西门子模拟量输入模块SM331接线方法

西门子模拟量输入模块SM331接线方法
西门子模拟量输入模块SM331接线方法

电子知识

SM331(1)模拟量输入(2)西门子(187)

1、两线制

两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。

传感器型号:1、两线制(本身需要供给24vDC电源的,输出信号为4-20MA,电流)即+接24vdc,负输出4-20mA电流。

2、四线制(有自己的供电电源,一般是220vac ,信号线输出+为4-20ma正,-为4-20ma负。

PLC:

(以2正、3负为例)1、两线制时正极2输出24VDC电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。

(以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线

制传感器时,一种方法是2接传感器正,3接传感器负,plc跳线为4线制电流。

“传感器正与plc的3相连,2悬空,跳线为两线制电流。”此条在四线制和二线制传感器均适用,大家可以自己试验,好用的顶起来。

(以2正、3负为例)3、四线制传感器与plc两线制跳线接法:信号线负与柜内M线相连。将传感器正与plc的3相连,2悬空,跳线为两线制电流。

(以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,plc跳线为电压信号。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振

荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿

真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化

方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准

确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

More: https://www.360docs.net/doc/732854074.html,数码万年历More:s2csfa2 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析

计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线

信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据

转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获

取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具

来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些

被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入模块接线的阐述 关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331-7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 1.1具体问题: ①端子10(COMP )和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 2.1参考图片

图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明 2.2问题讲解 ①问题“①端子10(COMP )为什么和端子11(MANA)短接。” 端子10(COMP )是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0 使用内部补偿,所以必须将端子10(COMP )与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入模 块接线的阐述 Prepared on 24 November 2020

关于西门子模拟量输入模块接线的阐述 关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐 述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331- 7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 具体问题: ①端子10(COMP)和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 参考图片 图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明

问题讲解 ①问题“①端子10(COMP)为什么和端子11(MANA)短接。” 端子10(COMP)是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0使用内部补偿,所以必须将端子10(COMP)与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电 两线制没有独立外部供电,由模块测量回路供电。 四线制有独立外部供电。 区别2:电流流向 两线制电流由模块流向仪表后流回模块。 四线制电流由仪表流向模块后流回仪表。 图3四线制和两线制电流流向 ④问题“③两线制具体怎么接,为什么要这样接。” 两线制仪表把测量的正M0连接到端子2上,测量的负M0-连接到端子3上,端子3无需接地。 ⑤问题“④四线制具体怎么接,为什么要这样接。” 四线制分为两种情况:

S7-200模拟量接线

S7-200模拟量模块系列 模拟信号是指在一定范围内连续的信号(如电压、电流),这个“一定范围”可 以理解为模拟量的有效量程。在使用S7-200模拟量时,需要注意信号量程范围,拨码开关设置,模块规范接线,指示灯状态等信息。 本文中,我们按照S7-200模拟量模块类型进行分类介绍: ?AI 模拟量输入模块? 1. ? 2. AO模拟量输出模块 3. AI/AO模拟量输入输出模块 4. 常见问题分析 首先,请参见“S7-200模拟量全系列总览表”,初步了解S7-200模拟量系列的基本信息,具体内容请参见下文详细说明: AI 模拟量输入模块 A. 普通模拟量输入模块: 如果,传感器输出的模拟量是电压或电流信号(如±10V或0~20mA),可以选用普通的模拟量输入模块,通过拨码开关设置来选择输入信号量程。注意:按照规范接线, 尽量依据模块上的通道顺序使用(A->D),且未接信号的通道应短接。具体请参看 《S7-200可编程控制器系统手册》的附录A-模拟量模块介绍。 4AI EM231模块: 首先,模拟量输入模块可以通过设置拨码开关来选择信号量程。开关的设置应用于 整个模块,一个模块只能设置为一种测量范围,且开关设置只有在重新上电后才能 生效。也就是说,拨码设置一经确定后,这4个通道的量程也就确定了。如下表所示:

