反函数试题

反函数试题
反函数试题

高一数学同步测试(7)—反函数

一、选择题:

1.设函数f (x)=1-2x 1-(-1≤x ≤0),则函数y =f -1(x )的图象是 ( )

y

2.函数y =1-1-x (x ≥1)的反函数是 ( )

A .y =(x -1)2+1,x ∈R

B .y =(x -1)2-1,x ∈R

C .y =(x -1)2+1,x ≤1

D .y =(x -1)2-1,x ≤1

3.若f (x -1)= x 2-2x +3 (x ≤1),则f -

1(4)等于

( )

A .2

B .1-2

C .-2

D .2-2 4.与函数y=f (x)的反函数图象关于原点对称的图象所对应的函数是

( )

A .y=-f (x )

B .y= f -1(x )

C .y =-f -1(x )

D .y =-f -1(-x )

5.设函数()[]()

242,4f x x x =-∈,则()1

f x -的定义域为

( )

A .[)4,-+∞

B .[)0,+∞

C .[]0,4

D .[]0,12

6.若函数()y f x =的反函数是()y g x =,(),0f a b ab =≠,则()g b 等于 ( ) A .a B .1

a - C .

b D .1

b -

7.已知函数()1

3

ax f x x +=

-的反函数就是()f x 本身,则a 的值为 ( )

A .3-

B .1

C .3

D .1- 8.若函数()f x 存在反函数,则方程()()f x c c =为常数 ( )

A .有且只有一个实数根

B .至少有一个实数根

C .至多有一个实数根

D .没有实数根

9.函数f (x )=-

2

2

·12-x (x ≤-1)的反函数的定义域为 ( )

A .(-∞,0]

B .(-∞,+∞)

C .(-1,1)

D .(-∞,-1)∪(1,+∞)

10.若函数f (x )的图象经过点(0,-1),则函数f (x +4)的反函数的图象必经过点

( )

A .(-1,4)

B .(-4,-1)

C .(-1,-4)

D .(1,-4)

11.函数f(x)=

x

1

(x ≠0)的反函数f -1(x)= ( ) A .x(x ≠0) B .x 1 (x ≠0) C .-x(x ≠0) D .-x 1

(x ≠0)

12、点(2,1)既在函数f (x )=a

b

x a +1的图象上,又在它的反函数的图象上,则适合条件的数

组(a ,b )有 ( )

A .1组

B .2组

C .3组

D .4组

二、填空题:

13.若函数f (x )存在反函数f -

1(x ),则f -

1[f (x )]=___ ; f [f -

1(x )]=___ __.

14.已知函数y =f (x )的反函数为f -1(x )=x -1(x ≥0),那么函数f (x )的定义域为__ _ 15.设f (x )=x 2-1(x ≤-2),则f -

1(4)=__ ________.

16.已知f (x )=f -

1(x )=

x

m x ++1

2(x ≠-m ),则实数m = 三、解答题:

17.(1)已知f (x ) = 4x -2x +

1 ,求f -

1(0)的值.

(2)设函数y = f (x )满足 f (x -1) = x 2-2x +3 (x ≤ 0),求 f -

1(x +1).

18.判断下列函数是否有反函数,如有反函数,则求出它的反函数.

(1)2

()42()f x x x x R =-+∈; (2)2()42(2)f x x x x =-+≤. (3)1(0)

1,,(0)x x y x x +>?=?

-

19.已知f (x )=

1

3

-+x ax (1)求y =f (x )的反函数 y = f -

1 (x )的值域;

(2)若(2,7)是 y = f -

1 (x )的图象上一点,求y=f (x )的值域.

20.已知函数2(1)2(0)f x x x x +=+>,

(1)求1()f x -及其1(1)f x -+; (2)求(1)y f x =+的反函数.

21.己知()2

11x f x x -??

= ?+??

(x ≥1),

(1)求()f x 的反函数1()f x -,并求出反函数的定义域; (2)判断并证明1()f x -的单调性.

22.给定实数a ,a ≠0,且a ≠1,设函数11--=

ax x y ??

?

??≠∈a x R x 1,且.试证明:这个函数的图象关于直线y =x 成轴对称图形.

参考答案

一、选择题: DCCDD ACCAC BA

二、填空题:13.x ,x ,14.x ≥-1,15.-5,16.m =-2

三、解答题:

17.解析:(1)设f -

1(0)=a ,即反函数过(0,a), ∴原函数过(a ,0).

代入得 :0=4a

-2

a +1

,2a (2a -2)=0,得a =1,∴f

)0(1

-=1.

(2)先求f (x )的反函数)2(1)1(),3(2)(11≥--=+∴≥--=--x x x f x x x f .

18.解析:⑴令()0,y f x ==得到对应的两根:120,4x x ==

这说明函数确定的映射不是一一映射,因而它没有反函数. ⑵由2

()42f x x x =-+2

(2)2x =--,得2

(2)2x y -=+

∵2x ≤,∴ 22x x -==,

互换,x y 得2y =

又由2()42(2)f x x x x =-+≤的值域可得反函数定义域为[2,),-+∞

∴反函数为1()2f x x -=∈[2,)-+∞. ⑶由1(0)y x x =+>得其反函数为1(1)y x x =->; 又由1(0)y x x =-<得其反函数为1(1)y x x =+<-.

