110kV并列运行双回线其中一回线单相断线案例分析_刘匀

110kV并列运行双回线其中一回线单相断线案例分析_刘匀
110kV并列运行双回线其中一回线单相断线案例分析_刘匀

空调不制冷常见故障

下面,为你讲解不为人知的空调移机维修相关小知识: 案例一:外机毛细管冰堵 故障故障现象:不制冷 原因分析:上门检查空调在刚开机时制冷正常,约25分钟后空调压力、电流降低,用户反应此空调曾换过压缩机,因此排除压缩机本身故障。由于开机25分钟内制冷基本正常,因此初步分析可能为系统脏堵或冰堵,打开室外机顶板,观察发现毛细管出口处结霜,用打火机烤结霜处,压力电流恢复正常,判断为系统冰堵,后经了解为更换压缩机时正好下雨,有水份进入系统。 解决措施:将制冷剂回收到室外机,在外机低压管处加装干燥过滤器,重新排空开机运行,直至冰堵完全消除,拆掉干燥过滤器,开机制冷效果正常。 经验总结:维修人员在对系统进行维修时要避免系统进水,否则容易形成冰堵。在判断是冰堵还是脏堵时可以观察外机毛细管处,若结霜的位置是从毛细管进口处开始,则为脏堵,若是从毛细管出口处开始则为冰堵。

案例二:外机毛细管脏堵 故障现象:制冷效果差 原因分析:上门开机检查,机器能正常运转,检查室内机过滤网及换热器、室外机换热器都比较干净不会影响到制冷效果。查室内外风机电容及各项参数正常,测电压220V、电流13.5A、低压压力0.4MPa、无加长管线,室外机压缩机运转也正常,表面看来也未发现节流现象。机器大约运转20分钟后,再次测量电流及压力,发现电流为15A、系统压力为0.3MPa,制冷效果变差,根据:测量数据分析系统有堵或有节流的地方,检查室内外机之间连接管并无问题,不存在节流现象,考虑节流装置(毛细管)位于室外机,因此着重检查室外机毛细管,观察发现连接分配器的毛细管有两组略结霜,由此可以判断是该组毛细管问题,将该分配器与毛细管焊开,发现分配器内部过滤网已经被油泥及异物堵住,但未堵死,从而导致该组毛细管的流量不足而引起节流、结霜。 解决措施:将该机器分配器更换新件后,系统进行氮气清洗,抽真空,充氟后整机进行,效果良好。 经验总结:对于一些反映制冷性能较差的机器,应综合考虑,但应有清晰的处理思路,由主到次,由表及里,由外到内进行逐步的查找,一般要考虑以下情况 1、考虑机器是否正常工作。 2、室内外机散热情况如何,考虑使用场所有无影响。 3、考虑室内外风机转速影响散热。 4、测量各项参数是否正常,从而分析原因。 5、机器有无管线加长,考虑加长管线对机器性能的影响。 6、室外机压缩机有无偷停现象,考虑间歇工作的影响。

单相断线故障的分析

单相断线故障的分析 一、单相断线运行的理论分析 电力系统在非全相运行时,在一般情况下,没有危险的大电流和高电压产生(在某些情况下,例如带有并联电抗器的超高压线路,在一定条件下会产生工频谐振过电压)。但是,负序电流和零序电流可能引起某些继电保护误动作。下面简单介绍非全相运行的方法。 110kV断路器操作机构均采用三相机构,开关本体基本不会 出现非全相运行;同时110kV线路杆塔相对于35kV线路杆塔要高,出现单相断线的概率同样很小,运 行值班人员很少遇见110kV线路单相断线故障。 110kV配电网发生单相断线时故障分析在电力系统实际运行中,线路断线故障发生的概率较小,故110 kV及以下电压等级的线路保护在整定计算时不考虑断线故障的影响,这就造成当小概率的断线故障发生时,电力系统继电保护及自动装置往往会出现不可预料的动作情况,因此,总结并分析断线故障发生时的相关规律,对电力系统运行人员(特别是调度员)分析判断并迅速处理故障具有十分重要的意义。 有没有故障相别显示?无测距参数? 发生断线的T接线路负荷电流,根据仿真系统相电流有效值为1.06kA,(一般110kV输电线路600-1200A)辛村变电站间隙过电流保护动作,整定值为100A。 当220 kV线路发生单相一侧断线故障后,220 kV线路电流和末端变电站变压器各侧电压的大小,与变压器中性点接地方式及断线前所带负荷均有关系, 对单侧供电的220 kV变电站,当220 kV线路发生单相(A相)一侧断线故障后(1) 220 kV 线路健全相电流将增大,增大的幅度与变压器220 kV中性点是否接地运行有关,变压器220 kV中性点不接地运行,健全相电流增幅更大。变压器220 kV中性点不接地运行时,220 kV线路负序电流稳态值超过了断线前的负荷电流。断线相A相及变压器110 kV和10 kV侧相电压都将降低。健全相三侧相电压降低与否,与变压器所带负荷的大小及变压器220 kV中性点是否接地运行有关,变压器所带负荷越大,三侧相电压降幅越大,变压器220 kV中性点不接地运行时,相电压降幅更大。

经常断流、断线的问题分析

关于经常断线的问题. 1、线路的阻值太大:对于这样问题,最简单的检查方法就是在连线正确的情况下,拿起电话听听有没有杂音.再就是与本地的电信部门,进行阻值测量.解决办法找你上宽带的部门的人来解决. 2,病毒的问题.如果机器中了病毒,有时也会使网络经常的掉线.解决办法,进行全面杀毒. 3,系统本身的问题.重作系统. 第一部分:ADSL断流/断线问题集中分析 有许多朋友遇到过ADSL断流的问题,那什么是ADSL的断流问题呢?通常是用ADSL MODEM能成功拨号登陆,但上网的时候数据流传输突然中断,没有反应,过一阵子又自动恢复正常,表现为网页打不开,下载中断,在线收看或收听的视频或音频中断。为了让网友们能更好的解决问题我总结了以下几点: 一、线路问题 解决办法:是不是住所离电信局太远(2.5公里以上)?可以向电信部门投诉。确保线路连接正确(不同的话音分离器的连接方法可能有所不同,请务必按照说明书指引正确连接),同时确保线路通讯质量良好没有被干扰,没有连接其它会造成线路干扰的设备,例如电话分机,传真机等。并检查接线盒和水晶头有没有接触不良以及是否与其它电线串绕在一起(这个非常重要,如果你与其它电线串绕着,那肯定会发生断流,这个已经经过实验多次了)。有条件最好用标准电话线,如果是符ITU国际电信联盟标准的三类、五类或超五类双绞线更好。电话线入户后就分开走。一线走电话、一线走电脑。如果一定要用分线盒,最好选用用质量好的。PC接ADSL MODEM的线用ADSL MODEM附带的双绞线。 *特别注意:手机之类一定不要放在ADSL MODEM的旁边,,因为每隔几分钟手机会自动查找网络,这时强大的电磁波干扰足以造成ADSL MODEM断流。

