几何图形中函数解析式的求法(学法指导)

几何图形中函数解析式的求法(学法指导)
几何图形中函数解析式的求法(学法指导)

几何图形中函数解析式的求法

函数是初中数学的重要内容,也是初中数学和高中数学有相关联系的细节,在历年的中考试题中都占有重要的份量,而求函数的解析式则成为中考的热点。求函数的解析式的方法是多种多样的,但是学生往往把思维固定在用“待定系数法”去求函数的解析式。而使用待定系数法去求函数的解析式的大前提是必须根据题目的条件,选用恰当函数(如正、反比例函数,一次、二次函数)的表达式。如果题目中能根据直接条件或间接条件给出函数的类型,当然是选用待定系数法求函数的解析式。

但我们发现,在几何图形中求函数解析式却成为初中数学考试的常见题、压轴题。同时我们也发现,在几何图形中求函数解析式往往是无法确定所求函数的类型,因此用待定系数法进行解题是行不通的。我们知道,函数的解析式也是等式,要建立函数解析式,关键是运用已知条件在几何图形中找出等量关系,列出以变量有关的等式。下面以几个例子来探求在几何图形中建立函数解析式的常见类型和解题途径。

一、 用图形的面积公式确立等量关系

例1、如图1,正方形ABCD 的边长为2,有一点P 在

BC 上运动,设PB=x ,梯形APCD 的面积为y (1)求y 与x 的函数关系式;

(2)如果S △ABP =S 体型APCD 请确定P 的位置。

分析:本题所给的变量y 是梯形的面积,因此可根据梯形面积公式

B

C

A

D

P 图1

A D C

B

E

F

G

N

图2

S=2

1(上底+下底)×高 ,分别找出上底、下底、高问题可获解决。因为上底CP=x -2,下底AD=2,高CD=2,于是由梯形面积公式建立两个变量之间的等量关系,2)22(2

1

?+-=x y ,整理得:22

2

+-=x y 。

(2)略 例2、如图2,在直角梯形ABCD 中,AD ∥BC ,∠BCD=90°,AD=a ,BC=2a ,CD=2,四边形EFCG 是矩形,点E 、G 分别在腰AB 、CD 上,

点F 在BC 上。设EF=x ,矩形EFCG 的面积为y 。(2002年佛山中考题) (1)求y 与x 的函数关系式;

(2)当矩形EFCG 的面积等于梯形ABCD 的面积的一半时,求x 的值; (3)当∠ABC=30°时,矩形EFCG 是否能成正方形,若能求其边长,若不能试说明理由。

分析:本题所给的变量y 值是矩形的面积,因此根据矩形面积公式S=长×宽,若能算出长FC 与宽EF ,或者用变量x 、y 表示FC 和EF ,则问题可获解决。其中宽EF=x ,问题归结为求出长FC ,从而两个变量x 、y 之间的关系通过矩形面积公式建立了。

解:(1)过点A 作AN ⊥BC 于N ,因为在矩形EFCG 中,EF ⊥BC , ∴EF ∥AN ∴

AN

EF

BN BF = 即

22x a a BF =-, 得BF=2

ax

A

B C

D

O E

F

图3

∴EG=FC=2

42ax

a BF a -=- ∴x ax

a y ?-=

2

4 ∴所求的函数关系式是ax ax y 22

1

2+-=(0<≤x 2) (2)、(3)略

二、 由直角三角形,利用勾股定理确立等量关系

例3、如图3,在Rt △ABC 中,∠B=90°,∠A=30°,D 为BC 边上一动点,AD 的垂直平分线EF 交B 、AD 、C 于E 、O 、F ,AB=2。

(1)BD=x ,AE=y ,求y 关于x 的函数关系式; (2)是否存在x 使四边形AEDF 为菱形?若存在,则说明理由。

分析:本题所给图形中直角三角形较多,将两个变量x ,y 之间的关系集中到同一直角三角形中问题可获得解决。因为BD=x ,AE=y ,AB=2,所以BE=2-y ,又根据线段中垂线的性质知DE=AE=y 。于是,在Rt ΔBDE 中,由勾股定理建立两个变量之间的等式。 解:(1)∵EF 是线段AD 的中垂线, ∴AE=DE=y

BD=x ,BE=y -2,在Rt ΔBDE 中, BD 2+BE 2=DE 2,

即222)2(y y x =-+ 整理得14

12+=x y

在Rt ΔABC 中,∠B=90°,∠BAC=30°,AB=2 , ∴BC=

332 ,∴0

2。 于是14

12+=x y (0

3

2)为所求的函数解析式。(2)略

三、 用平行线截线段成比例,利用比例式确立等量关系

例4、如图4,在ΔABC 中,AB=8,AC=6,⊙O 是ΔABC 的外接圆,且BC 是直径,⊙O 与⊙O ’内切于点A ,与边AB 、AC 分别交于点D 、E 。设BD=x ,DE=y 。