综上可得,所求的反函数为1(1)

1(1)x x y x x ->?=?

+<-?

注:求函数()y f x =的反函数的一般步骤是:

⑴反解,由()y f x =解出1()x f y -=,写出y 的取值范围; ⑵互换,x y ,得1()y f x -=;

⑶写出完整结论(一定要有反函数的定义域).

⑷求分段函数的反函数,应分段逐一求解;分段函数的反函数也是分段函数.

19.解析:

(1)反函数的定义域、值域分别是原函数的值域、定义域.∴反函数的值域为{y|y 1,≠∈y R }

(2)∵(2,7)是y =f -

1(x)的图象上一点,∴(7,2)是y =f (x )上一点.

∴,21

5

215)1(2132)(2

1

2327≠-+=-+-=-+=

∴=∴-+=x x x x x x f a a ∴f (x )的值域为{y |y ≠2}.

20.解析:⑴∵2

2

(1)211(1)1(0)f x x x x x +=++-=+->,

∴2

()1(1)f x x x =->,其值域为{|0}y y >,

又由2

1(1)y x x +=> 得x =

∴1()0)f x x -=

>, ∴1(1)1)f x x -+>-.

⑵由2

()2(0)y f x x x x ==+>,解得1(1)x y =

>-

∴(1)y f x =+的反函数为1y =(1)x >-.

说明:1

(1)y f x -=+并不是(1)y f x =+的反函数,而是1()y f x +=的反函数.

题中有1

(1)y f

x -=+的形式,我们先求出1()y f x -=,才能求出1(1)y f x -=+.

21.

解析:⑴2

1(

)1,1011x y x x y x -=?=≥≥?≤<+ 设, 即1()f x -的定义域为[)0,1;

⑵设11121201,01,()()0x x f x f x --≤<<∴≤∴-=

<,

1112()()f x f x --<,即1()f x -在[)1,0上单调递增.

22、证法一:

且则意一点是这个函数的图象上任设点,1

,),(a

x y x P ≠''' .1

1

-'-'=

'x a x y ……①

).,(),(x y P x y y x P '''=''的坐标为的对称点关于直线易知点

由①式得

?

?

?-'=-''-'=-'',1)1(1

)1(y y a x x x a y 即

……②

由此得a =1,与已知矛盾,.01≠-'∴y a 又由②式得 1

1

-'-'=

'y a y x

这说明点P ′(y ′,x ′)在已知函数的图象上,因此,这个函数的图象关于直线y =x 成轴对称图形.

证法二:先求所给函数的反函数:由

),1

,(11a

x R x ax x y ≠∈--=

得 y (ax -1)=x -1, 即 (ay -1)x =y -1.

得代入所给函数的解析式则假如,,1,01a y ay =

=-1

11--=ax x a 即 ax -a =ax -1,

由此得a=1,与已知矛盾,所以ay -1≠0. 因此得到

).

1,(,11)1

,(11,1

,11a x R x ax x y a

x R x ax x y a

y ay y x ≠∈--=≠∈--=≠--=

且的反函数是且这表明函数其中

由于函数y=f(x)的图象和它的反函数y=f -1(x)的图象关于直线y=x 对称,所以函数

)1

,(11a

x R x ax x y ≠∈--=

且的图象关于直线y =x 成轴对称图形.

反函数与零点习题含答案

反函数-习题 1.函数f (x )=1-x +2 (x ≥1)的反函数是( ) A .y =(x -2)2+1 (x ∈R) B .x =(y -2)2+1 (x ∈R) C .y =(x -2)2+1 (x ≥2) D .y =(x -2)2+1 (x ≥1) 2.已知函数x x f a log )(=)1,0(≠>a a 且的图象过点(2,-1),函数()y g x =是函数 ()y f x =的反函数,则函数()y g x =的解析式为( ) A.()2x g x = B.1()()2 x g x = C.12 ()log g x x = D.2()log g x x = 3. 若函数)1(-=x f y 的图像与函数1ln +=x y 的图像关于x y =对称,则)(x f =( ) A. 1 2-x e B. x e 2 C. 1 2+x e D. 2 2+x e 4. 函数? ??≥<+=0,0,1x e x x y x 的反函数是______________. 5. 函数)2(,2-≥+-=x x y 的反函数是_______________. 6. 若函数)1,0(≠>=a a a y x 的反函数的图象过点(2,-1),则a =_________. 7. 函数)0)(24(log 2>++=x x y 的反函数是_______________. 8. 已知函数()f x 的反函数为)0(,lg 21)(>+=x x x g ,则(1)(1)f +g =_____________. 9. 函数1ln(1) (1)2 x y x +-= >的反函数是_______________. 10.若函数()y f x =的反函数... 图象过点(15),,则函数()y f x =的图象必过点__________. 11. 将x y 2=的图像先向______(填左、右、上、或下)平移_______个单位,再作关于直线 x y =对称的图象可得到函数)1(log 2+=x y 的图像. 12. 已知函数b a y x +=的图象过点(1,4)其反函数图象过点(2,0),则___.___==b a . 13. 已知函数x x x f 3 131)(+-=,则)5 4 (1 -f =____________.