汽车转向系统常见故障及原因

汽车转向系统常见故障及原因 汽车转向系统常见的故障及原因有: 故障一、转向时有异响 转向时有异响一般是机械部分,例如主销与衬套损伤、立柱止推轴承损坏等造成。检查时可以左、右打方向,观察响声的部位进行拆检。 故障二、转向机漏油 转向机向外漏油不外乎是几个位置:转向机上盖、侧端盖和转向轴拐臂联接处。这三个部位都有密封圈,更换新的油封和密封圈就可解决。如果其它部位漏油就很可能是转向机壳体沙眼或裂痕。细小的裂痕和沙眼可以用乐泰290高渗透性密封胶来堵漏。 故障三、方向回位较困难 一般车辆都有转向自动回位的功能。液压助力的汽车,由于液压阻尼的作用,自动回位的功能有所减弱,但还应保持一定的自动回位的能力。如果回位时,也要象转向时那样施力,就说明回位功能有故障。这种故障一般都发生在转向机械部分。例如转向节主销与衬套缺油而烧损、转向横、直拉杆接头缺油而锈蚀、方向盘与转向机联接的操纵轴万向节缺油或别劲以及转向机的转向轴扇齿与活塞直齿啮合太紧等等,都会造成这种故障。 故障四、助力泵漏油 如果从助力泵后端盖漏油,显然是后端盖密封圈破损,这是比较容易发现的。实际中还有一种难于发现的故障,这就是转向油罐里的油不断减少(总需要补充),而发动机油底内的机油却不断增多或者表面上看起来发动机丝毫不烧机油。放出部分油底机油观察没有什么

异常现象,也嗅不出什么其它的异味,这种情况显然是助力泵驱动轴端的油封漏油所至。助力泵低压油腔的液压油由油封漏至发动机正时齿轮室,流人油底。液压油与机油混合无法分辩。 故障五、转向沉重 一般来讲引起方向重的原因有如下几种: (1)转向机故障 通过检查如果发现是转向机助力油压较低时,说明方向重的原因在转向机。此时应请专业厂家来进行修理。一般来讲转向机故障大部分是由于活塞、缸筒拉伤、或是活塞上密封圈损坏造成活塞两腔相通,使助力压力不能有效地建立。此外,活塞圆周面上的各种密封圈、转向螺杆上的密封圈破损,也会造成高压卸荷,而使助力压力降底。 (2)助力泵故障 通过试验判断助力泵的泵压达不到标准值时,显然方向沉重与此有关。首先应检查流量控制阀与阀座的啮合面、安全阀钢球是否封闭不严。如果是流量阀或安全阀泄漏,可通过研磨的方法修复。其次再检查安全阀的弹簧是否失效。这点可通过在弹簧后面加垫片的方法检查,如果在弹簧后面增加一垫片后,最大泵压有明显增加,说明弹簧失效。 如果这两个部位都无问题,则应拆卸解体助力泵,观察叶片泵的腔壁是否磨损和拉伤。因腔壁拉伤会使高、低压腔相通,从而造成压力建立不起来。一般拉伤的原因都是油脏所至。如果方向突然沉重,则应检查是否是泵轴断裂所致。 (3)缺油,系统有空气。如果助力系统缺油,造成系统内有空气,此时不仅转向沉重,而且在转向时还有噪音。此时按加油与放气的程序进行排气即可。

电力系统单相断线计算与仿真(4)

电力系统单相断线计算与仿真(4) 辽宁工业大学 《电力系统分析》课程设计(论文)题目:电力系统单相断线计算与仿真(4) 院(系):工程技术学院 专业班级:电气工程及 学号: 学生姓名: 指导教师: 教师职称: 起止时间: 15-06-15至15-06-26

课程设计(论文)任务及评语 课程设计(论文)任务原始资料:系统如图 各元件参数标幺值如下(各元件及电源的各序阻抗均相同): T1、T2:电阻0,电抗0.02,k=1.08,标准变比侧Y N接线,另一侧Δ接线; L24: 电阻0.03,电抗0.07,对地容纳0.03; L23: 电阻0.03,电抗0.08,对地容纳0.03; L34: 电阻0.025,电抗0.07,对地容纳0.032; G1、 G2:电阻0.01,电抗0.09,电压1.00; 负荷功率:S1=0.5+j0.15,S2=0.5=j0.1; 任务要求: 1 对系统进行潮流计算; 2 当L34支路发生A相断线时,计算系统中各节点的各相电压和电流; 3 计算各条支路各相的电压和电流; 4 在系统正常运行方式下,对各种不同时刻A相断线进行Matlab仿真; 5 将断线运行计算结果与各时刻断线的仿真结果进行分析比较,得出结论。 指导教师评 语及成绩 平时考核:设计质量:论文格式: 总成绩:指导教师签字: 年月日G1 T1 2 L24 4 S2 1:k L23 L34 3 S1

摘要 电力系统的设计和运行中,需要考虑到可能发生的故障和不正常的运行情况,防止其破坏对用户的供电和电气设备的正常工作。轻则造成电流增大,电压下降,从而危及设备的安全或使设备无法正常运行;重则将导致电力系统对用户的正常供电局部甚至全部遭到破坏,从而对国民经济造成重大损失。 本课设主要介绍有关电力系统故障的基本概念及故障计算中标幺值的特点,并通过断线计算对电力系统的运行状态有一个初步的认识,同时对电力系统进行不对称故障的分析计算,主要内容为单相断线的分析计算,最后,通过Matlab软件对单相断线故障进行仿真,观察仿真后的波形变化,将单相断线运行计算结果与各时刻线路的仿真结果进行分析比较,得出结论。 关键词:单相断线;潮流计算;Matlab仿真