(1)求y 关于x 的函数解析式,并指出自变量x 的取值

范围;

(2)求当⊙O ’与BC 相切时y 的值。

分析:AB=8,BD=x ,AD=x -8,如果能求得BC 的长,知道DE ∥BC ,则问题便迎刃而解。显然,这两个问题可分别通过直径所对的圆周角的性质、弦切角定理获得解决。

解:(1)如图4,过点A 作⊙O 和⊙O ’的公切线AT ,则有

O ‘ O

B

C

D

E

A

图4

· · T

A B

C

D

P

Q

图5

∠BAT=∠DEA=∠BCA 。 ∴DE ∥BC ,∴

BC

DE

AB AD =。 ∵BC 是直径,∴∠BAC=90°, ∴BC= 10682222=+=+AC AB 。 ∴

10

88y

x =-, ∴y 与x 的函数关系式是:104

5

+-=x y (0

四、用相似三角形,对应边成比例的比例式确立等量关系

例5、已知:矩形ABCD 中,AB=6cm ,BC=8cm ,在

BC 边上取一点P (P 与B 、C 两点不重合),在DC 边上取一点Q ,使∠APQ=90°。

(1)设BP 的长为x ,CQ 的长为y ,求出y 与x 之间的函数关系式;

(2)试讨论当P 在什么位置时,CQ 的值最大。

分析:本题中∠APQ=90°,若连结AQ ,问题可以转化为上述提到的“用直角三角形,利用勾股定理确立等量关系”,但计算过程中会比较复杂且运算量较大,容易算错。但仔细观察可以发现,由于BP=x ,CQ=y ,其中两个变量都分别在不同的三角形中,要把它们建立起等量关系,则可考虑证△ABP ∽△PCQ ,由相似三角形对应边成比例可得:

CQ

BP

PC AB =。从而问题可获解

决,相比之下比第一种方法要简单。

例6、如图6,△ABC 是边长为2的等边三角形。点E 、F 分别在CB 和BC 的延长线上,且 ∠EAF=120°。设BE=x ,CF=y ,求出y 与x 之间的函数关系式。

分析:本题中的BE=x ,CF=y ,其中两个变量都分别在不同的三角形中,要把它们建立起等量关系,则可证

△ABE ∽△FCA ,由相似三角形对应边成比例可得:AC

EB

FC AB 。从而问题可获解决。

例7、已知:△ABC 是正三角形,⊙O 切AB 、AC 于D 、E 、G 是BC 上一动点,DG 交⊙O 于F ,若AB=16,AD=6,设DG=x ,EF=y 。

(1)当点G 在BC 上运动时,求y 与x 的函数关系式; (2)求自变量x 的取值范围; (3)求EF 的最大值。

分析:其中DG=x ,EF=y ,由于G 是一个动点,当G 的位置改变,x 、y 的值也会随着改变,这种“动”的变化对于学生的理解来说是比较抽象的。如果连结OD 、OE ,由四边形内角和定理不难发现,在“动”中存在着一个不动的量,就是∠DFE 始终都等于60°。由于△ABC 是正三角形,即有∠B =

A

E F

图6

·

O

E

D

A

B C

G

F

图7

∠DFE ,若能找出分别含有DG 、EF 两边的两个三角形相似,则问题就迎刃而解。显然,这个问题可通过弦切角定理找出∠BDG=∠FED ,从而证出两个三角形相似。

解:(1)如图7,连结OD 、DE 、DE ∵AB 、AC 分别切⊙O 于D 、E

∴OD ⊥AB ,OE ⊥AC 即∠ADO=∠AEO=90° 又∵∠A=60° ∴∠DOE=120°

∴∠DFE=60° 即有∠B =∠DFE ∴∠BDG=∠FED ∴△DBG ∽△EFD ∴

ED

DG

EF DB = ∵AD=AE=6(切线长定理) ∠A=60° ∴DE=6 ∴

6

610x

y =- 整理得:x y 60=

∴y 与x 的函数关系式是: x

y 60

=

(2)(3)略 几何图形中求函数的解析式是属于初中数学常见的几何的、代数的综合题。由于综合题的条件多,比较分散,或者比较隐蔽,因此增加了解题的难度。因此在解决这类问题时,要善于根据题目给出的条件结合几何图形找出突破口。而数形结合的思想是在分析解综合题思路的一种重要的数学思想.运用这种思想可以把代数的问题化成几何的问题,最终由几何性质解决代数问题,把复杂的问题转化成简单的问题,从而完成数与数的转化,形与形的转化,数与形的转化。

