腔体设计

腔体设计
腔体设计

腔体设计

耳机腔体是耳机的“最重要”的组成部分,直接决定了耳机外观、声学结构、佩戴效果、造价成本。

要开发一款耳机或耳塞,第一件事情就是设计外观,好的外观往往决定了这款产品的销售量,因为腔体的制造成本的差距不大,而漂亮的外观人人都喜爱。音质优异而外观漂亮的产品也有不少,比如A8、ESW9、ES7、T50P 等等。

例如,铁三角ON3、松下HTX7、苹果的原配耳塞,尽管不是以音质为卖点,但是漂亮的外观却是重要的诱惑,每天的销量非常惊人。

外观设计需要花费大量的时间去收集资料、想象,并在脑海里建立模型,同时也要符合实际情况、市场因素、当地人的审美观念,然后在电脑上建立产品模型图,最后交给工厂进行打样和修改。

耳机腔体的材料有大三类,分别是塑料、金属、木材(包括竹子)。由于材料的密度不同,对声音的影响也不一样。目前材质最好的,莫过于金属,其次是木材、塑料。

这与材质有直接关系:密度越高,声音对腔体的振动越低,干扰就越低;材质越厚,对声音的回放效果越好,低频效果就越好。

那么为什么大部分音箱都不用金属呢?事实上有不少的高端音箱也是用金属的,但因为造价高昂、太笨重、保养麻烦,这些都决定了用木材做音箱更适合。当然由于耳机和耳塞的结构问题,所以大部分都采用塑料材质,其次才是金属和木材。

耳机腔体的结构作用主要是消除声短路、抑制声共振、拓宽频响范围、减少失真。结构的空间大小、内部的声反射规律、承载喇叭的大小,都能直接影响声音的音质,头戴耳机比耳塞的音场要优秀,这就是由结构决定的。

耳机的造价成本主要来自于两方面:开发的成本费用和研发时间,而开发成本主要来自于耳机腔体,因为要做一个耳机腔体必须要开模具,模具的费用非常高,都是以“万”为单位,而金属材料的成本会低很多。事实上,

耳机的材料非常廉洁,都是以“分”和“厘”为价格单位,就拿耳塞来说,一条耳塞的材料成本很少会超过3元,但是把所有的东西结合在一起,成本就不低了。同样是油画,画的人不同而油画的价值也就不同,这是汗水与天分的结合,画家如此,耳机也如此,至于是否暴利,每个人的答案都不一样。

约克:用来固定扬声器(喇叭)的外壳,专业一点的说法就是“耳机的内部腔体”,在工厂里面我们一般称为“约克”。约克一般分为塑料、金属两种材质,在设计完耳机腔体的轮廓后就要设计约克的结构,约克作为耳机的内部腔体,除了能够固定和保护扬声器,还起到调音功能。约克固定耳机的内部,使耳机

腔体分立为前腔体和后腔体,约克的周边有固定的气孔,调音师在约克上粘贴调音纸进行校音,能够改变整个音频曲线的布局。

美观与音质并重,这是耳机未来发展的必然趋势。

砌体结构设计规范(GB50003-2011)

《砌体结构设计规范》 (GB 50003-2011) 【13条】 1. 龄期为 28d 的以毛截面计算的砌体抗压强度设计值,当施工质量控制等 级为 B 级时,应根据块体和砂浆的强度等级分别按下列规定采用: 1 烧结普通砖、烧结多孔砖砌体的抗压强度设计值,应按表 3.2.1-1采用。 注:当烧结多孔砖的孔洞率大于30%时,表中数值应乘以0.9。 2. 混凝土普通砖和混凝土多孔砖砌体的抗压强度设计值,应按表 3.2.1-2 采用。 3. 蒸压灰砂普通砖和蒸压粉煤灰普通砖砌体的抗压强度设计值,应按3.2.1-3 采用。

注:当采用专用砂浆砌筑时,其抗压强度设计值按表中数值采用。 4. 单排孔混凝土和轻集料混凝土砌块对孔砌筑砌体的抗压强度设计值,应按表3.2.1-4 采用。 注: 1 对独立柱或厚度为双排组砌的砌块砌体,应按表中数值乘以0.7; 2 对T 形截面墙体、柱,应按表中数值乘以0.85 。 5. 单排孔混凝土砌块对孔砌筑时,灌孔砌体的抗压强度设计值fg,应按下列方法确定: 1)混凝土砌块砌体的灌孔混凝土强度等级不应低于Cb20,且不应低于1.5 倍的块体强度等级。灌孔混凝土强度指标取同强度等级的混凝土强度指标。 2) 灌孔混凝土砌块砌体的抗压强度设计值fg,应按下列公式计算:

6. 双排孔或多排孔轻集料混凝土砌块砌体的抗压强度设计值,应按表 3.2.1-5 采用。 7. 块体高度为180mm~350mm 的毛料石砌体的抗压强度设计值,应按3.2.1-6 采用。