注:表中0~5V和0~20mA(4~20mA)的拨码开关设置是一样的,也就是说,当拨码 开关设置为这种时,输入通道的信号量程,可以是0~5V,也可以是0~20mA。 ? 8AI EM231模块: 8AI的EM231模块,第0->5通道只能用做电压输入,只有第6、7两通道可以用做电流输入,使用拨码开关1、2对其进行设置:当sw1=ON,通道6用做电流输入;sw2=ON 时,通道7用做电流输入。反之,若选择为OFF,对应通道则为电压输入。 注:当第6、7道选择为电流输入时,第0->5通道只能输入0-5V的电压。 B. 测温模拟量输入模块(热电偶TC;热电阻RTD): 如果,传感器是热电阻或热电偶,直接输出信号接模拟量输入,需要选择特殊的测 温模块。测温模块分为热电阻模块EM231RTD和热电偶模块EM231TC。注意:不同的信 号应该连接至相对应的模块,如:热电阻信号应该使用EM231RTD,而不能使用 EM231TC。且同一模块的输入类型应该一致,如:Pt1000和Pt100不能同时应用在一个热电阻模块上。 热电偶模块TC: EM231 TC支持J、K、E、N、S、T和R型热电偶,不支持B型热电偶。通过拨码设置,模块可以实现冷端补偿,但仍然需要补偿导线进行热电偶的自由端补偿。另外, ?该模块具有断线检测功能,未用通道应当短接,或者并联到旁边的实际接线通道上。 热电阻模块RTD: 热电阻的阻值能够随着温度的变化而变化,且阻值与温度具有一定的数学关系,这 种关系是电阻变化率α。RTD模块的拨码开关设置与α有关,如下图所示,就算同是 Pt100,α值不同时拨码开关的设置也不同。在选择热电阻时,请尽量弄清楚α参数,按 照对应的拨码去设置。具体请参看《S7-200可编程控制器系统手册》的附录A-热电偶和 热电阻扩展模块介绍。

西门子200SMART模拟量模块怎么接线

西门子200SMART模拟量模块怎么接线 1.普通模拟量模块接线 模拟量类型的模块有三种:普通模拟量模块、RTD模块和TC模块。 普通模拟量模块可以采集标准电流和电压信号。其中,电流包括:0-20mA、4-20mA 两种信号,电压包括:+/-2.5V、+/-5V、+/-10V三种信号。 注意: S7-200 SMART CPU普通模拟量通道值范围是0~27648或-27648~27648。 普通模拟量模块接线端子分布如下图 1 模拟量模块接线所示,每个模拟量通道都有两个接线端。 图1 模拟量模块接线 模拟量电流、电压信号根据模拟量仪表或设备线缆个数分成四线制、三线制、两线制三种类型,不同类型的信号其接线方式不同。 四线制信号指的是模拟量仪表或设备上信号线和电源线加起来有4根线。仪表或设备有单独的供电电源,除了两个电源线还有两个信号线。四线制信号的接线方式如下图2模拟量电压/电流四线制接线所示。

图2 模拟量电压/电流四线制接线 三线制信号是指仪表或设备上信号线和电源线加起来有3根线,负信号线与供电电源M线为公共线。三线制信号的接线方式如下图3 模拟量电压/电流三线制接线所示。 图3 模拟量电压/电流三线制接线 两线制信号指的是仪表或设备上信号线和电源线加起来只有两个接线端子。由于S7-200 SMART CPU模拟量模块通道没有供电功能,仪表或设备需要外接24V 直流电源。两线制信号的接线方式如下图4 模拟量电压/电流两线制接线所示。

图4 模拟量电压/电流两线制接线 不使用的模拟量通道要将通道的两个信号端短接,接线方式如下图 5 不使用的通道需要短接所示。 图5 不使用的通道需要短接 2. RTD模块接线 RTD热电阻温度传感器有两线、三线和四线之分,其中四线传感器测温值是最准确的。S7-200 SMART EM RTD模块支持两线制、三线制和四线制的RTD传感器信号,可以测量PT100、PT1000、Ni100、Ni1000、Cu100等常见的RTD温度传

K-AI01 8通道模拟量输入模块使用说明书

HOLLiAS MACS -K 系列模块 2014年5月B版

HOLLiAS MAC-K系列手册- K-AI01 8通道模拟量输入模块使用说明书 重要信息 危险图标:表示存在风险,可能会导致人身伤害或设备损坏件。 警告图标:表示存在风险,可能会导致安全隐患。 提示图标:表示操作建议,例如,如何设定你的工程或者如何使用特定的功能。