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

函数解析式的七种求法(讲解)之令狐文艳创作

函数解析式的七种求法 令狐文艳 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求 )(x f 解:设b ax x f +=)()0(≠a ,则 二、配凑法:已知复合函数 [()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时, 常用配凑法。但要注意所求函数 ()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2已知221)1(x x x x f +=+)0(>x ,求 ()f x 的解析式。 解:2)1()1(2-+=+x x x x f , 21≥+x x 三、换元法:已知复合函数 [()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。

例3已知 x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一 般用代入法。 例4已知:函数 )(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点 )3,2(-的对称点 则?????=+'-=+'322 2y y x x ,解得:???-='--='y y x x 64, 点),(y x M '''在)(x g y =上 把???-='--='y y x x 64代入得: 整理得 672---=x x y 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例5设,)1(2)()(x x f x f x f =-满足求 )(x f 解 x x f x f =-)1(2)(① 显然,0≠x 将x 换成x 1 ,得:

求函数解析式常用的方法

求函数解析式常用的方法 求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。 以下主要从这几个方面来分析。 (一)待定系数法 待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。 解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得 22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得22(2)()1ax a b x a b c ax b c x c +++++=++++ 得 212211120011()22 a a b b a b c c b c c f x x x ?=?+=+????++=+?=????=?=??? ∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x (k≠0);f(x)为

二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0) (二)换元法 换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例2 :已知1)1,f x =+求()f x 的解析式。 解析: 1视为t ,那左边就是一个关于t 的函数()f t , 1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。 1t = 2220 1 ()(1)2(1)1()(1)x t f t t t t f x x x ≥∴≥∴=-+-+=∴=≥ 小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。 注意:换元后要确定新元t 的取值范围。 ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 (三)配凑法 已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用

政治学科学法指导

高中政治学科学法指导 和初中政治相比,高中政治学科的内容多,抽象性、理论性强,因此不少同学进入高中之后很不适应,特别是高一年级,进校后,《经济生活》里首先遇到的是理论性很强的经济理论,这就使一些初中政治学得还不错的同学不能很快地适应而感到困难,以下就怎样学好高中政治学习谈几点意见和建议。 一、改变落后的观念是前提。 近年来初中政治学科采用开卷考试的形式,分值按50%记入中考总成绩。很多学生受此影响,以为高中政治也是开卷考,政治成绩只按50%记入总分,因此在思想上不重视政治学科的学习。这是大错特错的,高中政治学科十分重要,它是文科高考的必考科目,采用闭卷形式,总分100分;同时也是会考的必考科目,并且一旦会考政治学科不合格,就无法获得高中毕业证书。因此每一位高一新生要改变以下落后观念,高度重视政治学科的学习。 1、以为政治是开卷考,不用记就能学好。政治是文科,学习文科不背是学不好的,学习政治也一样,我们要做到的是找好方法,背得轻松,背得有意思。 2、以为政治只要勤背就行了。现在的考试更重视知识的运用能力,光会背还不行,我们必须掌握一些答题的技巧,多练习、多总结。 3、以为只要高三认真学习就可以了。事实上高一、高二非常重要,在这两年我们主要的任务是培养学习兴趣、梳理基础知识、提高答题能力、总结答题方法。没有高一、高二的努力,高三政治学习也就成了无源之水。 二、提高听课的效率是关键。 学生学习期间,在课堂的时间占了一大部分。因此听课的效率如何,决定着学习的基本状况,提高听课效率应注意以下几个方面: 1、课前预习能提高听课的针对性。预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平。因此预习很重要,会学习的人一定要提前预习,做到心中有数。 预习时要注意看教材每章开头的引言。现行高中教材每章的篇首有一段简短引言,主要介绍本章的基本内容、知识脉胳和基本观点,语言概括、精炼。上课前应该精读,从而对本章内容有一个浅层次的整体印象。当学完课文内容后,再回首详细理解该段引言,我们就能站在宏观角度去理解课文,试着学会繁中求简,详中求略。 预习教材的文献资料。现行教材,突出政治学科特点,针对高中学生实际,适当地增添了专家点评、相关链接、名词点击等,丰富内容、开拓视野。而教材材料的引入,为培养我们的材料阅读能力和材料处理的应变能力提供了极好素材。因而我们在预习政治的过程中不能熟视无睹,不要冷落或遗忘了它们。 预习教材中穿插的练习题。课本中的一些练习题虽是一个较低层次的训练,但其作用不可小视。俗话说:“万丈高楼平地起”,低层次能力的积累是高层次能力的基础和载体。 2、听课过程中的科学。 首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书本等物丢三落四的现象;上课前也不应做过于激烈的体育运动,以免上课后不能平静下来。 其次就是听课要全神贯注。全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,生动而深刻的接受老师所要表达的思想。心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。口到:就是在老师的指导下,主动回答