反函数定义

反函数定义 一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y 把x表示出,得到x= g(y). 若对于y在C中的任何一个值,通过x= g(y),x在A 中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 反函数性质 (1)互为反函数的两个函数的图象关于直线y=x对称; 函数及其反函数的图形关于直线y=x对称 (2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a^x,x∈{0},但是y=k(常数)无法通过水平线测试,所以没有反函数。)。奇函数不一定存在反函数。被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数;

(6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。 (8)反函数是相互的且具有唯一性 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(Y)在区间I上单调,可导,且F‘(Y)不等于0,那么他的反函数Y=F’(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F‘(X)]'=1\[F’(Y)]'。 反函数说明 ⑴在函数x=f’(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f‘(y)中的字母x,y,把它改写成y=f’(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式。

反函数-高中数学知识点讲解

反函数 1.反函数 【知识点归纳】 【定义】一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y 把x 表示出,得到x =g(y).若对于y 在中的任何一个值,通过x=g(y),x 在A 中都有唯一的值和它对应,那么,x=g(y)就表 示y 是自变量,x 是因变量是y 的函数,这样的函数y=g(x)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记 作y=f(﹣1)(x)反函数y=f(﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 【性质】 反函数其实就是y=f(x)中,x 和y 互换了角色 (1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x 对称;函数及其反函数的图形关于直线y=x 对称 (2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C (其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y 轴垂直的直线 截时能过 2 个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数. (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】; (8)反函数是相互的且具有唯一性; (9)定义域、值域相反对应法则互逆(三反); (10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)). 1/ 1

高等数学试题

高等数学试题 1.函数y=log4^2+log4√x的反函数是( ) A.y=2^x-1 B.y=2^2x-1 C.y=4^2x-1 D.y=4x-1 2.若f(x)的定义域是关于原点对称的,则下列函数的图像一定关于原点对称的是( ) A.xf(x) B.f(-x)+x C.x[f(x)+f(-x)] D.x[f(x)-f(-x)] 3.设f(x)的定义域为[-2,2),则f(3x+1)的定义域为( ) A.[5,-7) B.[-1,1/3) C.[-1,1/3] D.(-5,7] 4.极限lim(x→1)|x-1 |/x-1的值是( ) A.1 B.-1 C.0 D.不存在 5.两个无穷小量α与β(且α,β均不为0)之积αβ仍是无穷小,则αβ与β相比是( ) A.同阶无穷小 B.高阶无穷小 C.可能是高阶,也可能是同阶无穷小 D.不确定 6.下列极限存在的为( ) A.lim(x→∞)e^x B.lim(x→0)sin2x/x C.lim(x→0)sin1/x D.lim(x→∞)x^2+2/x-3 x/tan2x x≠0, 7.设f(x)= 则x=0是f(x)的( ) 1 x=0, A.连续点 B.可去间断点 C.跳跃间断点 D.第二类间断点 x=∫0→t sinu^2du, 8.设y=cost^2, 则dy/dx=( ) A.t^2 B.2t C. –t^2 D.-2t 9.设f(x)为可导函数,且满足lim(x→0)f(1)-f(1+x)/2x=-1,则f’(1)= ( ) A.2 B.-1 C.1 D.1 10.过曲线y=arctanx+e^x上的点(0,1)处的法线方程为 A.2x-y+1=0 B.x-2y+2=0 C.2x-y-1=0 D.x+2y-2=0 11.若点(x,f(x))是连续函数f(x)的极值点,则f’(x) ( ) A.等于零 B.不存在 C.等于零或不存在 D.以上都不对 12.曲线y=4x-1/(x-1)^2( ) A.只有水平渐近线 B.只有垂直渐近线 C. 既有水平线又有垂直渐近线 D.既无水平线又无垂直渐近线

导数与反函数练习题.doc

1. 2. (2011-重庆)曲线尸?X 3+3X 2在点(I, 2) A. y=3x - 1 B. y=-3x+5 (201b 山东)曲线 y=x 3+l 1 在点 P (1, 12) 处的切线方程为( ) C. y=3x+5 D. y=2x 处的切线与y 轴交点的纵坐标是( 15 3. A. [- 1,-岑] B ?[?1, 0] C. [0, II D.[兰,1] 乙 那么导函数y=f (x )的图象可能是( 函数q : g (x ) =x 2 - 4x+3m 不存在零点则 p 是 D.既不充分也不必要条件 导数与反函数练习题 选择题 (2011 ?杭州)如图是导函数尸f (x )的图象,则下列命题错误的是( ) A .导函数y=f (x )在x=xi 处有极小值 B .导函数y=F (x )在x=x?处有极大值 C.函数y=f (x )在x=X3 处有极小值 D.函 数y=f (x )在x=X4处有极小值 4. (2011 ?福建)若a>0, b>0,且函数f (x ) =4x 3 - ax 2 - 2bx+2在x=l 处有极值,则ab 的最大值等于( ) A. 2 B. 3 C. 6 D. 9 5. (2010*江西)若 f (x ) =ax 4+bx 2+c 满足 f (I ) =2,则 f ( - 1)=( ) A. -4 B. - 2 C. 2 D. 4 6. (2009?江西)若存在过点(1, 0)的直线与曲线尸x3和y=ax 2+^X- 9都相切,则a 等于( ) 方 91 7 9R 7 A. - 1 或一竺 B. - 1 C. 一」或一竺 D. 一 ■或 7 64 4 4 64 4 ° TT 7. (2008?辽宁)设P 为曲线C : y=x~+2x+3上的点,且曲线C 在点P 处切线倾斜角的取值范围是[0,—],则点P 横 4 坐标的取值范围是( ) A.充分不必要条件 B.必要不充分条件 C. 充分必要条件8.(2008?福建)如果函数y=f (x )的图象如图, q 的( )

