代数精度

代数精度
代数精度

3、1 数值积分公式与代数精度,Newton-Cotes 求积公式习题

一、填空题

1、辛普生求积公式具有 次代数精度,其余项表达式为 。

(答案:3,4(4)()(),(,)1802b a b a f a b ζζ---

∈) 2、设()(0,1,2)j l x j n =L 就是区间[a,b ]上的一组n 次插值基函数。则插值型求积公式的代数精度为 ;插值型求积公式中求积系数j A = ;且0n j j A

==∑ 。

(答案:至少就是n,()b k a

l x dx ?, b-a ) 3、牛顿—柯特斯求积公式的系数与()0n

n k k C ==∑ 。

(答案: 1 )

二、计算题

1.试确定下列求积公式中的待定系数,指出其所具有的代数精度。

① 2''0()[(0)()][(0)()]2

h h f x dx f f h h f f h ≈++-?α; ② 101()()(0)();h h f x dx A f h A f A f h --≈-++?

解:①分别将()1,f x x =代入求积公式,易知求积公式精确成立, 代入2()f x x =,令求积公式精确成立,于就是有33

3232

h h h α===-左右,可得112α=, 代入3

()f x x =,于就是44h =左,444

,244h h h =-==右左右,求积公式成立, 代入4

()f x x =,55h =左,544

,236h h h =-=≠右左右,求积公式不精确成立, 综合以上可知,该求积公式具有三次代数精度。

②将21(),,f x x x =分别代入求积公式,令求积公式成立,则有

0120222

022023()()A A A h h A A h A A h ?++=???--=????+=?

从而解得0211433

,A A h A h ===,所求公式至少具有两次代数精度,且进一步有

333()33h h h h x dx h h -=-+? , 444()33h h h h x dx h h -≠-+? 从而原积分公式4()()(0)()333

h

h h h h f x dx f h f f h -≈-++?具有三次代数精确度。 2.利用梯形公式与Simpson 公式求积分2

1ln xdx ?的近似值,并估计两种方法计算值的最大误

差限。 解:由梯形公式21ln 2()(()())(ln1ln 2)0.3466222

b a T f f a f b --=+=+=≈ 最大误差限为:3

''2()1111()()10.0833((1,2))12121212

T b a R f f ξξξ-=-=≤?=≈∈ 由Simpson 公式13()()4()ln14ln ln 20.38586262b a a b S f f a f f b ??-+????=++=++≈ ? ? ?????

?? 最大误差限为:5

(4)4()161()()60.0021((1,2))288028802880

S b a R f f ηηη-=-=≤?≈∈。 3.求系数123,,A A A 使求积公式

1

123111()(1)()()233f x dx A f A f A f -≈-+-+≤?对于次数的一切多项式都精确成立

答案: 123123123123111122

0339931/203/2A A A A A A A A A A A A ++=--+=++====

4.试求使求积公式的代数精度尽量高,并求其代数精度。

Answer 由

精确成立得等式对32,,,1)(x x x x f = ???=+=+132132222121x x x x 解此方程组得

???????+=-=1562356121x x 又当3)(x x f =时 左边≠右边

∴ 此公式的代数精度为2

5.确定求积公式 )5.0()()5.0()(11

1Cf x Bf Af dx x f ++-≈?- 的待定参数,使其

代数精度尽量高,并确定其代数精度、

Answer 假设公式对

精确成立则有32,,,1)(x x x x f =

???????=++-=++=++-=++0125.0125.03225.025.005.005231211C Bx A C Bx A C Bx A C B A

解此方程组得

32,34-===B C A 求积公式为 []时当41

1)(,)5.0(4)0(2)5.0(431)(x x f f f f dx x f =+--≈?-,

左边=52 右边=61

左边≠右边

3代数精度为

∴ 6. 确定求积公式

012()()(0)()