高考求函数解析式方法及例题

高考求函数解析式方法 及例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数专题之解析式问题 求函数解析式的方法 把两个变量的函数关系,用一个等式来表示,这个等式叫函数的解析式,简称解析式。 求函数解析式的题型有: (1)已知函数类型,求函数的解析式:待定系数法; (2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式; (4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法; (5)应用题求函数解析式常用方法有待定系数法等。 ,求f(x)的解, 待定系数法 ()f x 22(2)f x -=(2)f x --设二次函数满足且图象在轴上的截距为1,在轴截得的线段长为,求的解析式。 x y ()f x 例题:

解法一、 1222x x a ? -= =2248b ac a ∴-=21 ()21 2f x x x ∴=++1 c =又1 ,2,12a b c = ==解得2 ()(0)f x ax bx c a =++≠设(2)(2)f x f x -=--由40 a b -=得 解法二、 (0)1f =41 a k ∴+=12 22x x -=222k a -∴=1 ,12 a k ∴= =-22 1 ()(2)121212 f x x x x ∴= +-=++()y f x =2 x =-得的对称轴为 (2)(2)f x f x -=--由∴2()(2)f x a x k =++设 二 【换元法】(注意新元的取值范围) 已知))((x g f 的表达式,欲求)(x f ,我们常设)(x g t =,从而求得)(1t g x -=,然后代入 ))((x g f 的表达式,从而得到)(t f 的表达式,即为)(x f 的表达式。 三【配凑法(整体代换法)】 若已知))((x g f 的表达式,欲求)(x f 的表达式,用换元法有困难时,(如)(x g 不存在反函数)可把)(x g 看成一个整体,把右边变为由)(x g 组成的式子,再换元求出)(x f 的式子。

浅议函数解析式的几种求法

浅议函数解析式的几种求法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 解:设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴? ?????=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+x x 2)(2-=∴x x f )2(≥x 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数)(2 x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式

经典函数解析式求法

求函数定义域的方法 一.已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k ππ+, k ∈z } 例1 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 二. 复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例2 (1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f (x )的定义域为〔a ,b 〕,求f 〔g (x )〕的定义域是解a ≤g (x )≤b ,即得所求的定义域。 (2)是已知f 〔g (x )〕的定义域,求f (x )的定义域。其解法是:已知f 〔g (x )〕的定义域为〔a ,b 〕,求f (x )的定义域的方法为:由a ≤x ≤b ,求g (x )的值域,即得f (x )的定义域。 解:(1)令-2≤X 2—1≤2 得-1≤X 2≤3,即 0≤X 2≤3,从而 x ∴函数y=f (x 2-1)的定义域为〔。 (2)∵y=f (2x+4)的定义域为〔0,1〕,指在y=f (2x+4)中x ∈〔0,1〕,令t=2x+4, x ∈〔0,1〕,则t ∈〔4,6〕,即在f (t )中,t ∈〔4,6〕∴f (x )的定义域为〔4,6〕。 (3)由 -1≤x +1≤2 -1≤X 2—1≤2 得 x ≤1

二次函数解析式的8种求法

二次函数解析式的8种求法 河北 高顺利 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1 由m 2–2m –1 = 2得m =-1 或m =3 ∴ m = 3 . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 . 分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2 中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一) 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.

例3、二次函数 253212++=χχy 的图像是由22 1χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的. 解: 253212++= χχy = ()232 12-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的. 这两类题目多出现在选择题或是填空题目中 四、一般式 当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2 ,转化成一个三元一次方程组,以求得a ,b ,c 的值; 五、顶点式 若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数; 六、两根式 已知图像与 x 轴交于不同的两点()()1200x x ,,, ,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值. 例4、根据下面的条件,求二次函数的解析式: 1.图像经过(1,-4),(-1,0),(-2,5) 2.图象顶点是(-2,3),且过(-1,5) 3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,- 29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得: 40542a b c a b c a b c -=++??=-+??=-+? 解得:?? ???-=-==321c b a