注:对细料石砌体、粗料石砌体和干砌勾缝石砌体,表中数值应分别乘以调整系数1.4 、1.2 和0.8 。 8. 毛石砌体的抗压强度设计值,应按表3.2.1-7 采用。 3.2.2 龄期为28d 的以毛截面计算的各类砌体的轴心抗拉强度设计值、弯曲 抗拉强度设计值和抗剪强度设计值,应符合下列规定: 1 当施工质量控制等级为B 级时,强度设计值应按表3.2. 2 采用: 2 单排孔混凝土砌块对孔砌筑时,灌孔砌体的抗剪强度设计值fvg应按 下式计算:

建筑施工规范大全

最新建筑施工规范大全 1 地基与基础 规范名称规范编号变更情况< 工程测量规范 GB 50026-2007 有效 建筑地基处理技术规范JGJ 79-2002有效 } 建筑基坑支护技术规程 JGJ 120-99有效 锚杆喷射混凝土支护技术规范GB 50086-2001有效 ; 建筑边坡工程技术规范 GB 50330-2002有效 建筑桩基技术规范JGJ94-2008有效 【 高层建筑箱形与筏形基础技术规范 JGJ 6-99有效 湿险性黄土地区建筑规范GB 50025-2004有效 》 湿陷性黄土地区建筑基坑工程安全技术规程 JGJ167-2009有效 膨胀土地区建筑技术规范GBJ 112-87有效 ] 膨胀土地区建筑技术规范 GBJ 112-87有效 既有建筑地基基础加固技术规范JGJ 123-2000有效 — 地下工程防水技术规范 GB50108-2008有效 人民防空工程施工及验收规范GB 50134-2004有效 2 主体结构 规范名称规范编号变更情 况 钢筋混凝土升板结构技术规范GBJ 130-90 }有效 大体积混凝土施工规范GB50496-2009有效 装配式大板居住建筑设计和施工规程JGJ 1-91 ,有效 高层建筑混凝土结构技术规程JGJ 3-2002有效 轻骨料混凝土结构技术规程JGJ12-2006 【有效 冷拔钢丝预应力混凝土构件设计与施工规程JGJ 19-92被JGJ 19-2010 替换 无粘结预应力混凝土结构技术规程JGJ 92-2004 (有效 冷轧带肋钢筋混凝土结构技术规程JGJ 95-2003有效

钢筋焊接网混凝土结构技术规程JGJ 114-2003 <有效 冷轧扭钢筋混凝土构件技术规程JGJ 115-2006有效 型钢混凝土组合结构技术规程JGJ 138-2001 $有效 混凝土结构后锚固技术规程JGJ 145-2004有效 混凝土异形柱结构技术规程JGJ149-2006 %有效 多孔砖砌体结构技术规范(2002年版)JGJ 137-2001有效 高层民用建筑钢结构技术规程JGJ 99-98 <有效 网架结构设计与施工规程JGJ 7-91有效 网壳结构技术规程JGJ 61-2003 ~有效 古建筑木结构维护与加固技术规范GB50165-92有效 烟囱工程施工及验收规范GB 50078-2008 【有效 给水排水构筑物工程施工及验收规范GB50141-2008有效 汽车加油加气站设计与施工规范(2006年版)GB50156-2002 '有效 工业炉砌筑工程施工及验收规范GB 50211-2004有效 医院洁净手术部建筑技术规范GB50333-2002 `有效 生物安全实验室建筑技术规范GB 50346-2004有效 实验动物设施建筑技术规范GB50447-2008 |有效 电子信息系统机房施工及验收规范GB50462-2008有效 3 建筑装饰装修 规范名称规范编号变更 情况 住宅装饰装修工程施工规范GB 50327-2001有效 建筑内部装修防火施工及验收规范GB50354-2005^ 有效 屋面工程技术规范GB 50345-2004有效 V形折板屋盖设计与施工规程JGJ/T 21-93$ 有效 种植屋面工程技术规程JGJ155-2007有效 自流平地面工程技术规程JGJ/T175-2009\ 有效 机械喷涂抹灰施工规程JGJ/T105-96有效 塑料门窗工程技术规程JGJ103-2008" 有效 外墙饰面砖工程施工及验收规程JGJ 126-2000有效建筑陶瓷薄板应用技术规程JGJ/T172-2009* 有效

手机音腔部品选型及音腔结构设计指导及规范

手机音腔部品选型及音腔结构设计指导及规范 The manuscript was revised on the evening of 2021

手机音腔部品选型及音腔结构设计指导及规范 1. 声音的主观评价 声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。音质评价术语和其声学特性的关系如下表示: 从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。而高于 8KHz略有提升,可使高频段的音色显得生动活泼些。一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。 声音失真对听觉会产生一定的影响,其程度取决于失真的大小。对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下: THD<1%时,不论什么节目信号都可以认为是满意的; THD>3%时,人耳已可感知; THD>5%时,会有轻微的噪声感;