线路保护中PT断线判据分析

线路保护中PT断线判据分析 收藏此信息打印该信息添加:用户发布来源:未知 摘要:PT断线作为电力系统中一种常见的故障,能否及时有效地进行判别,是继电保护装置正确动作的前提条件。针对PT断线的特点,在对不同厂家的判据进行了分析后,结合一次现场实例,指出了目前判据中存在的不足之处,给出了一种PT断线的实用判据。根据该判据开发的线路保护装置已经在现场投入使用,证明了该判据的工程实用价值。 关键词:线路保护PT断线判据 0引言 变电站中PT 发生断线事故,是一种常见的故障。一旦PT 断线失压,会使得保护装置的电压量发生偏差,而电压量的正确获取是距离保护、带方向闭锁以及含低电压启动元件的过流保护能否正确动作的先决条件。在中性点不接地系统中,单相接地时具有以下特点[1 ]:接地相的对地电压变为零,其它两相的对地电压升高根号3倍,而三相中的负荷电流和线电压仍然是对称的。因此在中性点不接地系统线路保护装置中,PT断线的判据应该能够区分单相接地故障和不对称断线。 PT 三相失压(对称断线) 的判断,各个厂家基本相同,都是按照三相无压,线路有流进行判断的。而对于PT 不对称断线,则不尽相同。 本文在分析PT 断线的特点后,具体针对不同厂家的PT 不对称断线的判据,结合一次现场的实际事故,指出目前这些判据在现场应用时可能存在的不足之处,给出了一种实用的PT 断线判据,经过现场应用后,证明了该判据的正确性和工程实用价值。 1PT 断线的特点

PT断线一般可以分为PT 一次侧断线和二次侧断线,无论是哪一侧的断线,都将会使PT 二次回路的电压异常。 PT一次侧断线时,一种是全部断线,此时二次侧电压全无,开口三角也无电压;另一种是不对称断线,此时对应相的二次侧无相电压,不断线相二次电压不变,开口三角有压。 PT二次侧断线时,PT 开口三角无电压,断线相相电压为零。 2几种不同的PT 不对称断线判据 由于PT 三相对称断线的判据基本相同,因此本文主要对PT 不对称断线的判据进行分析。 目前,国内厂家对于PT 不对称断线的判据各有不同,以下述的三种判据为例。 判据一:负序电压大于8 V。 该判据是利用PT 不对称断线时,存在负序电压,而单相接地故障时,负序电压为零的特点来进行PT 不对称断线的判断的。 判据二:三相电压的向量和大于18 V ,并且至少有一线电压的模值之差大于20 V。 三相电压的向量和大于一指定值(18 V) ,是不对称断线的主要特征,“至少有一线电压的模值之 差大于20 V”,用来考虑在中性点不接地系统中,单相接地故障时,三相的线电压仍然是对称的,以此来区分单相接地故障和不对称断线。 判据三:存在一线电压的模值之差大于18 V。 该判据同判据二一样,也是通过线电压的模值之差作为PT 不对称断线的判据,并且是以此来区分单相接地故障和不对称断线的。

汽车转向常见故障分析案例

使用与维护注意事项 1、正确选择所用液压油的牌号,否则会影响泵的效率及寿命。 2、所用液压油必须清洁,经常检查,定期更换油泵吸油路上的滤油网。司机在加油时, 必须备有过滤装置,确保油液的清洁度。并经常检查、清洗或更换过滤装置,保持油路畅通。 3、若较长时间不使用转向泵,重新起动时,不得立即满负荷工作,至少应有十分钟的空 载运转时间。 4、使用时应经常检查转向泵有无渗漏现象,运转是否正常,有无冲击或异常噪音,以便 及时发现并排除故障。 案例1 一辆1997年产上海桑塔纳GLI轿车,累计行驶12.2万km,发动机在怠速运转时,转向助力泵发出“嗡嗡”响声,当左右转动转向盘时异响加重。该车在1个月内更换了2个转向助力泵,换上第1个转向助力泵时使用了约20天噪声便出现,第2个则只用了7天同样的问题便又出现。据维修技术人员介绍,他们进货渠道正规,此配件已售出多台,均未出现过类似问题。 经拆检已换的泵体,未发现异常磨损。将车停驶在平坦路面,通过全面的目视检查发现,液压管路、泵体及方向机无漏油现象,储液罐内液压油在上限与下限之间,传动带松紧适度,只是液压油呈黑色有变质现象。通过试车发现,左右转动转

向盘,转向加力正常,在行驶中转向稳定且灵活,未出现转向时跑偏、沉重与发飘现象,且转向回位良好。 难道真的是泵内异常磨损产生的噪声?据车主讲换上新泵后,从未发现缺油漏油现象。而此泵只使用了不足10天,应不是泵内磨损所致。如果泵内压力阀与流量阀不良,将会使压力过低,表现为转向沉重;如果压力过高,会因动力缸左右压差过大,行驶中会出现方向自动跑偏现象;如果转向分配阀工作不良或内部泄漏,会出现转向沉重;如果转向分配阀卡滞,会导致转向回位不良;如果分配阀芯与阀套配合间隙不良,也会发生跑偏与发飘现象。经过以上测试与分析,显然不符合以上任何一种情况,看来转向系统各部件工作良好,更不存在不良磨损现象。 至此修理工作陷入困境,检修中发现的惟一异常之处就是液压油存在变质过脏现象。使发动机怠速运转,转动转向盘数次,待液压油温上升至正常工作温度(约80℃左右),旋掉储液缸罩盖,用手按住中间弹簧,起动发动机怠速运转,在观察油面时,除了发现液压油过脏,还发现液压油在流动过程中不时有气泡冒出液面。莫非是因气泡随液压油的流动进入泵体,在泵内受到挤压而产生气动噪声?果真如此的话,那么气泡又是怎样产生的呢?经过深入分析,维修人员认为是储液缸内的滤芯堵塞导致上述现象。 为什么滤芯堵塞会产生如此大的噪声呢?液压油脏污会使滤芯堵塞,滤芯堵塞之后,会使滤芯内外两侧压差过大,因此会使油面处于不稳定状态。在油面变化的情况下,由于内侧处于过大负值,很容易就会使空气混入进油管,传至泵内受到挤压而产生气动噪声。