目录 1.概述 (1) 2.接口说明 (3) 2.1模块单元示意图 (3) 2.2IO-BUS (4) 2.3模块的防混淆设计 (6) 2.4模块地址跳线 (7) 2.5现场接口电路原理 (8) 3.状态灯说明 (11) 4.其他特殊功能说明 (13) 4.1抗220V AC功能 (13) 4.2二线制外供电保护 (14) 4.3诊断功能 (15) 4.4冗余功能 (17) 5.工程应用 (18) 5.1底座选型说明 (18) 5.2应用注意事项 (19) 6.尺寸图 (20) 7.技术指标 (20)

K-AI01 8通道模拟量输入模块 1.概述 K-AI01为K系列8通道模拟量通道隔离输入模块,测量范围0~22.7mA模拟信号(默认出厂量程4~20mA),可以按1:1冗余配置使用。无需跳线就可以设置为配电或不配电工作方式,可以接二线制仪表或四线制仪表。 K-AI01模块具备强大的过流过压保护功能,误接±30VDC和过电流都不会损坏。同时,配合增强型底座还可以做到现场误接220V AC不损坏。 K-AI01模块支持带点热插拔、支持冗余配置,具备完善断线、短路、超量程诊断功能,面板设计有丰富的LED指示灯,除指示模块电源、故障、通讯信息外,每个通道也有指示灯,可以方便指示各通道的断线、短路、超量程等信息。 K-AI01模块每个通道可设置不同的滤波参数以适应不同的干扰现场。可以根据工艺需要,配合主控制器的不同运算周期,组成可快可慢的控制回路。 K-AI01模块采用双冗余IO-BUS、双冗余供电工作方式,任意断一根IO-BUS,不会影响其正常工作。 K-AI01模块采用了现场电源和系统电源分开隔离供电。同仪表相连的电路采用现场电源供电,数字电路和通讯电路采用系统电源供电,因此现场来干扰不会影响数字电路和通讯。 K-AI01模块实施喷涂三防漆处理,按照ISA-S71.04-1985标准生产,达到G3防腐等级。 K-AI01模块配套K-A T01、K-A T02、K-A T11、K-A T21和K-DOT01底座使用,通过电缆连接构成完整的电流测量模块单元。模块插在模块底座上,模块底座的接线端子负责接入现场仪表信号,模块负责将模拟信号转换为数字信号,最后通过冗余的IO-BUS送给主控器单元,IO-BUS同时提供冗余的系统电源和现场电源。 如图1-1、图1-2所示,分别为模块非冗余配置和冗余配置的外观结构图。完整的模块单元在系统机柜中的安装位置如图1-3所示:

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331-7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 具体问题: ①端子10(COMP )和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 参考图片 图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明 问题讲解 ①问题“①端子10(COMP )为什么和端子11(MANA)短接。” 端子10(COMP )是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0 使用内部补偿,所以必须将端子10(COMP )与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电 两线制没有独立外部供电,由模块测量回路供电。 四线制有独立外部供电。 区别2:电流流向 两线制电流由模块流向仪表后流回模块。 四线制电流由仪表流向模块后流回仪表。

西门子模拟量输入模块SM331接线方法总结

P L C 接法 西门子模拟量输入模块S M 331接线方法总结 两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当P L C 的模板输入通道设定为连接四线制传感器时,P L C 只从模板通道的端子上采集模拟信号,而当P L C 的模板输入通道设定为连接二线制传感器时,P L C 的模拟输入模板的通道上还要向外输出一个直流24V 的电源,以驱动两线制传感器工作。 传感器型号:1、两线制(本身需要供给24v D C 电源的,输出信号为4-20M A ,电流)即+接24v d c ,负输出4-20m A 电流。 2、四线制(有自己的供电电源,一般是220v a c ,信号线输出+为4-20m a 正,-为4-20m a 负。 P L C : (以2正、3负为例)1、两线制时正极2输出24V D C 电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24v d c ;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M 为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,p l c 跳线 为4线制电流。 (以2 正、3负为例)3、四线制传感器与p l c 两线制跳线接法:信号线负与柜内M 线相连。将传感器正与p l c 的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,p l c 跳线为电压信号。 第 1 页4线制与2线制注意区别地是否相同? 这2个为2线制的解释。 传感器,变送器 此时plc 跳线为4线制。 跳线为2线制。