THD>10%时,噪声已基本不可忍受。 对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。 2. 手机铃声的影响因素 铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。 Speaker单体的品质对于铃声的各个方面影响都很大。其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。 手机声腔则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。 音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。例如,当输出信号的失真度超过10%时,铃声就会出现比较明显的杂音。此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音。 MIDI选曲对铃声的音质也有一定的影响,表现在当铃声的主要频谱与声腔和Speaker的不相匹配时,会导致MIDI音乐出现较大的变音,影响听感。 总之,铃声音质的改善需要以上四个方面共同配合与提高,才能取得比较好的效果。 3. Speake r的选型原则 扬声器(Speaker)简介 3.1.1 Speaker工作原理 扬声器又名喇叭。喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。喇叭实际上是一个电声换能器。 对手机来说,Speaker是为实现播放来电铃声﹑音乐等的一个元件。手机Speaker 音压频率使用范围在500Hz~10KHz。 3.1.2 手机用Speaker主要技术参数及要求 a>. 功率Power。功率分为额定功率Rated Power和最大功率Max Power。

塑胶结构设计规范

第一章塑胶结构设计规范 1、材料及厚度 1.1、材料的选取 a. ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲 击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、LCD支架)等。还有就是普遍用在电镀的部件上(如按钮、侧键、导航键、电镀装饰件等)。目前常用奇美PA-757、PA-777D等。 b. PC+ABS:流动性好,强度不错,价格适中。适用于作高刚性、高冲击韧 性的制件,如框架、壳体等。常用材料代号:拜尔T85、T65。 c. PC:高强度,价格贵,流动性不好。适用于对强度要求较高的外壳、按 键、传动机架、镜片等。常用材料代号如:帝人L1250Y、PC2405、PC2605。 d. POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸 水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。常用于滑轮、传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。 e. PA坚韧、吸水、但当水份完全挥发后会变得脆弱。常用于齿轮、滑轮等。 受冲击力较大的关键齿轮,需添加填充物。材料代号如:CM3003G-30。 f. PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳光, 室外十年仍有89%,紫外线达78.5% 。机械强度较高,有一定的耐寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有一定强度要求的透明结构件,如镜片、遥控窗、导光件等。常用材料代号如:三菱VH001。 1.2 壳体的厚度 a. 壁厚要均匀,厚薄差别尽量控制在基本壁厚的25%以内,整个部件的最 小壁厚不得小于0.4mm,且该处背面不是A级外观面,并要求面积不得大于100mm2。 b. 在厚度方向上的壳体的厚度尽量在1.2~1.4mm,侧面厚度在1.5~1.7mm; 外镜片支承面厚度0.8mm,内镜片支承面厚度最小0.6mm。 c. 电池盖壁厚取0.8~1.0mm。 d. 塑胶制品的最小壁厚及常见壁厚推荐值见下表。 塑料料制品的最小壁厚及常用壁厚推荐值(单位mm)

砌体结构设计规范(圈梁、过梁、墙梁及挑梁、墙梁)

砌体结构设计规范·圈梁、过梁、墙梁及挑梁·墙梁 7、3、1 墙梁包括简支墙梁、连续墙梁与框支墙梁。可划分为承重墙梁与自承重墙梁。 7、3、2 采用烧结普通砖与烧结多孔砖砌体与配筋砌体得墙梁设计应符合表7、3、2得规定。墙梁计算高度范围内每跨允许设置一个洞口;洞口边至支座中心得距离αi,距边支座不应小于0、15l oi,距中支座不应小于0、07l oi。对多层房屋得墙梁,各层洞口宜设置在相同位置,并宜上、下对齐。 表7、3、2 墙梁得一般规定 注:1 采用混凝土小型砌块砌体得墙梁可参照使用; 2 墙体总高度指托梁顶面到檐口得高度,带阁楼得坡屋面应算到山尖墙1/2高度处; 3 对自承重墙梁,洞口至边支座中心得距离不宜小于0、1l0i,门窗洞上口至墙顶得距离不应小于0、5m; 4 h w—墙体计算高度,按本规范第7、3、3条取用; h b—托梁截面高度; l0i—墙梁计算跨度,按本规范第7、3、3条取用;

b h—洞口宽度; h h—洞口高度,对窗洞顶至托梁顶面距离。 7、3、3 墙梁得计算简图应按图7、3、3采用。各计算参数应按下列规定取用: 1) 墙梁计算跨度l0(l oi),对简支墙梁与连续墙梁取1、1l n(1、1l ni)或l c(l ci)两者得较小值;l n(l ni)为净跨,l c(l ci)为支座中心线距离。对框支墙梁,取框架柱中心线间得距离l c(l ci); 2) 墙体计算高度hw,取托梁顶面上一层墙体高度,当h w>l0时,取h w=l0(对连续墙梁与多跨框支墙梁,l0取各跨得平均值); 3) 墙梁跨中截面计算高度H0,取H0=h w+0、5h b; 4) 翼墙计算宽度b f,取窗间墙宽度或横墙间距得2/3,且每边不大于3、5h(h为墙体厚度)与l0/6; 5) 框架柱计算高度H c,取H c=H cn+0、5h b;H cn为框架柱得净高,取基础顶面至托梁底面得距离。