反函数典型例题精析.doc

学习必备 欢迎下载 2. 4 反函數·例題解析 【例 1】求下列函數的反函數: (1)y = 3x 5 (x ≠- 1 ) . 2x 1 2 (2)y = x 2 - 2x + 3, x ∈ ( -∞, 0] . 1 (3)y = x 2 1 (x ≤ 0) . x +1 ( -1≤x ≤ 0) (4)y = - x (0<x ≤1) 解 (1) ∵ y = 3x 5 (x ≠- 1 ),∴ y ≠ 3 , 2x 1 2 2 由 y = 3x 5 得 (2y - 3)x =- y - 5, 2x 1 ∴ x = y 5 所求反函数为 y = y 5 (x ≠ 3 ). 3 2y 3 2y 2 解 (2)∵ y =(x -1) 2 + 2, x ∈ (-∞, 0]其值域為 y ∈ [2,+∞ ), 由 y = (x - 1) 2 + 2(x ≤ 0) ,得 x -1=- y 2,即 x = 1- y 2 ∴反函数为 f 1 (x) = 1- x 2, (x ≥ 2) . 解 (3)∵y = 1 ,它的值域为 0<y ≤1, x 2 (x ≤ 0) 1 由 y = 2 1 得 x =- 1 y , x 1 y ∴反函数为 f 1 (x) =- 1 x (0 <x ≤1) . x 解 (4)由y = x 1(-1≤ x ≤ 0), 得值域 0≤y ≤1,反函数 f 1 (x) = x 2 -1(0≤x ≤1). 由 y =- x (0<x ≤1), 得值域- 1≤ y < 0,反函数 f 1 (x) =x 2 ( -1≤x < 0), x 2 -1 (0≤ x ≤ 1) 故所求反函数为 y = 2 ( - ≤ < . x 1 x 0)

反函数的八个性质及应用

反函数的八个性质及应用 浙江周宇美 反函数是函数一章中的重要内容,在历年的高考数学试题和各地的模拟试题中与反函数有关的问题频频出现,且大多是小巧灵活的客观性试题.许多学生在解答这些问题时小题大作,耗时费力,隐含潜在失分的危险.为便于同学们复习、巩固、解决好这类问题,下面给出由反函数的概念得到的几个性质,再举例分类解析,供参考. 一、反函数的八个性质 ⑴原象与象的唯一互对性 设函数f(x)存在反函数1 f-(x),若函数f(x)将定义域A中的元素a映射成值域为C中的元素b,则它的反函数f-1(x)恰好将值域C中的元素b 唯一还原成A中的元素a,即f(a)=b?1 f-(b)=a. ⑵定义域与值域的互换性 若函数f(x)的定义域为A,值域为C,则它的反函数1 f-(x)的定义域为C,值域为A,即反函数的定义域和值域分别是原函数的值域和定义域 ⑶图象的对称性 在同一直角坐标系中,互为反函数的两个函数的图象关于直线y=x 对称,反之亦然. ⑷奇偶性 奇函数y=f(x)(x∈A)若存在反函数,则它的反函数y=1 f-(x)(x∈C)也是奇函数.定义域为非单元素集的偶函数不存在反函数. ⑸单调性

若函数y =f (x )(x ∈A )是单调函数,则它的反函数y =1f -(x )(x ∈C )也是单调函数,且它们的单调性相同. ⑹ 对应法则互逆性 即有①1f -[f (x )]=x ,x ∈A ,A 是f (x )的定义域; ②f [1f -(x )]=x ,x ∈C ,C 是f (x )的值域. ⑺ 交点性质 函数y =f (x )与其反函数y =1f -(x )的图象交点,或者在直线y =x 上;或者关于直线y =x 对称. 当函数y =f (x )是单调增函数,则函数y =f (x )与它的反函数y =1f -(x )的图象的交点必定在直线y =x 上. ⑻ 自反函数性质 ①函数y =f (x )为自反函数的充要条件是f [f (x )]=x . ②函数y =f (x )为自反函数的充要条件是它自身的图象关于直线y =x 对称. 二、性质的应用举例 例1 函数),1(,11ln +∞∈-+=x x x y 的反函数( ) (A) ),0(,1 1+∞∈+-=x e e y x x (B) ),0(,11+∞∈-+=x e e y x x (C) )0,(,11-∞∈+-=x e e y x x (D) )0,(,11-∞∈-+=x e e y x x 解析:本题无需利用求反函数的三步曲:反解——互换——表定义域,只要利用互为反函数的定义域和值域互换性即可.由x ∈(1,+∞),得y =ln 11x x +-=ln(1+21 x -)≥0,得反函数的定义域为(0,+∞),排除(C)、(D),且反函数的值域为(1,+∞),故选(B). 例2 若f (x )与其反函数1f -(x )是同一个一次函数y =ax +b ,求a 和b