西门子模拟量输入输出模块235编程手册

本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容: 1、模拟量扩展模块接线图及模块设置 2、模拟量扩展模块的寻址 3、模拟量值和A/D转换值的转换 4、编程实例 模拟量扩展模块接线图及模块设置 EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。下面以EM235为例讲解模拟量扩展模块接线图,如图1。 图1 图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。 对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量

程和分辨率。(后面将详细介绍) 量的单/双极性、增益和衰减。 时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。 SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。 输入校准 模拟量输入模块使用前应进行输入校准。其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。其步骤如下: A、切断模块电源,选择需要的输入范围。 B、接通CPU和模块电源,使模块稳定15分钟。 C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。 D、读取适当的输入通道在CPU中的测量值。 E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据值。 F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。 G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据值。 H、必要时,重复偏置和增益校准过程。 EM235输入数据字格式 下图给出了12位数据值在CPU的模拟量输入字中的位置

西门子PLC各种模块分类选型及用途

CPU 6ES7 211-0AA23-0XB0 CPU221 DC/DC/DC,6输入/4输出 6ES7 211-0BA23-0XB0 CPU221 继电器输出,6输入/4输出 6ES7 212-1AB23-0XB8 CPU222 DC/DC/DC,8输入/6输出 6ES7 212-1BB23-0XB8 CPU222 继电器输出,8输入/6输出 6ES7 214-1AD23-0XB8 CPU224 DC/DC/DC,14输入/10输出 6ES7 214-1BD23-0XB8 CPU224 继电器输出,14输入/10输出 6ES7 214-2AD23-0XB8 CPU224XP DC/DC/DC,14DI/10DO,2AI/1AO(PNP) 6ES7 214-2AS23-0XB8 CPU224XPsi DC/DC/DC,14DI/10DO,2AI/1AO(NPN) 6ES7 214-2BD23-0XB8 CPU224XP 继电器输出,14DI/10DO,2AI/1AO 6ES7 216-2AD23-0XB8 CPU226 DC/DC/DC,24输入/16输出 6ES7 216-2BD23-0XB8 CPU226 继电器输出,24输入/16输出 扩展模块 6ES7 221-1BH22-0XA8 EM221 16入 24VDC,开关量 6ES7 221-1BF22-0XA8 EM221 8入 24VDC,开关量 6ES7 221-1EF22-0XA0 EM221 8入 120/230VAC,开关量 6ES7 222-1BF22-0XA8 EM222 8出 24VDC,开关量 6ES7 222-1EF22-0XA0 EM222 8出 120V/230VAC,0.5A 开关量 6ES7 222-1HF22-0XA8 EM222 8出继电器 6ES7 222-1BD22-0XA0 EM222 4出 24VDC 固态-MOSFET 6ES7 222-1HD22-0XA0 EM222 4出继电器干触点 6ES7 223-1BF22-0XA8 EM223 4入/4出 24VDC,开关量 6ES7 223-1HF22-0XA8 EM223 4入 24VDC/4出继电器 6ES7 223-1BH22-0XA8 EM223 8入/8出 24VDC,开关量 6ES7 223-1PH22-0XA8 EM223 8入 24VDC/8出继电器 6ES7 223-1BL22-0XA8 EM223 16入/16出 24VDC,开关量 6ES7 223-1PL22-0XA8 EM223 16入 24VDC/16出继电器 6ES7 223-1BM22-0XA8 EM223 32入/32出 24VDC,开关量 6ES7 223-1PM22-0XA8 EM223 32入 24VDC/32出继电器 6ES7 231-0HC22-0XA8 EM231 4入*12位精度,模拟量 6ES7 231-0HF22-0XA0 EM231 8入*12位精度,模拟量 6ES7 231-7PB22-0XA8 EM231 2入*热电阻,模拟量 6ES7 231-7PC22-0XA0 EM231 4入*热电阻,模拟量 6ES7 231-7PD22-0XA8 EM231 4入*热电偶,模拟量 6ES7 231-7PF22-0XA0 EM231 8入*热电偶,模拟量 6ES7 232-0HB22-0XA8 EM232 2出*12位精度,模拟量 6ES7 232-0HD22-0XA0 EM232 4出*12位精度,模拟量 6ES7 235-0KD22-0XA8 EM235 4入/1出*12位精度,模拟量 6ES7 277-0AA22-0XA0 EM277 PROFIBUS-DP接口模块 6ES7 253-1AA22-0XA0 EM253 位控模块 6GK7 243-1EX01-0XE0 CP243-1 工业以太网模块