汽车空调案例分析[1]

案例分析 一、28五十铃空调开机后,离合器打滑。 一辆2.8五十铃(NKR)系列 故障现象:在开空调时,压缩机电磁离合器一直吸不上,打滑,停车后检查压缩机皮带松紧度,正常。然后起动发动机,打开空调(此款五十铃,不起动发动机,鼓风机及空调不工作)此时怠速在900r/min左右,用数字万用表测量压缩机电磁线圈,电压12V电流3.3-3.5A 之间正常。 故障分析与排除:可以断定,电磁线圈无故障,故障是电磁离合器。因为引起离合器打滑的原因是电磁线圈吸力不够,压缩机松紧度,离合器压板与皮带轮之间间隙调整不对,压板与离合器皮带轮之间的间隙应为0.4-0.8mm之间,而用专用塞尺测量其间隙明显偏大,因此车压缩机安装于发动机上部,停机后,用工具很快将压缩机压板拆下,而此时不需要排空制冷剂,拆下压板后,发现其后部三个垫片,其中一个厚度过厚,用千分尺一量,其中一厚度在0.8mm以上,而另外两个为正规的0.1mm,0.3mm,很明显此垫片为以后装配,因间隙不对导致电磁线圈对压板产生吸力不够,压缩机打滑。重新更换垫片,按要求装好,打开空调,故障排除。 二、桑塔纳开空调后制冷效果不佳。 故障现象:普通桑塔纳,LX型,打开空调后,在怠速下出现啪嗒声,同时空调制冷效果不佳,接上歧管压力表,开启空调,怠速在900r/min以上,压力表显示低压侧压力高,而高压侧的压力则低。 故障分析与排除:此种情况出现在空调皮带不打滑的情况下,只有压缩机损坏,此时用于手感检查,压缩机外壳高低压侧温差不大,而我们现在要确定压缩机损坏只有用泵吸性能检测法检测。 当我们用手钳夹住高压管时,高压侧压力在1360kpa左右,压力明显过低,这说明压缩机已经坏掉,需要修理或更换压缩机。更换压缩机后空调系统一切正常,噪音消失,制冷效果正常。 三、丰田轿车空调开机后有噪音 故障现象:有一2.8皇冠轿车,在起步时或路上加速时,会引起压缩机“吱吱”的噪音,空调关闭后,噪音消除。 故障分析与排除:因此断定噪音为空调系统所致,而造成空调噪音过大的可能有多种:第一种为皮带张力过大,或离合器松旷或制冷剂灌充过量或皮带轮安装不当。发动机停机后,打开机仓盖检查,发现压缩机皮带过于松驰,重新调整后,试车,故障排除。 四、捷达轿车传动带不平衡引发故障 故障现象:一辆捷达轿车,在开空调时,发动机噪音大,经检查为皮带张力过大,重新调整后,用了没几天,皮带张力又过大。 故障分析与排除:上述现象为皮带固定不住或皮带磨损,后更换新皮带,以为故障排除,不久,噪音又出现,停车后,打开机仓盖,用目测法检查,空调皮带磨损严重,拆下后发现皮带只磨一边,经仔细检查,原是压缩机皮带轮与发动机皮带轮不在一条线上,发动机运转时,皮带会偏向一边造成皮带磨损,因在开空调时,压缩机电磁离合器吸合,压缩机开始工作,皮带受力增大,噪音增大。 调整压缩机安装位置,让压缩机皮带轮与发动机皮带轮在同一平面上,更换皮带,路试故障排除。 五、尼桑轿车制冷效果不稳 故障现象:在怠速时空调不制冷,而在高速或中速时制冷效果不稳定

lte掉线专题分析指导v

东莞LTE掉线指标专题分析指导 # 1、概述 本文主要结合东莞移动LTE现网无线掉线指标情况,根据现网数据统计分析,重点介绍了LTE系统内掉线率指标的优化思路、分析方法、定位手段及典型案例;影响掉线指标的原因主要包括:弱覆盖、干扰、故障及参数设置、异常TOP终端等。 2、无线掉线率定义及分析 [ 无线掉线指标定义 无线掉线率= eNB异常请求释放上下文数/初始上下文建立成功次数*100%。 (eNB请求释放上下文数=eNodeB发起的UE Context释放次数+eNodeB发起的S1 RESET 导致的UE Context释放次数 初始上下文建立成功次数=UE Context建立成功总次数)

无线掉线率该指标指示了UE CONTEXT异常释放的比例。异常请求释放上下文数通过UE CONTEXT RELEASE REQUEST中包含异常原因的消息个数统计;初始上下文建立成功次数通过包含建立成功信息的Initial Context Setup Response 消息个数。 如中A点所示,当eNodeB向MME发送UE CONTEXT RELEASE REQUEST消息, 会释放UE的所有E-RAB。当释放原因不为“Normal Release”,“Detach ”,“User Inactivity”,“CS Fallback triggered”,“UE Not Available for PS Service”,“Inter-RAT Redirection”,“Time Critical Handover”,“Handover Cancelled”时,测量指标加1 如图2中A点所示,当eNodeB向MME发送S1 RESET消息时,根据包含的上下文个数,指标进行累加。 ,