h

h f x dx A f h A f A f h -≈-++?。 中待定参数i A 的值(0,1,2)i =,使求积公式的代数精度尽量高;并指出此时求积公

式的代数精度。

解:分别将2()1,,f x x x =,代入求积公式,可得

02114,33A A h A h ===。

令3()f x x =时求积公式成立,而4()f x x =时公式不成立,从而精度为3。

高中代数数学公式

高中代数函数 【集合】指定的某一对象的全体叫集合。集合的元素具有确定性、无序性和不重复性。 【集合的分类】 【集合的表示方法】 名 称 定义图示性质 子 集 真 子 集 交 集 并 集 补 集 上一页主目录下一页 高中代数函数 函数的性质定义判定方法 函数的奇偶性函如果对一函数f(x)定义域任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数;函如果对一函数f(x)定义域任意一个

x,都有f(-x)=f(x),那么函数f(x)叫做偶 函数 函数的单调性对于给定的区间上的函数f(x): 函数的周期性对于函数f(x),如果存在一个不为零的常 数T,使得当x取定义域的每一个值时, f(x+T)=f(x)都成立,那么就把函数y=f(x) 叫做周期函数。不为零的常数T叫做这个函 数的周期。 (1)利用定义 (2)利用已知函数的周期 的有关定理。 上一页主目录下一页 高中代数函数 函 数 名 称 解析式定义域值域奇偶性单调性 正 比 例 函 数 R R 奇函数 反 比 例 函 数 奇函数 一 次 函 数 R R

二 次 函 数 R 上一页主目录下一页 高中代数数列 名 称 定义通项公式前n项的和公式其它 数列按照一定次序排成一列的数 叫做数列,记为{an} 如果一个数列{an} 的第n项an与n之 间的关系可以用一 个公式来表示,这 个公式就叫这个数 列的通项公式 等 差 数 列 等 比 数 列 数列前n项和与通项的关系:无穷等比数列所有项的和: 数学归纳法适用围证明步骤注意事项 只适用于证明与自然数n有 关的数学命题 设P(n)是关于自然n的一个命题,如果(1) 当n取第一个值n0(例如:n=1或n=2)时, 命题成立(2)假设n=k时,命题成立,由此推 出n=k+1时成立。那么P(n)对于一切自然数 n都成立。 (1)第一步是递推的基础,第 二步的推理根据,两步缺一不可 (2)第二步的证明过程中必须 使用归纳假设。

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

高中数学公式大全 文科

第1页(共11页) 高中数学公式及知识点速记 (文科55个) 一、函数、导数 1、函数的单调性 (1)设2121],,[x x b a x x 、那么 ],[)(0)()(21b a x f x f x f 在 上是增函数; ],[)(0)()(21b a x f x f x f 在 上是减函数. (2)设函数)(x f y 在某个区间内可导,若0)( x f ,则)(x f 为增函数;若0)( x f ,则)(x f 为减函数. 2、函数的奇偶性 对于定义域内任意的x ,都有)()(x f x f ,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f ,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 3、函数)(x f y 在点0x 处的导数的几何意义 函数)(x f y 在点0x 处的导数是曲线)(x f y 在))(,(00x f x P 处的切线的斜率)(0x f ,相应的切线方程是))((000x x x f y y .

第2页(共11页) 4、几种常见函数的导数 ①'C 0 ;②1')( n n nx x ; ③x x cos )(sin ' ;④x x sin )(cos ' ; ⑤a a a x x ln )(' ;⑥x x e e ')(; ⑦a x x a ln 1)(log ' ;⑧x x 1)(ln ' 5、导数的运算法则 (1)' ' ' ()u v u v . (2)' ' ' ()uv u v uv . (3)'' '2()(0)u u v uv v v v . 6、会用导数求单调区间、极值、最值 7、求函数 y f x 的极值的方法是:解方程 0f x .当 00f x 时: (1) 如果在0x 附近的左侧 0f x ,右侧 0f x ,那么 0f x 是极大值; (2) 如果在0x 附近的左侧 0f x ,右侧 0f x ,那么 0f x 是极小值. 二、三角函数、三角变换、解三角形、平面向量 8、同角三角函数的基本关系式 22sin cos 1 ,tan = cos sin . 9、正弦、余弦的诱导公式 k 的正弦、余弦,等于 的同名函数,前面加上把 看成锐角时该函数的符号; 2 k 的正弦、余弦,等于 的余名函数,前面加上把 看成锐角时该函数的符号。