如何加强思想政治学习方法的指导

如何加强思想政治学习方法的指导 我国教育家陶行知曾经说,教师应将“开发文化宝库的钥匙教给学生”,而不是满足于把知识传授给学生。英国教育家洛克也指出,导师应该记住:他的工作不是把世界上可以知道的东西全部交给学生,而是使学生爱好知识、尊重知识,使学生采用正当的方法去求知,去改进自己。所以,教师应把学习方法的指导当作自己光荣的义务和责任,正如中国的一句古训说的那样“授人以鱼不如授人以渔”。 一、加强学习方法指导的原则 1.根据学生学习思想政治课的特点和一般规律,介绍和推广好的学习方法。 思想政治课学习方法的指导,只有符合中学生的学习特点和一般规律才能产生良好的效果。这就要求教师了解和研究学生的学习特点和一般规律,明确思想政治课的教学目的和任务。小学和初中的思想政治课通过对学生系统进行公民的品德教育和初步的马克思主义常识教育,帮助学生确立正确的政治方向,培养良好道德品质,养成文明的行为习惯和形成正确的世界观、人生观;思想政治课的这些特殊任务要求学生在学习思想政治课时采用的学习方法与其他课程的学习方法有所不同,要求加强讨论、练习和运用。

2.依据现代教育理论,介绍和推广符合现代教育要求的学习方法。 现代教育理论认为:学生是知识接受的主体,教育活动必须是以学生主动参与为前提。未来社会需要的人才应当具备5种意识与能力:一是合作精神,二是竞争意识,三是责任感,四是自主发展,五是创新能力。这5种意识与能力集中体现了新型人才对社会的“主观能动性”即主体性。因此说,培养具有“主体意识”的人成为教育发展的外部动因和最终目标。或者说,教育的最终目标是培养未来社会的主体。而要培养具有“主观能动性”的人需要在课堂教学中发挥和培养学生的主体作用。因此,教师应向学生介绍一些符合现代教育理论要求的,能够充分调动学生主动参与积极性,充分的发挥学生的主体作用的学习方法。 3.结合生活中的具体事例,教给学生运用马列主义观点、立场分析实际问题的方法。 学习马列主义、毛泽东思想、邓小平理论的基本常识的目的在于应用。所以,思想政治课老师在帮助学生理解和掌握马列主义、毛泽东思想、邓小平理论基本观点和常识的基础上,应着力于引导学生用马列主义、毛泽东思想、邓小平理论的观点、立场和方法分析和说明实际问题。培育和锻炼学生分析和说明问题的实际能力。 二、学习方法指导的基本内容

求函数解析式的六种常用方法

求函数解析式的九种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式, 把g (x )看成一个整体t ,进行换元,从而求出f (x )的方法。 例1 已知f (x x 1 +)= x x x 112 2++,求f (x )的解析式. 解: 设 x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1 )11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2 -x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2x ,求f (x )的解析式. 解: f (x +1)= 2 )(x +2x +1-1=2)1(+x -1, ∴ f (x +1)= 2 )1(+x -1 (x +1≥1),将x +1视为自变量x ,则有 f (x )= x 2 -1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2 +bx+c ,则 f (0)= c= 0 ①

f (x+1)= a 2)1(+x +b (x+1)= ax 2 +(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ?? ?==. 7,1b a 故f (x )= x 2 +7x. 评注: 已知函数类型,常用待定系数法求函数解析式. 四、消去法(方程组法) 例4 设函数f (x )满足f (x )+2 f ( x 1 )= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x 1 去代替已知中x ,便可得到另一个方程,联立方 程组求解即可. 解:∵ f (x )+2 f ( x 1 )= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x 1 (x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32 -3 x (x ≠0). 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程 练习:已知定义在R 上的函数满足 ,求 的解析式。 五、特殊值法 例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y ,有 f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式. 分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到 f (x )函数解析式,只有令x = y. 解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得 f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.

函数解析式求法总结及练习题

2[()]()()f f x af x b a ax b b a x ab b =+=++=++函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法. 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 解:设b ax x f +=)()0(≠a ,则 ∴?? ? =+=3 42b ab a , ∴????? ?=-===3 2 1 2b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 . 二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域. 例2 已知221 )1(x x x x f + =+ )0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+x x x x f , 21≥+x x , 2)(2-=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解 析式.用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表 示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+=x t ,则1≥t ,2)1(-=t x . x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x . 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点. 则 ?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 , x x y '+'='∴2. 把???-='--='y y x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g . 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置