最新钢结构规范及图集

【国家标准】 1、GB-50017-2003、《钢结构设计规范》 2、GB50018-2002、《冷弯薄壁型钢结构技术规范》 3、GB-50205-2001、《钢结构结构施工质量验收规范》 4、GB50191-93、《构筑物抗震设计规范》 5、GBJ135-90、《高耸结构设计规范》 6、GB500046、《工业建筑防腐蚀设计规范》 7、GB8923-88、《涂装前钢材表面锈蚀等级和涂装等级》 8、GB14907-2002、《钢结构防火涂料通用技术条件》 9、GB-50009-2001、《建筑结构荷载规范》 10、GBT-50105-2001、《建筑结构制图标准》 11、GB-50045-95、《高层民用建筑设计防火规范》(2001年修订版) 12、GB-50187-93、《工业企业总平面设计规范》 【行业标准】 1、JGJ138-2001/J130-2001、型钢混凝土组合结构技术规程 2、JGJ7-1991、网架结构设计与施工规程 3、JGJ61-2003/J258-2003、网壳结构技术规程 4、JGJ99-1998、高层民用建筑钢结构技术规程(正修订) 5、JGJ82-91、钢结构高强度螺栓连接的设计、施工及验收规程 6、JGJ81-2002/J218-2002、建筑钢结构焊接技术规程 7、DL/T5085-1999、钢-混凝土组合结构设计规程 8、JCJ01-89、钢管混凝土结构设计与施工规程 9、YB9238-92、钢-混凝土组合楼盖结构设计与施工规程 10、YB9082-1997、钢骨混凝土结构技术规程 11、YBJ216-88、压型金属钢板设计施工规程(正修订) 12、YB/T9256-96、钢结构、管道涂装技术规程 13、YB9081-97、冶金建筑抗震设计规范 14、CECS102:2002、门式刚架轻型房屋钢结构技术规程 15、CECS77:96、钢结构加固技术规范 16、YB9257-96、钢结构检测评定及加固技术规范 17、CECS28:90、钢管混凝土结构设计与施工规程 18、YB9254-1995、钢结构制作安装施工规程 19、CECS159:2004、矩形钢管混凝土结构技术规程 20、CECS24:90、钢结构防火涂料应用技术规范 21、CECS158:2004、索膜结构技术规程 22、CECS23:90、钢货架结构设计规范 23、CECS78:96、塔桅钢结构施工及验收规程 24、CECS167:2004、拱形波纹钢屋盖结构技术规程 25、JGJ85-92、预应力筋用锚具、夹具和连接器应用技术规程 26、CECS、多、高层建筑钢-混凝土混合结构设计规程 27、CECS、热轧H型钢构件技术规程 28、CECS、钢结构住宅建筑设计技术规程 29、CECS、建筑拱形钢结构技术规程 30、CECS、钢龙骨结构技术规程

Speaker声腔结构设计

电子产品speaker选型及壳体匹配结构设计 声音的优劣主要取决于声音的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。对小型电子产品而言,Speaker、产品声腔、音频电路和音源是四个关键因素,它们本身的特性和相互间的配合决定了声音的音质。 Speaker单体的品质对于声音的各个方面影响都很大。其灵敏度对于声音的大小,其低频性能对于声音的低音效果,其失真度大小对于声音是否有杂音都是极为关键的。 声腔结构则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变声音的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。 音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。例如,当输出信号的失真度超过10%时,声音就会出现比较明显的杂音。此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音 音源对音质也有一定的影响,表现在当音源主要频谱与声腔和Speaker的不相匹配时,会导致较大的变音,影响听感。 总之,音质的改善需要以上四个方面共同配合与提高,才能取得比较好的效果。 1. Speaker的选型原则 1.1 扬声器(Speaker)简介 1.1.1 Speaker工作原理 扬声器又名喇叭。喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。喇叭实际上是一个电声换能器。 对电子产品来说,Speaker是为实现播放说话声音,音乐等的一个元件。Speaker 音压频率使用范围在500Hz~10KHz。 1.1.2 Speaker主要技术参数及要求 a>. 功率Power。功率分为额定功率Rated Power和最大功率Max Power。 额定功率是指在额定频率范围内馈给喇叭以规定的模拟信号(白噪声), 96小时后,而不产生热和机械损坏的相应功率。 最大功率是指在额定频率范围内馈给喇叭以规定的模拟信号(白噪声), 1分钟后,而不产生热和机械损坏的相应功率。 注:小型智能设备用喇叭一般要求的功率:额定功率≥0.5W,最大功率≥1W。 b>. 额定阻抗Rated Impedance。 喇叭的额定阻抗是一个纯电阻的阻值,它是被测扬声器单元在谐振频率后第一个阻抗最小值,它反映在扬声器阻抗曲线上是谐振峰后曲线平坦部分的最小阻值。 注:手机用喇叭的额定阻抗一般为8Ω。 c>. 灵敏度级又称声压级Sound Pressure Level(S.P.L)。 在喇叭的有效频率范围内,馈给喇叭以相当于在额定阻抗上消耗一定电功率的噪声电压时,在以参考轴上离参考点一定距离处所产生的声压。 注:智能电子产品喇叭的灵敏度一般要求≥87dB(0.1W/0.1m)。