模拟量输入模块AI561

模拟量输入模块AI561 -4个可配置的模拟量输入 -分辨率:11位加标志位或12位 图:模拟量输入模块AI561概述 目录 用途 功能 电气连接 内部数据交换 I/O配置 参数 诊断 显示

测量范围 技术数据 订货信息 用途 模拟量输入模块AI561可在以下设备中作为远程扩展模块使用:?FBP 接口模块DC505-FBP ?CS31 总线模块DC551-CS31 ?PROFINET总线模块(例如 CI501-PNIO) ?AC500 CPUs (PM5xx) 具有以下特点: ?在1个组中有4个可配置的模拟量输入(I0到I3) 输入之间电气隔离。 该模块其他的电气线路没有与输入或I/O总线电气隔离。 功能

电气连接 模拟量输入模块AI561可通过I/O总线连接到以下设备: ?FBP 接口模块DC505-FBP ?CS31 总线模块DC551-CS31 ?PROFINET总线模块(例如 CI501-PNIO) ?AC500 CPUs (PM5xx) ?其他AC500 I/O模块 使用可插拔的9针和11针端子排进行电气连接。这些端子排的连接有所不同(弹簧接线端子或螺钉接线端子,电缆为正面接线或旁侧接线)。更多相关信息,请参见S500-eCo I/O模块的端子排一章。端子排不包含在模块订货范围中,须单独订购。 端子的分配:

通过I/O 总线为模块内的电路提供内部电源(由总线模块或CPU 提供)。因此,每个AI561从CPU 或总线模块的24V DC 电源端子L+/UP 和 M/ZP 消耗10mA 的电流。 外部电源连接到端子L+ (+24 V DC) 和M (0 V DC)。M 端子与CPU 或总线模块的M/ZP 端子电气连接在一起。 该模块提供几种诊断功能 (请参见“诊断”章节)。 下图显示推荐的模拟量输入AI0的内部结构。模拟量输入 AI1 ...AI3 采用相同的设计。 下图显示推荐的连接模拟量传感器(电压)到模拟量输入模块AI561的输入I0的电气连接。I1到I3的连接方法相同。