求函数解析式的方法

求函数的解析式的方法 求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多,下面对一些常用的方法一一辨析. 一.换元法:已知f (g(x)),求f(x)的解析式,一般的可用换元法,具体为:令t=g(x),在求出f(t)可得f (x )的解析式。换元后要确定新元t 的取值范围。 例题1.已知f(3x+1)=4x+3, 求f(x)的解析式. 令t=3x+1, x= 31-t 3 54)(3314)(-=?+-?=?t t f t t f 练习1.若x x x f -=1)1(,求)(x f . 二.配凑法:把形如f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有g(x)的形式,再把g(x)用x 代替。 一般的利用完全平方公式。 例题2.已知221)1(x x x x f +=-, 求)(x f 的解析式. 练习2.若x x x f 2)1(+=+,求)(x f . 三.待定系数法:已知函数模型(如:一次函数,二次函数,指数函数等)求解析式,首先设出函数解析式,根据已知条件代入求系数 例题3.设)(x f 是一元二次函数, )(2)(x f x g x ?=,且212)()1(x x g x g x ?=-++, 求)(x f 与)(x g . 解;设c bx ax x f =+=2)(,则g(x)=2x (ax 2+bx+c) 练习3.设二次函数)(x f 满足)2()2(--=-x f x f ,且图象在y 轴上截距为1,在x 轴上截得的线段长为22,求)(x f 的表达式. 四.解方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程,组成方程组,利用消元法求f (x )的解析式 例题4.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式 x x f x f 4)1(2)(3=+,求)(x f 的解析式. 解;令x x 1=,x x f x f 14)(2)1(3?=+ 联立方程,得: ??? ????=+=+x x f x f x x f x f 4)(2)1(34)1(2)(3 , 解得x x x f 58512)(-= 练习4.若x x x f x f +=-+1)1()(,求)(x f . 五.利用给定的特性求解析式:一般为已知x>0时, f(x)的解析式,求x<0时,f(x)的解析式。首先求出f(-x)的解析式,根据f (x )=f(-x)或f(x)=-f(-x)求得f(x) 例题5设)(x f 是偶函数,当x >0时, x e x e x f +?=2)(,求当x <0时,)(x f 的表 达式. 由x>0时,x e x e x f +?=2)(,则x x e ex e x e x f --+=+-?=-22)()(

高中政治学法指导

高中政治学法指导 东安一中高一政治组 高中的思想政治与初中相比有很大差异,知识的广度,深度以及考查的角度都有所不同。可参考后面附一高中思想政治必修、选修课程)高中政治具有更强的学科化特点,因此相对增加了一些难度。所以在学政治的时候要学会读书,把厚书读薄,薄书读厚,做到出生入死,死去活来。要想熟练灵活地运用知识,就需要掌握适合自己的学习方法,并且做到理论与实际相结合,而且还需要同学们积极关注国际国内大事,扩大视野,启迪思维能力,因为政治是时效性很强的科目,它的考试范围肯定会联系到当前一些时政要闻、社会热点。掌握时事有许多渠道,可以听新闻,看报纸杂志或者听老师的讲解。政治学科很早就提出“题目在书外,观点在书内”思想,也就是说,政治题目的背景材料是随处可取的,千变万化,你想指望背一背就能应付,不大可能。(可参考后面附二2013年高考经济生活试题)为此,希望同学们做到以下几点。 一、落实“四点”要求 第一点要求:做好课前预习,未雨绸缪 作为一名优秀的学生,要有一个好的习惯那就是做好课前预习,上好下一节课的基础是提前预习,预习的目的是为了达到对将要学习的内容有一个粗略的了解,做到心中有数,减少陌生感,从记忆中联系与新内容有关的知识体验和情感体验,为课堂学习做好准备,而预习的关键又在于熟读教材,这是我们理解和接受新知识的过程。在预习中可以采用“三到”预习法: 所谓的“三到”就是预习下课内容时要做到眼到:眼到要做到三看,一看单元、课、框、目的标题,二看序言,三看内容,(大小字都要看黑体楷体都要看)。全面了解整一课的知识结构;心到:要一边读课文内容,一边用心去思考,去研究课文内容,“学而不思则罔”,通过思考能够把知识点搞清楚,能够比较、联想本框题新的概念、观念与所学过的知识的区别和联系,将新知识纳入原有知识的认知体系中;手到:在读课文时,要善于做好标记符号,如用点、线、勾、圈等记号划出重要的或者不懂得知识,以便于上课时有的放矢地学习,从而为上好课奠定良好基础,另外要按时完成老师发下来的导学案或基础训练册上的导学案。 第二点要求:积极参与课堂,做好笔记 我们要积极参与课堂,做学习的主人,踊跃发言、大胆质疑,认真听课,做好笔记。听课是学习的中心环节,是我们学生时期获得知识的最主要途径。因为学生一天的绝大部分时间都是在课堂上度过的,必须要向课堂四十分钟要成绩。如果上课不好好听,靠课下弥补显然是丢了西瓜捡芝麻的愚蠢做法,一定要打起十二分精神听好每一节课,要认真听老师的讲解分析,听同学的发言、争论、辩论、质疑等,记住老师讲的重点知识并记住老师的作业要求和解题方法指导。另外有句俗语:好脑子不如烂笔头“,要做到听讲集中而且有效率一定要记好课堂笔记。 第三点要求:认真完成作业,独立规范 老师布置的作业一定要及时认真完成,这样老师批改后发现问题才能及时解决问题。老师布置的作业既是要求我们对已学知识巩固,也是为将要新学的知识的打下基础,温故而知新,如果布置的的作业未能及时完成,一定会造成隐患,已有的知识有漏洞势必影响新知识的学习。所以一定要认真完成作业,要求独立规范,切记不要抄袭作业。谨记八个字:态度认真,清晰条理。主观题答题要做到三个化“序号化,段落化,条理化”,养成良好的作