微波腔体滤波器的快速设计及仿真

第22卷第4期2006年8月 微波学报 JOURNAL0FMICROWAVES V01.22No.4 Aug.2006 文章编号:1005-6122(2006)04JD053舭 微波腔体滤波器的快速设计及仿真+ 邓贤进1’2李家胤2张健1 (】.中国工程物理研究院电子工程研究所,绵阳621900;2.电子科技大学,成都610Q54) 摘要:经典的微波腔体滤波器设计往往需要大量的复杂公式计算和繁琐的曲线查找。快速设计方法正是为了避免这样的过程。以梳状线带通滤波器为例,通过计算几个典型的归一化杆径和归一化间距,绘制出分别以相对带宽为横坐标,归一化杆径和归一化间距为纵坐标的快速简便的设计曲线。用ANsOFr.HFss仿真软件对用该方法设计出的微波带通滤波器进行结构仿真,最后得到满意的结构设计尺寸,实验测试结果达到了技术指标要求,验证了该方法的正确性。 关键词:微波腔体滤波器,相对带宽,结构仿真 FastDesignandSimlllationforMicrowaVeCaVityFilter DENGXian.jinl”,UJja-yin91,ZHANGJj柚2 (1.风f.旷Eze以rDn如魄i聊e^ng,cAEP,批,咿昭621900,mi加; 2.咖如e倦渺旷Ek£rD疵&如nce口,ld‰lIl加研旷吼iM,ck,lgdu610054,吼i№) Abstract:ThedesignofCl聃sicalmicIDwavecavityfilterrequireslargenumbersofcomplicatedfonnulaeandnumer.ouscun,es.A fastandsimpledesignmetllodcanavoidtlleseprocess.TakingpectinatebaIIdp嬲sfilterforexample,bycalcu—latingsometypical no珊alizeddiametersandspacesbetweenofpoles,af缸tandsimpledesigncurvesisobtainedinwhich,X—c00rdinateisforrel砒ive诵deb蚰d,Y—coordinateisforn0咖alizeddiameterandspacebetweenofp01erespectively.BymeansofANSOFT—HFSS80ftware,stmcturesimulationfortllismicrow“ebandpassfilterdesignedbythiswayscanbea—chieved.Finally,Asatisfactory stmcturesizeisobtained,whichmeetsthespeci6cationsandthevalidityi8provedbyexperi—mentalresult. Keywords:Micmwavecavity矗lter,Relativebandwidth,Stmcturesimulation 引言 由于现代微波滤波器的结构设计涉及到大量的公式计算和图表,要准确设计出所需的滤波器,需要大量的计算和曲线查找,特别是在设计圆杆型的滤波器时,需要一级一级地推算出滤波器的尺寸,工作量很大。同时,在设计过程中,杆的电特性是用各杆对地的单位长自电容c。和相邻两杆的单位长互电容c鼬+,来表现的,忽略了相邻以外的边缘电容的影响,这样表示并不很准确…。此外,在查曲线时也存在较大的误差。所以,从滤波器的设计过程来看,不可能做到完全准确,都有一定的近似。但这些不会影响滤波器的设计,因为我们可以在调试时通 +收稿日期:2005国7—13;定稿日期:2005一11_01 基金项目:“十五”国防预研课题(4210109-3)过改变可调螺钉的位置来弥补这些近似。这正是快速设计方法的依据。从经典的滤波器计算公式和图表曲线可以看出,滤波器的级数n和相对带宽是影响滤波器各种尺寸大小的重要因素,随着相对带宽的增大,带通滤波器的归一化杆径和归一化间距减小。滤波器设计好后,可以通过改变集总电容的大小和调整调谐螺钉的位置来改变滤波器的中心频率。所以滤波器可以在较宽的频率范围滑动,这样就可以把滤波器的频率调整到所需要的中心频率上。正因为如此,为了避免繁琐的计算和复杂的设计步骤,可以以滤波器的相对带宽为横坐标,归一化杆径和归一化间距为纵坐标绘制出快速简便的微波带通滤波器的设计曲线。从该曲线可以方便快速地

GB50003-2011《砌体结构设计规范

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意! 《砌体结构设计规范》GB 50003-2011【13条】 3.2.1 龄期为28d 的以毛截面计算的砌体抗压强度设计值,当施工质量控 制等级为B 级时,应根据块体和砂浆的强度等级分别按下列规定采用: 1 烧结普通砖、烧结多孔砖砌体的抗压强度设计值,应按表3.2.1-1采用。 注:当烧结多孔砖的孔洞率大于30%时,表中数值应乘以0.9。 2 混凝土普通砖和混凝土多孔砖砌体的抗压强度设计值,应按表3.2.1-2 采用。

3 蒸压灰砂普通砖和蒸压粉煤灰普通砖砌体的抗压强度设计值,应按3.2.1-3 采用。 注:当采用专用砂浆砌筑时,其抗压强度设计值按表中数值采用。 4 单排孔混凝土和轻集料混凝土砌块对孔砌筑砌体的抗压强度设计值,应按表3.2.1-4 采用。