反函数专题练试卷及解析

反函数专题练习试卷及解析 1.2015年上海市黄浦区高三上学期期终调研测试理科数学数学试题第21题 已知函数101 (),R 101 x x g x x -=∈+,函数()y f x =是函数()y g x =的反函数. 求函数()y f x =的解析式,并写出定义域D 2.2013年河北省石家庄市第一中学高一上学期期中考试数学试题第22题 已知函数()1,(0x a f x a a -=+>且1)a ≠恒过定点(2,2). (1)求实数a ; (2)在(1)的条件下,将函数()f x 的图象向下平移1个单位,再向左平移a 个单位后得到函 数()g x ,设函数()g x 的反函数为()h x ,求的()h x 解析式; (3)对于定义在(1,4]上的函数()y h x =,若在其定义域内,不等式22[()2]()()6h x h x h x m +≤++恒成立,求m 的取值范围. 3.2013年河南省实验中学高三上学期期中考试文科试卷第18题 已知函数()()lg 1f x x =+. (1)若()()0121f x f x <--<,求x 的取值范围; (2)若()g x 是以2为周期的偶函数,且当01x ≤≤时,有()()g x f x =,求函数 ()[]()1,2y g x x =∈的反函数. 4.2014年华约自主招生数学试题第3题 (1)求证:(())y f g x =的反函数是1 1 (())y g f x --=. (2)()()F x f x =-,1 ()()G x f x -=-,若1()()F x G x -=,求证()f x 为奇函数. 5.2010年全国高考文科数学试题-四川卷第22题 设1()1x x a f x a +=- (0a > 且 1a ≠),g (x )是f (x )的反函数.

反函数典型例题

反函数求值 例1、设有反函数,且函数与 互为反函数,求的值. 分析:本题对概念要求较强,而且函数不具体,无法通过算出反函数求解,所以不妨试试“赋值法”,即给变量一些适当的值看看能得到什么后果. 解:设,则点在函数的图象上,从而点 在函数的图象上,即.由反函数定义有,这样即有,从而. 小结:利用反函数的概念,在不同式子间建立联系,此题考查对反函数概念的理解,符号间关系的理解. 两函数互为反函数,确定两函数的解析式 例2 若函数与函数互为反函数,求 的值. 分析:常规思路是根据已知条件布列关于的三元方程组,关键是如何 布列如果注意到g(x)的定义域、值域已知,又与g(x)互为反函数,其定义域与值域互换,有如下解法: 解:∵ g(x)的定义域为且,的值域为 . 又∵g(x) 的定义域就是的值域, ∴. ∵g(x) 的值域为 , 由条件可知的定义域是 , , ∴. ∴.

令, 则即点(3,1) 在的图象上. 又∵与g(x) 互为反函数, ∴ (3,1) 关于的对称点(1,3) 必在g(x)的图象上. ∴ 3=1+ , . 故 . 判断是否存在反函数 例3、给出下列函数: (1); (2); (3); (4); (5) . 其中不存在反函数的是__________________. 分析:判断一个函数是否有反函数,从概念上讲即看对函数值域内任意一个 ,依照这函数的对应法则,自变量总有唯一确定的值与之对应,由于这种判断难度较大,故通常对给出的函数的图象进行观察,断定是否具有反函数. 解: (1) ,(2)都没有问题,对于(3)当时,和 ,且 . 对于(4)时,和 .对于(5)当时,和 . 故(3),(4),(5)均不存在反函数. 小结:从图象上观察,只要看在相应的区间内是否单调即可. 求复合函数的反函数

反函数

一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x)。则y=f(x)的反函数为y=f (x)^-1。 存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的) 【反函数的性质】 (1)互为反函数的两个函数的图象关于直线y=x对称; (2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)一般的偶函数一定不存在反函数(但一种特殊的偶函数存在反函数,例f(x)=a(x=0)它的反函数是f(x)=0(x=a)这是一种极特殊的函数),奇函数不一定存在反函数。关于y 轴对称的函数一定没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。 (8)反函数是相互的 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2) [编辑本段]⒈反函数的定义一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= f(y). 若对于y在C中的任何一个值,通过x= f(y),x在A中都有唯一的值和它对应,那么,x= f(y)就表示y是自变量,x是自变量y的函数,这样的函数x= f(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f^-1(y). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 说明:⑴在函数x=f^-1(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f^-1(y)中的字母x,y,把它改写成y=f^-1(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式. ⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f^-1(x),那么函数y=f^-1(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f^-1(x)互为反函数. ⑶从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f^-1(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f^-1(x)的值域;函数y=f(x)的值域正好是它的反函数y=f^-1(x)的定义域(如下表): 函数y=f(x) 反函数y=f^-1(x) 定义域A C 值域C A ⑷上述定义用“逆”映射概念可叙述为: 若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数x=f^-1(x)就叫做函数y=f(x)的反函数. 反函数x=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.