所有模拟量模块接线问题

抓住一点,模拟量接线问题迎刃而解(一)——确定基准电位点很重 要 2013-03-04 今天,一个新来的热线同事找我讨论模拟量模块的问题,他在热线上遇到了一些麻烦,用户打电话反映在现场的S7 300模拟量模块读数不变化,怎么折腾都读数是32767。尽管模拟量模块大家都很熟悉,但是类似的问题还经常有用户反应。翻了翻手边的资料,似乎没有系统讲解这个问题的,于是把自己的经验归纳总结一下。既然是经验,放在下载中心似乎不太合适,就放在自己的故事里吧。故事写完,想必也会有个比较正式的版本放在下载中心。 在我看来,想解决这样的问题,最根本的是要抓住一点。有的用户可能迫不及待地想知道哪一点了,但是这一点涉及的知识面还是有些宽。平时也忙,我会断断续续的写,大家耐心看完这个系列,就可以抓住这一点了。 关于读不出值的问题,如果总是32767没有变化,其实值已经有了,只不过是超量程了。如果值为0,那就要注意模拟量是否有问题了,使用万用表测量现场信号并没有超限。为什么会出现这两种现象呢?这是因为选择的参考电位不同,例如,现场过来的信号为5V,那首先要问一下,基准点是几伏?10~15 是5V,-10~ -5同样也是5V,如果测量端基准点是0V,那么测量就会有问题,所以一定要保证两端等电位。模拟量模块的基准电位点就是M ANA ,所有的接线都与之有关。在接下来的故事中,咱们就仔细讲讲接线的问题。 抓住一点,模拟量接线问题迎刃而解(二):隔离与非隔离问题系列 2013-03-11 这里的隔离是指模拟量模块的基准电位点M ANA 与地(也是PLC的数据地)隔离。 隔离模块M ANA 与地M可以不连接,以M ANA 作为测量端的参考电位;非隔离模块 M ANA 与地M必须连接,这样地M 变为M ANA 作为测量端的参考电位。隔离模块的 好处就是可以避免共模干扰。如何知道模块是否是隔离模块,例如SM331模块,可以从模板规范中查到。S7-300中只有一款SM334(SM355除外)模块是非隔离的,此外CPU31XC集成的模拟量也是非隔离的,共同特点就是模块的输出和输入公用M端。 同样传感器也有隔离与非隔离的问题。通常非隔离的传感器电源的负端与信号的负端公用一个端子,例如传感器有三个端子 L, M 和S+,通过L, M端子向传感器供电,S+,M为信号的输出,公用M端。判断传感器是否隔离最好还是参考手册。隔离传感器信号负端与地M可以不连接,以信号负端作为信号源端的参考电位。非隔离传感器信号负端必须在源端(设备端)接地,以源端的地作为信号的参考电位。 下面就是如何保证测量端与信号源端等电位接线的问题。在下面建议的连接图中所用的缩写词和助记符含义如下: M +:测量导线(正) M -:测量导线(负) M ANA :模拟量模块基准电位点 这里需要注意M ANA ,不同的接线方式都是以M ANA 为参考基准电位。

西门子S7-200模拟量接线方法

怎样使用 S7-224 XP 的模拟量输入通道接收电流信号? 显示订货号 6ES7214-2AD23-0XB0SIMATIC S7-200, CPU 224XP 6ES7214-2BD23-0XB0SIMATIC S7-200, CPU 224XP 解答: S7-224 XP 的两路模拟量输入通道被出厂设置为电压信号(0-10V)输入。为了能够输入电流信号,必须在 A+ 与 M 端 (或 B+ 与 M 端) 之间并入一个500 欧姆的电阻。 与传感器以及电压源的两线制连接方式如图1 所示。 ( 25 KB ) 图 1 与传感器以及电压源的 3 线制连接方式如图 2 所示。 ( 24 KB ) 图 2 与传感器及电压源的 4 线制连接方式如图 3 所示。

( 24 KB ) 与电压输出的变送器及电流源的 4 线制连接方式如图 ( 21 KB )

How through external switching can you use a 0-10V analog input on a makeshift basis also for 0- 20mA? Display part number 6ES7214-2AD23-0XB0SIMATIC S7-200, CPU 224XP 6ES7214-2BD23-0XB0SIMATIC S7-200, CPU 224XP Instructions: The two analog inputs of the S7-224 XP are factory-set for voltage measurement (0..10V). In order to be able to use the inputs as current inputs as well you must incorporate a 500 Ohm resistor between terminals A+ and M (or B+ and M). Figure 1 shows the connection of a sensor to a voltage source as a 2-conductor connection. ( 25 KB ) Fig. 01 Figure 2 shows the connection of a sensor to a voltage source as a 3-conductor connection. ( 24 KB ) Fig. 02 Figure 3 shows the connection of a sensor to a voltage source as a 4-conductor connection.