注: 1 对独立柱或厚度为双排组砌的砌块砌体,应按表中数值乘以0.7; 2 对T 形截面墙体、柱,应按表中数值乘以0.85 。 5 单排孔混凝土砌块对孔砌筑时,灌孔砌体的抗压强度设计值fg,应按下列方法确定: 1)混凝土砌块砌体的灌孔混凝土强度等级不应低于Cb20,且不应低于 1.5 倍的块体强度等级。灌孔混凝土强度指标取同强度等级的混凝土强度指 标。 2) 灌孔混凝土砌块砌体的抗压强度设计值fg,应按下列公式计算:

6 双排孔或多排孔轻集料混凝土砌块砌体的抗压强度设计值,应按表3.2.1-5 采用。 7 块体高度为180mm~350mm 的毛料石砌体的抗压强度设计值,应按 3.2.1-6 采用。

自己总结材料结构设计经验

结构设计经验FOR YAN Li(20150120) 一、上部结构布置、PKPM建模、工作流程注意事项 1、小于等于C25混凝土时,保护层厚度+5mm【规范】 2、扭转位移比小于1.2,不用点双向地震 3、抗震缝相关规范:《抗规》6.1.4 4、有效质量系数<90%,说明结构存在局部振动较多,较为松散,常为有较多不与楼板相连的构件的情况。 5、外边柱、墙的外边线到轴线距离沿结构全高一致。 6、双连梁:利用窗台增设连梁。例如原200X600连梁超筋,改为双200X450连梁,建模时按400X450输入 正常连梁,计算结果均分到两根连梁上。 7、15m范围内不应出现非拉通榀框架【省规】 8、初次建模从CAD导入轴网至PKPM时,退出“AUTOCAD向建筑模型转化”菜单时不点“清理无用的节点”, 否则刚导入的轴网、节点又被清除了。 9、现阶段6mm一级钢(270Mpa)供应不足,故不宜采用。 10、PMCAD建模时别忘了点“自动计算现浇楼板自重”! 11、强制刚性假定 高层结构计算位移保留弹性板面外刚度 偶然偏心 双向地震【高规4.3.2】 偶然偏心(只看位移比) 高层结构计算配筋 双向地震 ·计算后发现楼层位移满足要求且位移比小于1.2,在计算配筋和出计算书时可不勾选双向地震。 另外,计算配筋和出计算书时不勾选强制刚性假定和保留弹性板面外刚度。 强制刚性假定 多层结构计算位移 保留弹性板面外刚度 多层结构计算配筋:双向地震 ·计算后发现楼层位移满足要求且位移比小于1.2,在计算配筋和出计算书时可不勾选双向地震。 另外,计算配筋和出计算书时不勾选强制刚性假定和保留弹性板面外刚度。 12、调模型技巧: ·对于柱、墙较密的区域,柱、墙截面做小,反之做大。 ·受荷较大且靠边的区域柱、墙截面做大。 ·地梁层尽量低矮以作为崁固端。 ·扭转出现在第二周期:两个主轴方向刚度相差较大。 ·扭转出现在第一周期:结构周边刚度弱于中间刚度。 ·刚重比不足时,可调整地基土M值,实在不行就要考虑P-Δ效应。 13、楼板局部开大洞造成的明显薄弱部位应定义为弹性板;开洞较多或较复杂时应定义整层弹性板;多塔

《腔体滤波器设计具体步骤》

Advanced Coupling Matrix Synthesis Techniques for Microwave Filters Richard J.Cameron ,Fellow,IEEE Abstract—A general method is presented for the synthesis of the folded-configuration coupling matrix for Chebyshev or other filtering functions of the most general kind,including the fully canonical case, i.e., +2”transversal network coupling matrix,which is able to accommodate multiple input/output couplings,as well as the direct source–load coupling needed for the fully canonical cases.Firstly,the direct method for building up the coupling matrix for the transversal network is described.A simple nonoptimization process is then outlined for the conversion of the transversal matrix to the equivalent “ ”coupling matrix,ready for the realization of a microwave filter with resonators arranged as a folded cross-coupled array.It was mentioned in [1]that,although the polynomial synthesis procedure was capable of generating finite-position zeros could be realized by the coupling matrix.This excluded some useful filtering characteristics,including those that require multiple input/output couplings,which have been finding applications recently [3]. In this paper,a method is presented for the synthesis of the fully-canonical or “coupling matrix. The .(b)Equivalent circuit of the k th “low-pass resonator”in the transversal array. The matrix has the following advantages,as compared with the conventional coupling matrix.?Multiple input/output couplings may be accommodated, i.e.,couplings may be made directly from the source and/or to the load to internal resonators,in addition to the main input/output couplings to the first and last resonator in the filter circuit.?Fully canonical filtering functions (i.e.,coupling matrix, not requiring the Gram–Schmidt orthonormalization stage.The 0018-9480/03$17.00?2003IEEE