最新反函数常用知识点总结

精品文档 反函数 定义 一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,-1 -1 (x)y=f (x) 。y=f y=f(x)(x∈A)的反函数,记作反函数这样的函数x= g(y)(y∈C)叫做函数的定义域、值域分别是函数y=f(x)的值域、定义域。(不求过深理解) 引申 一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数-1为y=f (x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。 注意:上标╜???指的并不是幂。 (n)(x)是用来指f的f n次微分的。在微积分里,若一函数有反函数,此函数便称为可逆的(invertible)。 性质 -1(x)图象关于直线fy=x对称;(1)函数f(x)与它的反函数 图1 函数及其反函数的图形关于直线y=x对称 (2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C}, 值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)严格增(减)的函数一定有严格增(减)的反函数; (6)反函数是相互的且具有唯一性; (7)定义域、值域相反,对应法则互逆(三反); (8)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)); (9)反函数的导数关系:如果x=f(y)在区间I上单调,可导,且f'(y)≠0,那么它的反函数 y=f'(x)在区间S={x|x=f(y),y属于I }内也可导,且[f'(x)]'=1\[f'(x)]'。 (10)y=x的反函数是它本身。

(完整版)高等数学第七章微分方程试题及答案

第七章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程, 通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α -=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性 非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。

第一册反函数

第一册反函数 教学目标 1.使学生了解反函数的概念; 2.使学生会求一些简单函数的反函数; 3.培养学生用辩证的观点观察、分析解决问题的能力。 教学重点 1.反函数的概念; 2.反函数的求法。 教学难点 反函数的概念。 教学方法 师生共同讨论 教具装备 幻灯片2张 第一张:反函数的定义、记法、习惯记法。(记作A); 第二张:本课时作业中的预习内容及提纲。 教学过程 (I)讲授新课 (检查预习情况) 师:这节课我们来学习反函数(板书课题)§2.4.1反函数的概念。 同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法? 生:(略) (学生回答之后,打出幻灯片A)。 师:反函数的定义着重强调两点: (1)根据y=f(x)中x与y的关系,用y把x表示出来,得到x=φ(y); (2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。

师:应该注意习惯记法是由记法改写过来的。 师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢? 生:一一映射确定的函数才有反函数。 (学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。 师:在y=f(x)中与y=f-1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y 是函数值;后者y是自变量,x是函数值。) 在y=f(x)中与y=f–1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y 是后者中的x。) 由此,请同学们谈一下,函数y=f(x)与它的反函数y=f–1(x)两者之间,定义域、值域存在什么关系呢? 生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的’值域、定义域。 师:从反函数的概念可知:函数y=f(x)与y=f–1(x)互为反函数。 从反函数的概念我们还可以知道,求函数的反函数的方法步骤为: (1)由y=f(x)解出x=f–1(y),即把x用y表示出; (2)将x=f–1(y)改写成y=f–1(x),即对调x=f–1(y)中的x、y。 (3)指出反函数的定义域。 下面请同学自看例1 (II)课堂练习课本P68练习1、2、3、4。 (III)课时小结 本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。 (IV)课后作业 一、课本P69习题2.41、2。 二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。 板书设计

高考数学 反函数

高考数学 反函数 时间:45分钟 分值:100分 一、选择题(每小题5分,共30分) 1.设函数f (x )=log 2x +3,x ∈=__________. 解析:依题意得g (-1)=-1+2=1,g =g (1)=f -1(1).设f -1(1)=t ,则有f (t )=1,即e 2(t -1)=1,t =1,所以g =1. 答案:1 9.已知函数f (x )=a -x x -a -1 的反函数f -1(x )的图象的对称中心是(-1,3),则实数a 的值为__________. 解析:因为f -1(x )的图象的对称中心是(-1,3),所以f (x )的图象的对称中心为(3,-1).又由f (x )=a -x +1-1x -a -1=-1-1x -a -1 ,则f (x )的图象可由g (x )=-1x 的图象中心(0,0)平移到(3,-1)得到,所以a +1=3,即a =2. 答案:2 10.(2009·重庆二次调研)若函数f (x )=log 2(4x -2),则方程f - 1(x )=x 的解是__________. 解析:由f -1(x )=x ,得x =f (x ),∴x =log 2(4x -2),即2x =4x -2,∴2x =2.∴x =1. 答案:x =1 三、解答题(共50分) 11.(15分)求y =lg(x -x 2-4)的反函数. 解:由x -x 2-4>0,得x >x 2-4, ∴????? x >0,x 2-4≥0, x 2>x 2-4. ∴x ≥2. ∴lg(x -x 2-4)=lg 4 x +x 2-4 ≤lg 42=lg2. 由y =lg(x - x 2-4).得 x -x 2-4=10y , x 2-4=x -10y . ∴x 2-4=x 2-2·10y x +102y . ∴x =12 (4·10-y +10y ). 故f -1(x )=12 (10x +4·10-x ),x ∈(-∞,lg2]. 12.(15分)设函数f (x )=2x -1有反函数f -1(x ),g (x )=log 4(3x +1), (1)若f -1(x )≤g (x ),求x 的取值范围D ; (2)设H (x )=g (x )-12 f -1(x ),当x ∈D 时,求函数H (x )的值域及它的反函数H -1(x ). 解:(1)∵f (x )=2x -1的定义域是R ,值域是(-1,+∞).由y =2x -1解得x =lo g 2(y + 1)(y >-1),