西门子模拟量输入SM331的接线方法

介绍西门子模拟量输入模块SM331的接线方法 我们在这里介绍下西门子模拟量输入模块SM331的接线方法,下面我们就分别来介绍两线制和四线制 两线制 两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC 的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。 传感器型号:1、两线制(本身需要供给24vDC电源的,输出信号为4-20MA,电流)即+接24vdc,负输出4-20mA电流。 四线制有自己的供电电源,一般是220vac ,信号线输出+为 4-20ma正,-为4-20ma负。 PLC: (以2正、3负为例)1、两线制时正极2输出24VDC电压,3 接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,plc跳线为4线制电流。 “传感器正与plc的3相连,2悬空,跳线为两线制电流。”此条在四线制和二线制传感器均适用,大家可以自己试验,好用的顶起来。 (以2正、3负为例)3、四线制传感器与plc两线制跳线接法:信号线负与柜内M线相连。将传感器正与plc的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,plc跳线为电压信号。

西门子200模拟量模块

西门子S7-200模拟量编程 PLC 2009-09-16 20:05 阅读77 评论0 字号:大中小 西门子S7-200模拟量编程 韩耀旭 本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容: 1、模拟量扩展模块接线图及模块设置 2、模拟量扩展模块的寻址 3、模拟量值和A/D转换值的转换 4、编程实例 模拟量扩展模块接线图及模块设置 EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。下面以EM235为例讲解模拟量扩展模块接线图,如图1。 图1 图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端; 未连接传感器的通道要将X+和X-短接。 对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量 程和分辨率。(后面将详细介绍)

量的单/双极性、增益和衰减。 模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。 SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟 量的衰减选择。

6个DIP开关决定了所有的输入设置。也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。 输入校准 模拟量输入模块使用前应进行输入校准。其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。其步骤如下: A、切断模块电源,选择需要的输入范围。 B、接通CPU和模块电源,使模块稳定15分钟。 C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输 入端。 D、读取适当的输入通道在CPU中的测量值。 E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据 值。 F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。 G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据 值。 H、必要时,重复偏置和增益校准过程。 EM235输入数据字格式 下图给出了12位数据值在CPU的模拟量输入字中的位置 图2

西门子模拟量输入模块SM331接线方法

电子知识 SM331(1)模拟量输入(2)西门子(187) 1、两线制 两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。 传感器型号:1、两线制(本身需要供给24vDC电源的,输出信号为4-20MA,电流)即+接24vdc,负输出4-20mA电流。 2、四线制(有自己的供电电源,一般是220vac ,信号线输出+为4-20ma正,-为4-20ma负。 PLC: (以2正、3负为例)1、两线制时正极2输出24VDC电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线

制传感器时,一种方法是2接传感器正,3接传感器负,plc跳线为4线制电流。 “传感器正与plc的3相连,2悬空,跳线为两线制电流。”此条在四线制和二线制传感器均适用,大家可以自己试验,好用的顶起来。 (以2正、3负为例)3、四线制传感器与plc两线制跳线接法:信号线负与柜内M线相连。将传感器正与plc的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,plc跳线为电压信号。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振

西门子S7-200_PLC模拟量的使用

摘要:介绍S7-200 PLC在水处理设备给粉机上的应用,并重点介绍模拟量的处理。以及模拟量的稳定和抗干扰问题。 关键词:可编程控制器;给粉机;模拟量处理 一、引言 给粉机是一种机、电、水、气一体化粉(粒)料定量分切式全自动加药装置,它是现代科技发展新兴的一种技术产品。为达到全自动运转,采用了PLC控制,通过检测稀释罐中的液位高低来控制给粉机的工作,还控制计量泵将稀释罐中的液体药液送到凝集罐中,凝集罐中已有液体是来自高速过滤器的反冲洗水,药液使该反冲洗水的悬浮物凝集成大块状絮凝物以便进行下一步的水处理工作。 二、控制内容和要求 控制内容和要求取决于工艺要求、资源、及可操作性等。给粉机涉及到的工艺流程如图1所示,首先将粉状凝集助剂倒入料斗,给粉机工作时,通过粉位计检测料斗中是否有料,如果有料,先将干燥空气经气源三联件和气阀吹入出料口,延迟一段时间后,打开淋水器侧的水电磁阀,为送料作好准备,再延迟一段时间,启动给粉机运行。此时,给粉机将药液定量的连续的注进稀释罐,在稀释罐中,有搅拌机不停的搅拌,搅拌均匀后待用。使用药液时,用计量泵来运送,从稀释罐中注入到凝集罐一类的设备中。 给粉机、水阀、气阀、搅拌机、计量泵的工作状况都与稀释罐中的液位密切相关,一般讲,液位控制采用电极式的开关量信号,将有关的4个位置的液位信号送到PLC中参与控制。但当用户的液位检测装置是液位变送器时,就需采用模拟量模块,稀释罐中的液位是通过液位变送器来检测的,对应一定的液位,送出4-20mA电流信号(4-20mA对应着液位高度0-1M)。 ?液位距池底为120mm时,为L2液位,低于L2液位时,报警,不能启动计量泵。 ?液位距池底为120mm时,为L1液位,液位低于L1时要启动气阀、水阀、给粉机,当给粉机运行时,搅拌机也要运行。给粉机停止时,搅 拌机也停止。 ?液位距池底为750mm时,为H1液位,高于H1液位,给粉机停。 ?液位距池底为850mm时,为H2液位,高于H2液位时,报警。 三、PLC选用和硬件配置