八年级数学 一次函数解析式求法及答案详解

一次函数解析式求法 1.已知52)2(--+=m m x m y 是正比例函数,若A(a,10)在此直线上,求a 的值. 2.已知直线经过原点及另一点A(-2,4),求此直线解析式。 3.已知y 与2x-1成正比例,当x=-1时,y=9,求y 与x 的函数关系式. 4.已知2y-1与3-4x 成正比例,当x=2时,y=-7,求y 与x 的函数关系式.

5.已知y=y1+y2,y1与x2成正比例,y2与x-3成正比例,当x=1时,y=-4;当x=-3时,y= 6.求y与x的函数关系式. 6.如图,已知菱形ABCD在平面直角坐标系中,B(6,2),C(12,6). (1)求D点坐标及菱形ABCD的面积; (2)若直线y=kx始终与线段CD有交点,求k的取值范围. 7.已知直线与坐标轴交于A、B两点,A(-4,0),已知△OAB的面积为12,求直线AB的解析式.

8.已知直线AB,当-2≤x≤4时,函数值y的取值范围为-1≤x≤8,求直线AB的解析式. 9.如图,已知矩形OABC在坐标系中,A(10,0),C(0,6),E在AB上,连接CE,将△BCE沿CE折叠,使B点落在OA的F点处. (1)求F点及E点坐标; (2)求直线CE解析式.

10.已知直线经过点)2321(, A 和点B(1,6). (1)求直线AB 的解析式; (2)求直线AB 与x 轴、y 轴的交点坐标C 和D,并求CD 的长; (3)若点E 在y 轴上,当C 、D 、E 三点围成的三角形是等腰三角形,求满足条件的E 点坐标. 11.如图,直线y=kx+6与x 轴、y 轴分别交于点E,F.点E 的坐标为(-8,0),点A 的坐标为(-6,0). (1)求k 的值; (2)若点P(x,y)是第二象限内的直线上的一个动点.当点P 运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当P 运动到什么位置时,△OPA 的面积为8 27,并说明理由.

函数解析式的求法高中

函数解析式的七种求法 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设f (x ) 是一次函数,且f [f (x )]=4x +3,求f (x ) 解:设f (x ) =ax +b (a ≠0) ,则 f [f (x )]=af (x ) +b =a (ax +b ) +b =a 2x +ab +b ?a =2?a 2=4?a =-2或∴?∴??b =1b =3ab +b =3??? ∴f (x ) =2x +1或 f (x ) =-2x +3 二、配凑法:已知复合函数f [g (x )]的表达式,求f (x ) 的解析式,f [g (x )]的表达式容易配成g (x ) 的运算形式时,常用配凑法。但要注意所求函数f (x ) 的定义域不是原复合函数的定义域,而是g (x ) 的值域。例2 已知f (x +11) =x 2+2 (x >0) ,求 f (x ) 的解析式x x 解:f (x +111) =(x +) 2-2,x +≥2 x x x ∴f (x ) =x 2-2 (x ≥2) 三、换元法:已知复合函数f [g (x )]的表达式时,还可以用换元法求f (x ) 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知f (x +1) =x +2x ,求f (x +1) 解:令t =x +1,则t ≥1,x =(t -1) 2 f (x +1) =x +2x ∴f (t ) =(t -1) 2+2(t -1) =t 2-1, ∴f (x ) =x 2-1 (x ≥1) ∴f (x +1) =(x +1) 2-1=x 2+2x (x ≥0) 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数y =x +x 与y =g (x ) 的图象关于点(-2, 3) 对称,求g (x ) 的解析式2 解:设M (x , y ) 为y =g (x ) 上任一点,且M "(x ", y ") 为M (x , y ) 关于点(-2, 3) 的对称点 ?x "+x ?2=-2?x "=-x -4 则?,解得:?,y "+y "y =6-y ??=3?2 点M "(x ", y ") 在y =g (x ) 上 ∴y "=x "2+x " 把??x "=-x -4代入得:"?y =6-y 6-y =(-x -4) 2+(-x -4) 整理得y =-x -7x -6 2 ∴g (x ) =-x 2-7x -6