《现行建筑结构规范大全》

规范、标准、规程 01.《建筑结构可靠度设计统一标准》GB 50068-2001 02.《建筑结构荷载规范》GB 50009-2012 03.《建筑工程抗震设防分类标准》GB 50223-2008 04.《建筑抗震设计规范》GB 50011-2010 05.《建筑地基基础设计规范》GB 50007-2011 06.《建筑桩基技术规范》JGJ 94-2008 07.《建筑边坡工程技术规范》GB 50330-2002 08.《建筑地基处理技术规范》JGJ 79-2012 09.《建筑地基基础工程施工质量验收规范》GB 50202-2002 10.《混凝土结构设计规范》GB 50010-2010 11.《混凝土结构工程施工质量验收规范》GB 50204-2015 12.《混凝土异形柱结构技术规程》JGJ 149-2006 13.《型钢混凝土组合结构技术规程》JGJ 138-2001 14.《钢结构设计规范》GB 50017-2003 15.《冷弯薄壁型钢结构技术规范》GB 50018-2002 16.《高层民用建筑钢结构技术规程》JGJ 99-98 17.《空间网格结构技术规程》JGJ 7-2010 18.《钢结构焊接规范》GB 50661-2011 19.《钢结构高强度螺栓连接技术规程》JGJ 82-2011 20.《钢结构工程施工质量验收规范》GB 50205-2001 21.《砌体结构设计规范》GB 50003-2011 22.《砌体结构工程施工质量验收规范》GB 50203-2011 23.《木结构设计规范》GB 50005-2003(2005年版) 24.《木结构工程施工质量验收规范》GB 50206-2012 25.《烟囱设计规范》GB 50051-2013 26.《高层建筑混凝土结构技术规程》JGJ 3-2010 27.《高层民用建筑设计防火规范》GB 50045-95(2005 年版)28.《公路桥涵设计通用规范》JTG D60-2004 29.《城市桥梁设计规范》CJJ 11-2011 30.《城市桥梁抗震设计规范》CJJ 166-2011 31.《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTGD62-2012 32.《公路桥涵地基与基础设计规范》JTG D63-2007 33.《公路桥涵施工技术规范》JTG/T F50-2011 34.《钢结构设计规范》GB 50017-2014

手机整机结构设计规范

手机结构配合间隙 设计规范 (版本V1.0)

变更记录

目录 变更记录………………………………………………………………………………………………………………目录………………………………………………………………………………………………………………………前沿………………………………………………………………………………………………………………………第一章手机结构件外观面配合间隙设计………………………………………………………… 1.1镜片(lens) ………………………………………………………………………………………………. 1.2按键(keys) ………………………………………………………………………………………………. 1.3电池盖(batt-cover) ………………………………………………………………………………….. 1.4外观面接插件(USB.I/O等) …………………………………………………………………….. 1.5螺丝塞……………………………………………………………………………………………………… 1.6翻盖机相关…………………………………………………………………………….………………. 1.7滑盖机相关…………………………………………………………………………….………………. 第二章手机机电料配合间隙设计…………………………………………………………………… 2.1听筒(receiver)…………………………………………………………………….………………….. 2.2喇叭(speaker)…………………………………………………………………….…………………… 2.3马达(motor)…………………………………………………………………….……………………… 2.4显示屏(LCM)…………………………………………………………………….……………………. 2.5摄像头(camera)…………………………………………………………………….………………… 2.6送话器(mic)…………………………………………………………………….……………………… 2.7电池(battery)…………………………………………………………………….…………………… 2.8 USB/IO/Nokia充电器……………………………………………………….…………………….. 2.9 连接器……………………………………………………….……………………..…………………… 2.10卡座……………………………………………………….……………………………………………… 2.11灯(LED)…………………………………………………………………….…………………………… 2.12转轴…………………………………………………………………….………………………………… 2.13滑轨…………………………………………………………………….…………………………………