转向系统故障案例

转向系统故障案例 【篇一:转向系统故障案例】 转向沉重、单侧沉重、异响、噪音、漏油、方向盘抖动/打手、稳定 性差、转向盘回正能力差等现象。1、转向沉重 1)故障原因: (1)油杯内部太脏,滤网被堵或油杯油面低。 (2)动力转向系统中有大量空气。 (3)转向系统内有异物造成转向泵流量控制阀卡滞。 (4)轮胎气压不足,泵的转向管柱干涉、连接松动,泵的皮带松动、打滑或泵安装位置松动。 (5)油管各连接部位螺栓松动,造成转向液泄漏。 (6)转向器活塞缸磨损过大,油封密封不良,控制阀粘结或损坏。2)故障诊断与排除: (1)检查转向器、转向泵控制阀、油杯滤网、转向油,清洗整个动 力转向系统。 (2)若泵脏,一定要清洁助力泵及油管的内外(不能用绵纱布或其 它多纤布,应用干净的毛刷进行清洁),并按规定给转向系统排空气。 (3)给轮胎按规定充气,并调整发动机的性能。 (4)加油到规定的油面,检查或更换油杯。 (5)按规定调整皮带的张力并紧固各的联接螺钉。 (6)检查油管的各连接部位,紧固各连接螺栓。 (7)更换油管、动力转向泵或动力转向器。2、打方向时单边转向 沉重 1)故障原因: (1)转向器油封密封不良,油管连接螺栓松动,造成转向液泄漏。(2)转向器控制阀被堵塞或损坏,造成控制阀工作不良。 (3)转向油泵控制阀内有异物,造成油泵不能正常工作。 (4)轮胎气压和前轮定位不符合正常行驶要求。2)故障诊断与排除: (1)从车上取下转向器,检查油封、油管及转向器控制阀,必要时 更换动力转向器。 (2)清洁油管、油泵,检查油泵控制阀内的阀芯是否滑动自如,不 要试图分解油泵,这可能会破坏油泵的端盖密封,造成泵漏油。

电力系统单相缺相故障分析

电力系统单相缺相故障分析 发表时间:2018-11-11T12:05:49.390Z 来源:《电力设备》2018年第20期作者:谷剑峰何寅 [导读] 摘要:确保电力系统运行安全始终是确保电能运输安全、合理的基础保障。 (国网浙江安吉县供电有限公司 313300) 摘要:确保电力系统运行安全始终是确保电能运输安全、合理的基础保障。然而,电力系统在实际运行过程中,较容易受到自身因素或者人为操作因素的影响,而出现不同程度的隐患问题,如电力系统单相缺相故障等,亟待相关人员结合具体情况进行及时解决。针对于此,文章主要以电力系统单相缺相故障为例,分析基于不同运行方式下,电力系统在出现单相缺相故障时,零序网络的变化情况。结合具体变化情况,提出异常处置防范措施,以供参考。 关键词:电力系统;单相缺相故障;短路故障 一般来说,当电力系统出现缺相故障时,往往会伴随零序电压的出现。而一旦出现零序电压往往会对电力系统的正常运行造成一定程度的影响,需要运维人员采取切实可行的预防措施予以解决。结合以往实践经验来看,隔离故障时往往需要重点考虑零序网络与零序电流的变化情况。运维人员要根据零序网络与零序电流的实际情况,采取合理的预防措施。与此同时,针对验收、操作等环节,提出安全、可靠的防范措施,以达到规避防继电保护误动的情况,为电力系统的稳定运行提供坚实保障。 1 关于电力系统故障问题的概述 电力系统不对称故障的一种表现类型为短路故障,而短路故障往往被称为横向故障。主要是指网络的某个节点位置出现相与相或者相与零电位点之间存在不正常接通情况,因此造成该节点位置与地形成故障端口。在分析不对称短路故障过程中,我们往往在故障端口处,插入一组不对称电源,以用来代替现实存在的不对称情况。并将不对称电源合理分解成为正序、负序以及零序分量。以此为基础,结合叠加原理,分别进行分析与计算[1]。 电力系统不对称故障另一种类型被称作纵向故障。主要是指网络中的两个相邻节点之间存在不正常断开情况,或者出现明显三项阻抗不平衡情况,主要表现为断路器分合三相不同期、导线单相断线等情况。如此一来,这两个相邻节点之间会形成故障端口。与横向故障分析方法类似,基本上也需要在故障端口间放置一组不对称电源,利用对称分量法特性进行分析与研究,得出具体的故障类型,采取对应的方法进行及时解决。 2 电力系统正常运行方式概述 文章主要以德安-湖安接线为主要研究对象。220KV系统为合环运行模式,而110KV为开环运行模式。110KV系统接地点位置都设置在220KV站附近[2]。需要注意的是,110KV站必须确保中性点不接地。正常运行方式可大致分为以下步骤:(1)除中性点刀闸K1及K5在合位之外,下图1中其它的中性点刀闸必须确保分位状态。 (2)德安母断路器600、500应处于合位状态。 (3)龙夏线带湖安变全站负荷,主要针对母联隔离开关5001与5002而言,必须确保其处于合位状态。与此同时,龙夏B热备用。需要注意的是,湖安侧502断路器必须处于分位状态,必须配置进线备自投使用。 3 基于不同运行方式下的电力系统缺相故障分析 假设德安变龙夏线508A相缺相运行,等效复合序网的运行会发生一定变化,具体如图。 注:X1—X4 为等效电抗;f1—f2 为故障端口;(0)-(2)为分别代表零序、正序、负序;U为故障端口的对称电源;E为系统电源; 图1 系统结构图 3.1 检修方式下故障分析(508 缺相) 倘若德安变508断路器在送电过程中,A相位置未合到位,且操作人员并未及时发现,很容易造成A相缺相运行。如果此时继续对湖安110KVII母与2号实行主变送电模式,很容易出现508缺相问题,并造成以下影响: 首先,处于零序网络状态时,湖安变受到缺相问题的影响,5001与5002会出现分位情况。且零序电流在回路I中无法形成有效的通路,多会在回路II位置处形成有效的通路。倘若此时合上2号主变520断路器,势必会在回路II中形成零序电流通路模式。在连续不断地运行条件下,德安变1号极大可能会出现主变零序电流保护误动情况,不利于电力系统的平稳运行。 其次,如果处于德安变508断路器A相未合到位情况时,湖安侧存在带上负荷情况,极有可能造成A相动静触头间放电问题。尤为注意的是,如果线路出现相间短路且存在叠加故障的时候,稍有不慎,很容易造成断路器爆炸事故,不但会对人身安全造成不利影响,同时也会对电网运行安全带来危害影响,造成无法估量的经济损失。 最后,受到德安1号主变110KV中性点接地的相关影响,德安110KV涉及到的I、II母电压基本上不会受到任何影响,多处于平衡状态。因此,对于此时的德安2号主变中性点而言,几乎不存在电位变化。 3.2 正常运行方式下故障分析(508 缺相) 保持正常运行状态不变,倘若线路出现断线等故障问题,很有可能造成龙夏线508A相处于缺相运行状态。