反函数的基本知识点

1 反函数的基本知识点 一.定义:设式子)(x f y = 表示y 是x 的函数,定义域为A ,值域为C ,从式子)(x f y =中解出x , 得到式子)(y x ?=,如果对于y 在C 中的任何一个值,通过式子)(y x ?=,x 在A 中都有唯一确定的值和它对应,那么式子)(y x ?=就表示x 是y 的函数(y 是自变量),这样的函数,叫做)(x f y =的反函数 ,记作)(1y f x -=,即()y f y x 1)(-==?,一般习惯上对调()y f x 1-=中的字母y x ,,把它改写成)(1x f y -=。 (1).反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数; (2).原函数的定义域、值域分别是反函数的值域、定义域, ()图象在点图象上)在(点几何语言: )(),(,)()(11x f y a b P x f y b a P a b f b a f --='?==?= (3).()y f x =与1()y f x -=的图象关于y x =对称. 二.求反函数的一般步骤 (1) 确定原函数的值域,也就是反函数的定义域 (2) 由)(x f y =的解析式求出)(y x ?= (3) 将y x ,对换,得反函数的一般表达式)(1x f y -=,标上反函数的 定义域(反函数的定义域不能由反函数的解析式求得) 分段函数的反函数可以分别求出各段函数的反函数后再合成。 三.掌握下列一些结论

2 (1) 单调函数?一一对应?有反函数 (2) 周期函数不存在反函数 (3) 若一个奇函数有反函数,则反函数也必为奇函数 (4) 证明)(x f y = 的图象关于直线x y =对称,只需证)(x f y =的反函数和)(x f y =相同。

2016年山东单招数学模拟试题:反函数

2016年山东单招数学模拟试题:反函数 【试题内容来自于相关网站和学校提供】 1:函数的反函数是() A、。 B、。 C、。 D、。 2:已知函数的反函数为,则 A、 B、 C、 D、 3:函数f(x)=3+sinx,x∈[0,1)的反函数的定义域是 A、[0,1) B、[1,3+sin1) C、[0,4) D、[0,+ ) 4:设函数存在反函数,且函数的图象过点(1,2),则函数的图象一定过点() A、 B、(2,1) C、(2,3) D、(1,1)

5:若是方程的解,是的解,则的值为() A、 B、 C、 D、 6:若函数y=(x≤-1),则f -1 (2)=。 7:函数的反函数为_______. 8:函数与的图像关于直线对称,则 . 9:若函数与的图像关于直线对称,则 10:设点在曲线上,点在曲线上,则的最小值等于。 11:已知函数(其中且) (I)求函数f(x)的反函数 (II)设,求函数g(x)最小值及相应的x值;

(III)若不等式对于区间上的每一个x值都成立,求实数m的取值范围。 12:已知函数f(x)=() x , 函数y=f -1 (x)是函数y=f(x)的反函数。 (1)若函数y=f -1 (mx 2 +mx+1)的定义域为R,求实数m的取值范围; (2)当x∈[-1,1]时,求函数y=[f(x)] 2 -2af(x)+3的最小值g(a); (3)是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n 2 ,m 2 ]?若存在,求出m、n的值;若不存 在,请说明理由 13:(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分. 设常数,函数 (1)若=4,求函数的反函数; (2)根据的不同取值,讨论函数的奇偶性,并说明理由. 14: 15:已知函数,,。 (1)若,试判断并用定义证明函数的单调性; (2)当时,求证函数存在反函数。

反函数的存在性及求法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1反函数的定义及其性质 (1) 1.1反函数的定义 (1) 1.2反函数的性质 (2) 1.2.1反函数的简单性质 (2) 1.2.2关于反函数图像的性质 (3) 1.2.3反函数的连续性与可微性 (5) 2反函数存在性的判定 (6) 2.1反函数存在性判定(一) (6) 2.1反函数存在性判定(二) (6) 3反函数的求法 (8) 3.1反函数的一般求法 (8) 3.2几类特殊函数的反函数的求解 (9) 3.2.1周期函数的反函数 (9) 3.2.2分段函数的反函数 (11) 3.2.3复合函数的反函数 (12) 参考文献 (14) 致谢 (14)