函数解析式的求法

函数解析式的求法 鄢陵一高王连霞 教学目标: 使学生明确待定系数法、换元法、配凑法是求函数解析式常用的方法,并会用这些方法求函数解析式重点、难点: 重点:待定系数法求函数解析式。难点:换元法与配凑法求函数解析式 教学方法:讲练结合法 学情分析 学生已熟悉用待定系数法求一次、二次函数解析式,但用换元法和配凑法求函数解析式并不熟悉,特别是求出函数解析式后要注明函数定义域易被学生忽视,所以通过讲、练要解决好这些问题,特别要使学生明确函数定义域是函数概念中重要组成部分。 教学设计: 新课引入→用待定系数法求函数解析式→用换元法与配凑法求函数解析式→课时小结→随堂练习 教学过程: 1、新课引入: ①复习提问:求函数定义域的关键是什么?函数三要素是什么?(求函数定义域的关键是确定使函数有意义的条件。函数三要素是对应法则、定义域与值域) ②导入新课:如何根据条件,求出函数对应法则即函数解析式是函数又一重要问题。板书课题:《求函数解析式》 2、用待定系数法求函数解析式 例1:已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17, 求f(x)的解析式。 例2:求一个一次函数f(x),使得f{f[f(x)]}=8x+7 分析:这两个例题的共同点,所求的函数类型已定,都是一次函数。这种函数解析式用什么方法来求?

(待学生回答后,老师继续讲)如何剥掉抽象的对应法则符号成了解答这两题的关键,如例1:若设f (x)=ax+b(a ≠0)则f(x+1)=? f(x-1)=? 如例2:设f(x)=ax+b(a ≠0)则f{f[f(x)]}=f{f[ax+b]}=f[a(ax+b)+b]=? 解答由学生作出解答) 例1.解:设f(x)=ax+b (a ≠0) 由条件得: 3[a(x+1)+b]-2[a (x-1)+b]=ax+5a+b=2x+17 ∴ ∴ ∴f(x)=2x+7 例2.解:设f(x)=ax+b (a ≠0) 依题意有a[a(ax+b)+b]+b=8x+7 ∴x a 3+b(2a +a+1)=8x+7 ∴ ∴ ∴f(x)=2x+1 评注:待定系数法是一种重要的数学方法,它适用于已知所求函数的类型,求此函数。 3、用换元法与配凑法求函数解析式 例3:已知f( x +1)=x+2x ,求f(x)的解析式 分析:是否知道所求函数f(x)的类型?(待学生回答后,老师继续讲) 若把x +1看作一个整体,该用什么方法作?(待学生回答,让学生作出解答) 解1:令t=x +1≥1 则x=2)1(-t ∴ f(t)= 2)1(-t +2(t-1)= 2t -1 ∴f(x)=2x -1 (x ≥1) 解2:由f(x +1)=x+2x =2)1(+x -1 ∴f(x)=2x -1 (x ≥1) 学生容易忽视函数的定义域,就此例题向学生发问: 师问:f(x)= 2x -1与f(x)= 2x -1 (x ≥1)是否是同一函数?那么求函数解析式后是否要注明函数定义域 评注:(1) f(t)与f(x)只是自变量所用字母不同,本质是一样的。 (2) 求出函数解析式时,一定要注明定义域,函数定义中包括定义域这一要素。 例4:已知f(x-1)= 2x -4x ,解方程f(x+1)=0 分析:如何由f(x-1),求出f(x+1)是解答此题的关键(由老师讲解) 解1:f(x-1)==2)1(-x -2(x-1)-3 ∴ f(x)= 2x -2x-3 f(x+1)= 2)1(+x -2(x+1)-3=2x -4 ∴ 2x -4=0 x=±2 解2:f(x-1)= 2x - 4x ∴f(x+1)=f[(x+2)-1]= 2)2(+x - 4(x+2)= 2x - 4 ∴2x - 4=0, x=±2 解3:令x-1= t+1 则x=t+2 ∴f(t+1)= 2)2(+t -4(t+2)= 2t - 4 ∴ f(x+1)= 2x - 4 ∴2x - 4=0 ∴ x= ±2 评注:只要抓住关键,采用不同方法都可以达到目的。解法1,采用配凑法;解法2,根据对应法则采用整体思想实现目的;解法3,采用换元法,这些不同的解法共同目的是将 f(x-1)的表达式转化为f(x+1)的表达式。

相关文档
最新文档