线痕和断线分析1

多晶四厂部门切片工号断线姓名线痕成绩全报废阅卷人范特西 一、填空题(共48分,每空2分,不写单位扣分) 1、我们公司二、三厂用的MB切片机的型号是DS264-4型。 2、0.12mm钢线所对应的导轮槽距是0.36mm;导轮的可用直径范围为320.5mm;硅片的厚度是200+20um;切割距离是-165 mm;大、小滑轮共6个, 3、最大台面速度为0.36mm/min;最大线速为15m/s,正常切一刀多晶需要319-323KM线,需要480+20分钟。 4、切片用的砂浆是碳化硅和切割液按0.96 :1 的比率混合,砂浆密度范围是1.635+0.005kg/l,砂浆温度是24℃,砂浆缸的最大容量是(390)L。。 5、请翻译:冷却系统(cooling system ) 断线(wire breakage)砂浆设置( slurry supply) 6.粘胶之后等胶水硬化需要(12 )小时砂浆最大流量是(15000)我们常用的流量是(7500kg/L),冷却水的进水口温度是(14+1)℃。 二、判断题(每题1分,共10分) 1. (√ )丙酮是易燃物. 2. (×)粘胶室的温度应该控制在20-25度. 3. (√)正常一块玻璃最多可以粘3块硅块。 4. (×)现使用的玻璃长410mm,宽156mm,厚15 mm。 5. (×)切片机的气压最大值是2Pa。 6. (×)使用超过1000小时后,导轮一定损坏。 7. (×)断线是不是一定会产生线痕。 8. (×)硅快没倒角一样可以切片。 9. (√ )安装导轮的油压是650Pa。 10.(×)钢线作用是用来切割。 三、简答题:(共42分) 1. 跳线有几种?怎么样处理?(8分) 单边跳线,一边跳线,一边没跳——只需贴上胶布往跳线部位跑线即可。 双边跳线,两边都有跳线——贴上胶布跑线即可。 交叉跳线——贴上胶布先处理一边跳线,再返跑处理另外一边。 2. 分析断线是有那几种原因造成的。我们应该从那些方面做到尽量不断线?(10分) 原因:1.导轮受损,2.硅块没有处理干净,3.砂浆断帘4.钢线质量异常,5.设备故障6.人为因素,7.硅块斜面8.PVC条没有粘牢。 对策:1.导轮受损后及时更换2.认真的把硅块清理干净3.喷砂嘴洗好,吹干净安装好后观察喷砂情况4.安装钢线时发现有异常马上报告班长,5.平时对设备多做保养和维护6.工作认真、仔细7.发现有斜面的硅块要放置在最后的出线端,8退回粘胶房,重新粘牢。 简述校正张力的方法以及步骤。(7分) 首先,必须让滑轮受平衡力,然后查看其受力情况是否正常。根据受力情况逐渐调整至张力受力为0。 1.把测力轮调垂直,2调零点,3.把38N的重锤挂上,3.保证排线轮与线扎成90度4.调节机器上方的电控柜。 3. 全自动切割之前需要做好那几个准备工作?(10分) 1.检查是否有跳线, 2.检查机器的参数 3.按点检表一项一项进行检查, 4.过滤袋是否更换,5硅块是否处理干净6.砂帘是否均匀。

异响案例

汽车转向时异响 一!动力转向系统印发的噪音 (1)动力转向储液罐中油液过低,液压泵工作时吸进空气或者液压传动带过松 (2)油路中有空气 (3)滤清器滤网堵塞或因破裂造成堵塞(更换) (4)各管路接头松动或者破裂 (5)液压泵损坏或者磨损严重(更换动力转向装置) 二!转向转动机构及转向器印发异响 (1)转向转动轴万向节松动 (2)转向传动机构各球头松旷或者损坏 (3)转向器啮合转动磨损过甚,调整不当或者轴承松旷 (4)转向柱固定不良或者与之相固连接点焊接部良 (5)前悬架球头或者支撑轴承不良 (6)前轮驱动车辆的驱动半轴外求笼损坏 检查与维修 一!检查发生异响部位,如转向助力泵发出嘶嘶。。。声应进行一下检查 (1)检查储液罐液面高度(如果不够,应查明泄露部位并修理,然后按规定加足动力转向液) (2)检查转向助力泵驱动带是不是打滑(如有打滑应查明原因并更换并调整) (3)检查动力转向液中有无泡沫(如有应检查漏气部位并修理,后排出空气)(如无空气,说明油路有堵塞或者转向器啮合磨损过甚调整不当或者轴承松旷) (4)检查转向传动轴万向节有无松旷转向柱固定不良或者相固连接处焊接部良,或者举升车辆一人在车上转动方向盘一人在下面听诊) (5)检查前悬架摆臂球头有无损坏上支撑轴承座橡胶老化开裂轴承是否磨损(如车辆行驶时发出哒哒响静不响应检查前驱动半轴外球笼是否损坏) 案例一 轿车在使用过程中,难免出现车身异响。用户往往会遇到这种情况:后排座椅只要一坐人,车身后部就会发出“咯吱,咯吱”的响声,声响较大,但仔细倾听,却不好确定沉闷的异响来自何处。难以确定具体故障部位,这是让用户烦恼,让修理工头痛的问题。在此以奥迪A6为例,为广大用户和维修人员提供一条诊断和排除车身异响的捷径。 首先拉紧手制动,往下按压行李舱,听是否有响声。然后松开手制动再试,如响声消失,则异响为驻车制动系统中机械连接处发出,此为正常,不必维修。