(完整版)西门子PLC编程模拟量

对输入、输出模拟量的PLC编程的探讨及编程实例解析 对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定是错误的。比如有3个温度传感变送器: (1)、测温范围为 0~200,变送器输出信号为4~20ma (2)、测温范围为 0~200,变送器输出信号为0~5V (3)、测温范围为-100~500,变送器输出信号为4~20ma (1)和(2)二个温度传感变送器,测温范围一样,但输出信号不同,(1)和(3)传感变送器输出信号一样,但测温范围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。 一、转换公式的推导 下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导: 对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号 ,20ma 对应数子量=32000,4 ma对应数字量=6400; 对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V 对应数字量=32000,0V对应数字量=0; 这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:

上面推导出的(2-1)、(2-2)、(2-3)三式就是对应(1)、(2)、(3)三种温度传感变送器经过模块转换成数字量后再换算为被测量的转换公式。编程者依据正确的转换公式进行编程,就会获得满意的效果。 二、变送器与模块的连接 通常输出4~20ma电流信号的传感变送器,对外输出只有 +、- 二根连线,它需要外接24V电源电压才能工作,如将它的+、- 二根连线分别与24V电源的正负极相连,在被测量正常变化范围内,此回路将产生4~20ma电流,见下左图。下右图粉色虚线框内为EM235 模块第一路模拟输入的框图,它有3个输入端,其A+与A-为A/D转换器的+ - 输入端,RA与A-之间并接250Ω标准电阻。A/D 转换器是正逻辑电路,它的输入是0~5V电压信号,A-为公共端,与PLC的24V 电源的负极相连。

西门子模拟量输入模块SM331接线方法总结

两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。 ? 传感器型号: 1、两线制(本身需要供给24vDC电源的,输出信号为4-20MA,电流)即+接24vdc,负输出4-20mA电流。 2、四线制(有自己的供电电源,一般是220vac?,信号线输出+为4-20ma正,-为4-20ma 负。 PLC: (以2正、3负为例)1、两线制时正极2输出24VDC电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,plc跳线为4线制电流。 (以2正、3负为例)3、四线制传感器与plc两线制跳线接法:信号线负与柜内M线相连。将传感器正与plc的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,plc跳线为电压信号。 首先判断你的模拟量输入模块是否支持二线制接法(例如SM331-定贷号为6ES7?331-7KF02-0AB0是支持二线制的,其他型号模块一般只支持四线制接法。 ?1、若你的模块支持二线制 模块有直接给两线制传感器供电的功能,接两线制电流信号只需把量程卡选择D方向?,?在硬件配置中选择2DMU,以第一个通道为例,传感器的正端接模板2端子(M0+),负端接模板3端子(M0-)即可。?此时模板对变送器供电。 2、若你的模块不支持二线制接法,你需要将你的二线制仪表(流量计),串入电源改为四线制接法,接到模拟量输入模块。具体方法如下: 硬件组态和量程卡都设定为四线制传感器:具体接法:24v电源(一般都是24VDC,也有12VDC的,以你仪表为准)?的正端接传感器的正端,传感器的负端接模板的正端M+,模板的负端M-接24V?负端。有的2线制仪表这个两根线分别标的是“24VDC”和“信号” 那用电源24V+--------“24VDC”,模拟量输入模块的M+--------“信号”,模拟量输入模块的M—端接电源0V。

相关文档
最新文档