 图2.3.2-2所示为示波器测动态磁滞回线的原理电路。将样品制 成闭合的环形,然后均匀地绕以磁化线圈N 1及副线圈N 2,即所

谓的罗兰环。交流电压u 加在磁化线圈上,R 1为取样电阻,其两端的电压u 1加到示波器的x 轴输入端上。副线圈N 2与电阻R 2和电容串联成一回路。电容C 两端的电压u 加到示波器的y 输入端上。 (1)u x (x 轴输入)与磁场强度H 成正比,若样品的品均周长为l , 磁化线圈的匝数为N 1,磁化电流为i 1(瞬时值),根据安培环路定理,有H l =N 1 i 1,而11i R u =,所以 H N l R u 111= (1) 由于式中R 1、l 和N 1皆为常数,因此,该式清楚地表明示波器荧光屏上电子束水平偏转的大小(u 1)与样品中的磁场强度(H )成正比。 (2)u C (y 轴输入)在一定条件下与磁感应强度B 成正比 设样品的截面积为S ,根据电磁感应定律,在匝数为N 2的副线圈中,感应电动势应为 dt dB S N E 22-= (2) 此外,在副线圈回路中的电流为i 2且电容C 上的电量为q 时,又有 C q i R E +=222 (3) 考虑到副线圈匝数N 2较小,因而自感电动势未加以考虑,同时,R 2与C 都做成足够大,使电容C 上的电压降(u c =q/C )比起电阻上的电压降R 2i 2小到可以忽略不计。于是式(3)可

相关文档
最新文档