一起小电流接地系统单相断线故障分析

起小电流接地系统单相断线故障分析 摘要:本文对一起小电流接地系统35kV 线路单相断线故 障进行了理论计算分析,得出了单相断线后的变压器各侧母线电压变化规律,对今后类似故障的判断及处理具有一定的借鉴作用。 关键词:小电流接地系统;单相断线;电压近几年,随着城市 建设步伐加快,不接地系统线路接地和断相的现象有所增加,或是负载原因,或是外力破坏在本地区近年的配网线路中发生过几起。文章针对一起35kV 系统单相断线故障,进行深入分析及研究。 1故障情况 变电站一次接线如图1所示,正常运行时,35kV B站由甲线供电。某日10:06 A站35kV I母电压不平衡,A相20kV, B相 20kV,C相23kV°35kV B站低压侧电压不平衡:A相6kV,B相 3kV,C相3kV。令值班员现场检查。10:15发现B站负荷从23MW 急剧下降至2MW 。 2处理过程 考虑故障侧10kV母线两相电压下降到正常相电压的一半,与正常侧10kV母线存在电压差,若采用10kV侧合解环调电方法,合环时将导致较大的不平衡电流,并且影响到主变的正常运行和负荷供电。因此,不宜采用10kV 合解环方法调电。也考虑到35kV B站进线有备自投,且大量负荷已甩掉,所以决定直接将断线线路拉停,B

站负荷靠自投恢复[1] 。10:25 拉停甲线后A 站、B 站电压恢复正常。 3事故现象分析中性点电压的大小与断线线路对地电容在系统中的所 占份额有关,当母线上只有唯一一条线路且缺相运行时,=+0N=。实际运行时,各相对地电容不完全对称,且A站35kV I 段母线上有多条线路运行,断线相对地电容电流变化不大,所以ONv,<<,、略为减小。所以A站35kV母线电压现象为断线相电压升高,正常相电压略为降低。 对于B站(负荷侧)、正常运行时、10kV母线相电压三相平衡、均在6kV左右。以A相为参考相、甲线C相断线后、负荷端高压线圈上的电压为=Ue、=Ue, =0。其中、U为相电压数值。根据对称分量法、有: 从计算结果可以看出、35kV甲线C相断线时、B站10kV 侧母线电压变化情况为一相(A相)对地电压正常、两相(B、C相)相电压降低至正常相电压的一半。 4结论 ①小电流接地系统线路单相断线时、如果断线相对地电容减小不多、则电源侧中性点不平衡电压不大、故障特征不明显、反映到电压互感器开口三角上电压达不到继电器的动作值时,不会发信号,但三相对地电压仍有差别,断线相电压升高,非断线相电压略降。②对于负荷侧,由于电源缺相,三相对称性被破坏,三相动力负载将

应急预案案例分析

应急预案案例分析 大纲要求: 1.了解应急预案的培训和演练; 2.熟悉应急预案的评审和改进。 3.掌握应急预案的主要内容和编制方法; 3.1 应急预案的主要内容 3.1.1 方针与原则 目的: ——指导应急救援的纲领。 考虑因素: ——救援工作的优先方向、政策、范围和总体目标。 3.1.2 应急策划 对特定对象潜在的事故性质及影响进行认识和评价; 根据危险分析的结果,分析应急力量和应急资源的可利用情况; 国家、地方相关法规,以作为预案制定的依据和授权。 —危险分析 —资源分析 —法规要求 3.1.2 .1 危害辨识与风险评价 目的:明确应急的对象、事故的性质、影响范围、后果严重度,为应急响应和减灾措施提供决策和指导依据。 考虑因素: 地理、地质、气象信息; 功能布局; 重大危险源; 重大事故性质及周边影响; 特定时段; 影响应急救援的不利因素。 3.1.2.2 资源分析

目的:为应急资源的规划与配备、与相邻地区签订互助协议和预案编制提供指导。考虑因素: 各类应急力量的组成及分布; 各种重要应急设备、物资的准备情况; 上级救援机构或周边可用的应急资源。 3.1.2.3 法规要求 目的:了解应急预案制定的依据和授权。 主要法律法规包括: —安全生产法、安全生产专项法律; —危险化学品安全管理条例等; —国家生产安全事故总体应急预案和行业应急预案; —专业预案编制导则; …… 3.1.3 应急准备 主要包括: —机构和职责; —应急资源; —培训、训练与演练; —互助协议。 3.1.3.1 组织机构及其职责 目的: ——使应急救援工作反应迅速,协调有序。 考虑因素: 组织机构主要包括: —领导机构(指挥部); —应急响应中心; —相关职能部门; —下属经营单位。 明确职责分工、候补人选及联系方式 3.1.3.2 应急资源 目的: ——根据潜在事故的性质和后果分析,合理组建救援力量,提供装备及物资保障。考虑因素: 应组建的专业和社会救援力量; 应急救援的设施和设备: —办公室、通讯设备、备用照明、应急保障物资等; —企业、武警、消防、卫生等部门可用设施与设备; —监测设备; —个体防护设备; 如何检查、维护和更新。 3.1.3.3 培训、训练与演练 目的: ——提高各类人员的应急响应能力。

空调压缩机故障案例

空调压缩机维修案例 编号: 1 故障类型:压缩机匝间短路 机器型号:分体挂机、柜机系列 故障现象:制冷效果不好,压缩机跳停. 原因分析:机器能正常运行但制冷效果差,检查换热两器无脏堵,室内外风机转速正常,测量压缩机压力正常,但电流偏大,运行一段时间,压缩机发烫,导致压缩机跳停,再次起动时压缩机无法起动,可判断为压缩机匝间短路。 解决措施:更换压缩机 经验总结:在判断压缩机故障时,要认真把外围故障排除,如:内风机风量、外风机风量、压机电容容量等。 编号: 2 故障类型:压缩机轻微串气 机器型号:分体挂机、柜机系列 故障现象:制冷效果不好,压缩机跳停. 原因分析:机器可以运行但制冷效果差,检查换热器无脏堵,室内外风机转速正常且无短路循环现象,电压正常,而吸气压力偏高,电流却偏小,压缩机内部有轻微串气,造成压缩机实际输出能力下降。 解决措施:更换压缩机 经验总结:同案例1 编号: 3 故障类型:压缩机轻微串气 机器型号:KFR—75LW/DY—Q