《混凝土结构设计规范》GB50010-2011第1批次读者问题解答

《混凝土结构设计规范》GB 50010-2010第1批次读者问题解答 各位读者:大家好! 本规范出版发行后,单行本规范咨询服务平台陆续收到全国各地读者的问题,本社对这些问题整理后提交给主编单位进行解答,现发布第1批次问题解答,以帮助大家学习规范。欢迎大家踊跃提问(联系方式见本规范咨询服务平台),提问时注明条款编号。问题解答会适时在我社网站(https://www.360docs.net/doc/741129829.html,)“规范大全园地”板块发布。 中国建筑工业出版社 1.问(2011-5-31,一阵风):新规范里,现在的钢筋,那就是一级钢是HPB300,二级钢是 HRB335,三级钢是HRB400等等,对吗? 答:普通钢筋种类与强度等级从《混凝土结构设计规范》GB 50010—2002开始已不再采用Ⅰ级钢、Ⅱ级钢、Ⅲ级钢之称,新规范中用钢筋牌号和强度等级表示。 2.问(2011-7-4,高赞):我想咨询一下《混凝土结构设计规范》(GB 50010-2010)中,关 于矩形截面偏心受压构件正截面承载力的计算,偏心距增大系数是不是不考虑了呢?答:《混凝土结构设计规范》(GB 50010-2010)中二阶效应的表达形式己改变,以结构侧移二阶效应及构件挠曲二阶效应分别考虑,总体不再采用偏心距增大系数的表达形式。偏心受压构件正截面承载力计算时其弯矩设计值应按结构的侧移二阶效应(当结构侧移二阶效应较大时)与杆件挠曲二阶效应分别进行计算,比《混凝土结构设计规范》(GB 50010-2002)更清晰、准确。 3.问(2011-7-20,cool):您好!《2010版混凝土结构设计规范》的第109页表8.5.1中备 注第1条,“当采用C60以上强度等级的混凝土时,……”是不是应该包含C60本身,改为,“当采用C60及以上强度等级的混凝土时,……”请回复!谢谢! 答:与《混凝土结构设计规范》GB 50010—2002相比,对于本规范表8.5.1中的受压构件的全部纵向钢筋,当采用强度等级400MPa钢筋时,本规范的最小配筋百分率已提高了0.05(为0.55%),为保持与《混凝土结构设计规范》GB 50010—2002在最小配筋率的相对合理性,同时也考虑到与相关标准的协调性,本规范特在表8.5.1的注1中规定“当采用C60以上强度等级的混凝土时,”。 4.问(2011-7-28,xx11dd00):《混凝土设计规范》GB 50010-2010 第1版第1次印刷中第 113页第8行,即第9.1.6条第2款中“砌体墙支座处钢筋伸入板边的长度不宜小于l0/7这其中的板边是否为板内?

塑胶结构设计规范全解

塑胶结构设计规范 1、材料及厚度 1.1、材料的选取 a. ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、LCD支架)等。还有就是普遍用在电镀的部件上(如按钮、侧键、导航键、电镀装饰件等)。目前常用奇美PA-757、PA-777D等。 b. PC+ABS:流动性好,强度不错,价格适中。适用于作高刚性、高冲击韧性的制件,如框架、壳体等。常用材料代号:拜尔T85、T65。 c. PC:高强度,价格贵,流动性不好。适用于对强度要求较高的外壳、按键、传动机架、镜片等。常用材料代号如:帝人L1250Y、PC2405、PC2605。 d. POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。常用于滑轮、传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。 e. PA坚韧、吸水、但当水份完全挥发后会变得脆弱。常用于齿轮、滑轮等。受冲击力较大的关键齿轮,需添加填充物。材料代号如:CM3003G-30。 f. PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳光,室外十年仍有89%,紫外线达78.5% 。机械强度较高,有一定的耐寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有一定强度要求的透明结构件,如镜片、遥控窗、导光件等。常用材料代号如:三菱VH001。 1.2 壳体的厚度 a. 壁厚要均匀,厚薄差别尽量控制在基本壁厚的25%以内,整个部件的最小壁厚不得小于0.4mm,且该处背面不是A级外观面,并要求面积不得大于

腔体设计

腔体设计 耳机腔体是耳机的“最重要”的组成部分,直接决定了耳机外观、声学结构、佩戴效果、造价成本。 要开发一款耳机或耳塞,第一件事情就是设计外观,好的外观往往决定了这款产品的销售量,因为腔体的制造成本的差距不大,而漂亮的外观人人都喜爱。音质优异而外观漂亮的产品也有不少,比如A8、ESW9、ES7、T50P 等等。 例如,铁三角ON3、松下HTX7、苹果的原配耳塞,尽管不是以音质为卖点,但是漂亮的外观却是重要的诱惑,每天的销量非常惊人。 外观设计需要花费大量的时间去收集资料、想象,并在脑海里建立模型,同时也要符合实际情况、市场因素、当地人的审美观念,然后在电脑上建立产品模型图,最后交给工厂进行打样和修改。

耳机腔体的材料有大三类,分别是塑料、金属、木材(包括竹子)。由于材料的密度不同,对声音的影响也不一样。目前材质最好的,莫过于金属,其次是木材、塑料。 这与材质有直接关系:密度越高,声音对腔体的振动越低,干扰就越低;材质越厚,对声音的回放效果越好,低频效果就越好。 那么为什么大部分音箱都不用金属呢?事实上有不少的高端音箱也是用金属的,但因为造价高昂、太笨重、保养麻烦,这些都决定了用木材做音箱更适合。当然由于耳机和耳塞的结构问题,所以大部分都采用塑料材质,其次才是金属和木材。 耳机腔体的结构作用主要是消除声短路、抑制声共振、拓宽频响范围、减少失真。结构的空间大小、内部的声反射规律、承载喇叭的大小,都能直接影响声音的音质,头戴耳机比耳塞的音场要优秀,这就是由结构决定的。 耳机的造价成本主要来自于两方面:开发的成本费用和研发时间,而开发成本主要来自于耳机腔体,因为要做一个耳机腔体必须要开模具,模具的费用非常高,都是以“万”为单位,而金属材料的成本会低很多。事实上,

相关文档
最新文档