函数的反函数的存在性及其求法 数学与应用数学专业薛云 指导老师武秀美 摘要反函数是数学中的一个重要概念,文章分三部分阐述了反函数的概念、存在条件及其求法.首先,文章从不同角度给出了反函数的定义;其次,文章详细阐述了反函数的存在条件,从图像、定义及单调性等多方面加以论述;最后,文章给出了反函数的求法一般的步骤,并在此基础上介绍了一些特殊函数的反函数的求法. 关键词反函数周期函数反函数存在性定理 The Existence and Solution of Inverse Function of Functions Student majoring in Mathematics and applied mathematics Xue Yun Tutor Wu Xiumei Abstract The inverse function is an important concept in mathematics. This article has three parts about the concept of inverse function, the condition of existence of inverse function and the solution of inverse function. First, it gives the definition of inverse function, secondly, it gives the conditions of existence of inverse function and descries this aspects from image, definition and monotonicity. Finally, it gives the method of solution of inverse function and introduces the solution of the inverse function of some special functions. Key words Inverse function Periodic function Existence theorem of inverse function 引言函数是数学中的一个基本概念,对函数的性质、图像及其相关问题的研究自然地引发了对函数的反函数的探讨;同时在生活中,函数的反函数也占有较为重要的地位,但是反函数的定义很抽象,难于理解,中学数学中有一些基本的反函数的知识,在现有的数学分析和高等数学教科书中,也都有对反函数的简要介绍,但都不做重点讲述,这使对反函数的系统理解和应用更加不利.这篇文章在总结前例的基础上,对反函数的定义、性质、图像、存在性、求法等进行了详细地讨论. 1 反函数的定义及其性质 1.1 反函数的定义 定义]1[1一般地,式子) y=表示y是自变量x的函数,设它的定义域为A,值 (x f 域为C.从式子) (x =.如果对于y在C中的任何 (y x? f y=中解出x,得到式子) 一个值,通过式子) =,x在A中都有唯一确定的值和它对应,那么式子 x? (y

初中数学中考复习题反函数

初中数学中考复习题-----反函数

————————————————————————————————作者:————————————————————————————————日期:

反比例函数 一:【课前预习】 (一):【知识梳理】 一:【课前预习】 (一):【知识梳理】 1.反比例函数:一般地,如果两个变量x 、y 之间的关 系可以表示成 (k 为常数,k ≠0)的形式(或 y=kx -1 , k ≠0),那么称y 是x 的反比例函数. 【名师提醒: 1、在反比例函数关系式中:k ≠0、x ≠0、y ≠0 2、反比例函数的另一种表达式为y= (k 是常数,k ≠0) 3、反比例函数解析式可写成xy= k (k ≠0)它表明反比例函数中自变量x 与其对应函数值y 之积,总等于 】 2.反比例函数的概念需注意以下几点: (1) k 为常数,k ≠0; (2)k x 中分母x 的指数为1;例如y= x k 就不是反比例 函数; (3)自变量x 的取值范围是x ≠0的一切实数; (4)因变量y 的取值范围是y ≠0的一切实数. 3.反比例函数的图象和性质. (1)、反比例函数 y=k x (k ≠0)的图象是 ____它 有两个分支,关于 对称 (2)、反比例函数y=k x (k ≠0) 当k>0时它的图象位于 ,___象限,在每一个象限内曲线从左到右下降,y 随x 的增大而 当k<0时,它的图象位于____,___象限,在每一个象限内,曲线从左到右上升,y 随x 的增大而 。 【名师提醒: 1、在反比例函数y=k x 中,因为x ≠0,y ≠0所以双曲线 与坐标轴无限接近,但永不与x 轴y 轴 2、在反比例函数y 随x 的变化情况中一定注明在每一个象限内】 4、反比例函数中比例系数k 的几何意义: 反曲线y=k x (k ≠0)上任意一点P 向两坐标轴作垂线交 于A,B 两线PA,PB 与坐标轴围成的图形面 积 ,即如图: AOBP= S △AOP= 【名师提醒:k 的几何意义往常与前边提示中所谈到的xy=k 联系起来理解和应用】 5.画反比例函数的图象时要注意的问题: (1)画反比例函数图象的方法是描点法;画反比例函数的图象要注意自变量的取值范围是x ≠0,因此,不能把两个分支连接起来; (2)由于在反比例函数中,x 和y 的值都不能为0,所以,画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y 轴的变化趋势. 6. 反比例函数y=k x (k≠0)中比例系数k 的几何意义,即过双曲线y= k x (k≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为│k│。 7. 用待定系数法求反比例函数解析式时,可设解析式为 因为反比例函数y=k x (k ≠0)中只有一个被定系 数 所以求反比例函数关系式只需知道一组对应的x 、y 值或一个点的坐标即可,步骤同一次函数解析式的求法 一、 反比例函数的应用 二、 解反比例函数的实际问题时,先确定函数 解析式,再利用同象找出解决问题的方案,这里要特别注意自变量的 (二):【课前练习】 1.下列函数中,是反比例函数的为( ) A . 2 2y x =;B . 12y x =- ;C . 2x y =;D . 13 y x =+

高一函数知识点总结

高一函数知识点总结 (一)、映射、函数、反函数 1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。 2、对于函数的概念,应注意如下几点: (1)掌握构成函数的三要素,会判断两个函数是否为同一函数。 (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。 (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g 的复合函数,其中g(x)为内函数,f(u)为外函数。 3、求函数y=f(x)的反函数的一般步骤: (1)确定原函数的值域,也就是反函数的定义域; (2)由y=f(x)的解析式求出x=f—1(y); (3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。 注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。 ②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。 (二)、函数的解析式与定义域

1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型: (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑; (2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如: ①分式的分母不得为零; ②偶次方根的被开方数不小于零; ③对数函数的真数必须大于零; ④指数函数和对数函数的底数必须大于零且不等于1; ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。 应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。 (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。 已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g (x)的值域。

相关文档
最新文档