故障现象:制热效果差 原因分析:新机刚安装,当时室外环境温度7℃左右,室内环境温度20℃左右,试机发现制热效果偏差,冷凝器并无结霜,测电流有10安培,且吸气管温度与环境温度相近,排气温度只有60℃,加氟后改善并不明显,内外机风扇转速正常,环境通风性良好。从而判断压缩机有轻度串气,后换压缩机,试机10分钟后,送风温度大约43摄氏度,机器正常运行. 解决措施:更换压缩机 经验总结:试机时应结合使用条件(环境温度)等来判断机器是否有异常,此机器假如不更换压缩机,但气温较低时机器制热效果肯定会不好。此类故障比较难判断,需要对整个系统进行排查. 编号: 4 故障类型:压缩机本体泄漏 机器型号:KFR-120LW/K2SDY 故障现象:不制冷 原因分析:检查压缩机没有制冷剂,发现压缩机底座机壳焊接处有砂眼,造成制冷剂泄漏。 解决措施:更换压缩机 经验总结:造成漏氟的原因:压缩机壳体之间或壳体与吸排气管之间焊接不牢。编号: 5 故障类型:压缩机吸排气性能差 产品型号:KC—46/C 故障现象:出风口温度高 原因分析:经检查用户电源,压缩机运行电流都正常,但出风口温度为23℃,

掉线率分析-中兴20140818

掉线分析 1.全网掉线率统计 广州8月17日全网掉线率在0.67,主要原因为ENB空口失败和S1链路故障导致。而S1链路故障主要为Gtpu ErrInd触发释放和Path故障触发释放,解决S1链路故障问题8月17日的掉线率可以达到0.37%。 集团掉线率公式: (C373220612+C373220613+C373220614+C373220616+C373220620+C373220621+C37322062 2) 相关计数器说明如下表:

2.掉线的信令流程及相关的失败信令点统计 无线掉线率=(ENB请求释放的上下文数-正常的ENB请求释放的上下文数)/初始上下文建立成功次数分子统计点:RRC connection release 分母统计点:RRC connection reconfiguration complete Context异常释放的主要原因: ENB空口失败引发释放:干扰、弱覆盖。 ENB由于S1链路故障导致释放:Gtpu ErrInd触发释放、Path故障触发释放(次) 掉线原因统计: TOP小区分析:

分析8月17日掉线率TOP100小区,掉线次数占全网比例为23.42%,除去TOP100掉线率为0.51%。主要掉线原因仍为S1链路故障和强干扰导致。 3.处理措施 ENB空口失败引发释放问题解决措施: 1.TOP100小区中26%噪声平均干扰电平较高(>-95),需定位系统内干扰(GPS干扰、时隙子帧配置、 频点PCI配置,过覆盖)或系统外干扰(杂散干扰、阻塞干扰、互调干扰); 2.漏配邻区导致无线链路质量持续恶化掉线。需完善邻区关系。 3.邻区配置错误,导致切换到较远小区,形成孤岛效应。需优化邻区关系。 4.导频污染导致系统内底噪较高,无线链路质量较差导致掉线。进行RF调整,避免导频污染。 5.掉线类参数设置不合理,需进行参数一致性调整。(N310下行失败最大个数、无线链路失败定时器 T310、N311下行同步最大个数) ENB由于S1链路故障导致释放问题解决措施: 1.Gtpu ErrInd触发释放,需无线侧和核心网侧联合抓包排查故障。 2.Path故障触发释放,排查端口地址是否配错以及路由是否PING通。 3.光口故障触发释放,处理传输光模块、光纤故障。

一起小电流系统线路单相断线引起母线电压异常分析

一起小电流系统线路单相断线引起母线电压异常分析 摘要:本文对一起小电流系统线路单相断线引起电压异常事故处理情况进行介绍,事故发生时虽然单相接地信号发信,但系统电压显示与单相接地时电压分布 特征差异较大,造成故障分析判断困难。结合变电站运方情况,对单相断线时系 统运行工况进行详细理论分析,理论分析和实际系统工况两者相互吻合,论证了 对事故判断的正确性。通过对该事故分析总结,给类似事件处理提供一定的启示 和参考。 关键词:小电流系统;单相断线;单相接地;电压异常 0 引言 某日,某220kV变电站(下称A站)发生了一起35kV出线单相断线造成本 侧及下级厂站母线电压异常的事故。主要原因是由于A站35kV 311线路导线B 相断线后与A相发生导线碰线,造成A/B相间短路,311开关跳闸,重合成功, B相导线掉落在地上。由于断线相导线落在地上,造成A站35kV II段母线异常, B相发出接地信号,其下级35kV B站(下称B站)母线电压遥测异常。该事故系 统电压显示与单相接地时电压分布特征差异较大,造成故障分析判断困难。针对 这类小电流系统线路单相断线并伴随接地的故障类型下文将进行深入分析并提出 几点启示。 1故障简介 1.1系统正常运方 220kV A站,311开关运行于35kV II母,带下级厂站B站2号主变运行; 35kV B站,311开关运行于35kV II母,1、2号主变分列运行,母联300开关热备用,母联100开关热备用,备自投均启用。 1.2 故障过程简述 某日,12:50,220kV A站35kV 311开关跳闸,重合成功,220kV A站35kV II段母线B相接地,电压为(38.45,0.57,35.33)kV;35kV B站电压异常,35kV II段母线三相电压(34.44、30.96、34.44) kV,10kV II段母线三相电压(3.25、2.93、6.02)kV。配调调控员按照单相接地故障的处理流程,对A站35kV出线进行拉路查接地。当拉开311线出线开关时,35kVII段母线电压恢复正常,B站35kV 备自 投动作,全站电压恢复正常。13:10,当值调控员通知配电运检巡线。13:25, 配电运检汇报35kV 311线19#杆A站侧导线B相断线,A站侧导线掉路在地上, 后将该段线路停电检修。处理结束后,送电正常。 2 故障分析 该事故只从A站35kV母线电压分析,是典型的单相接地现象。实际上是一 起电源侧接地的线路单相断线事故。我们对事故分析后认为,是35kV 311线19# 杆A站侧B相导线断线后碰线,发生相间短路,造成 311开关跳闸,重合成功。 A站侧断线相导线落在地上,造成A站35kV母线单相接地,B站侧电压异常。 2.1 A站电压异常分析 综上所述,当高压侧线路断线,电流流经变压器后,低压侧C相相电压大小、方向均不变。A、B相电压变为断线前正常相电压的0.5倍,且方向相反。 由系统实际工况可知,在断线事故发生后,B 站10kV I、II段母线三相电压(3.25、2.93、6.02)kV。断线前10kV母线三相电压为(6.14、6.08、6.07)kV。

相关文档
最新文档