全国高中数学联赛 代数部分

全国高中数学联赛代数部分 全国高中数学联赛 (代数部分) 1. (1988年全国高中数学联赛加试第三题) 在坐标平面上,是否存在一个含有无穷多直线? ?,,,,2 1 n l l l 的直线族, 它满足条件: ⑴ 点(1,1)∈n l ,),3,2,1(?=n ; ⑵ n n n b a k -=+1 ,其中1 +n k 是1 +n l 的斜率,n a 和n b 分别是n l 在x 轴和y 轴 上的截距,),3,2,1(?=n ; ⑶ 01 ≥+n n k k ,),3,2,1(?=n . 并证明你的结论. 2. (1989年全国高中数学联赛加试第二题) 已知)2;,,2,1(≥?=∈n n i R x i , 满足,0,11 1 ==∑∑==n i i n i i x x 求证:n i x n i i 212 11 - ≤ ∑ =. 3. (1998年全国高中数学联赛加试第二题) 设n a a a ,,,21?,n b b b ,,,21?[]2,1∈ 且∑∑===n i i n i i b a 1 2 1 2 求证:∑ ∑ ==≤ n i i n i i i a b a 1 2 1 3 10 17 并问 等号成立的充要条件.

全国高中数学联赛代数部分 4. (1997年全国高中数学联赛加试第二题) 试问:当且仅当实数)2(,,,10≥?n x x x n 满足什么条件时. 存在实数n y y y ,,,10?使得2222120n z z z z +?++=成立. 其中k k k iy x z +=,i 为虚数单位,).,,2,1(n k ?= 证明你的结论. 5. (1999年全国高中数学联赛加试第二题) 给定实数c b a 、、.已知复数3 2 1 z z z 、、满足: 1321===z z z 11 33 22 1=+ + z z z z z z 求321cz bz az ++的值 6. (2002年全国高中数学联赛加试第二题) 设),,2,1(0n i x i ?=≥,且12 11 2 =+∑ ∑≤<≤=n j k j k n k i x x j k x ,求∑=n k i x 1 的最大值与 最小值

高中数学公式大全(完整版)

高中数学常用公式及常用结论 1.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 2.集合12{,, ,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2 个. 3.充要条件 (1)充分条件:若p q ?,则p 是q 充分条件. (2)必要条件:若q p ?,则p 是q 必要条件. (3)充要条件:若p q ?,且q p ?,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4.函数的单调性 (1)设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->? []b a x f x x x f x f ,)(0) ()(2 121在?>--上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函 数. 5.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数 )(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 6.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 7.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2 b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2 b a x += 对称. 8.几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a ; (2),)0)(()(1 )(≠=+x f x f a x f ,或1()() f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ; 9.分数指数幂 (1)m n a = (0,,a m n N * >∈,且1n >).(2)1m n m n a a - = (0,,a m n N * >∈,且1n >). 10.根式的性质 (1 )n a =.(2)当n a =;当n ,0 ||,0a a a a a ≥?==? -∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r a b a b a b r Q =>>∈. 12.指数式与对数式的互化式 log b a N b a N =?=(0,1,0)a a N >≠>. ①.负数和零没有对数,②.1的对数等于0:01log =a ,③.底的对数等于1:1log =a a , ④.积的对数:N M MN a a a log log )(log +=,商的对数:N M N M a a a log log log -=,

高中数学公式全集(代数部分) (1)

高中数学公式全集(代数部分)【函数】 【集合】 指定的某一对象的全体叫集合。集合的元素具有确定 性、无序性和不重复性。 【集合的分类】 【集合的表示方法】 名 称 定义图示性质 子 集 真 子 集 交 集

并 集 补 集 【不等式】 不等 式 用不等号把两个解析式连结起来的式子叫做不等式 不等 式的 性质 含绝对值不等式的性质 几个重要的不等式

一 元 一 次 不 等 式 的 解 法 形式解集 R 一 元 二 次 R

不等式的解法绝对值不等式的解法无理不等式的

解 法 【数列】 名 称 定义 通项公 式 前n项的和公式其它 数 列 按照一定次序排 成一列的数叫做数 列,记为{a n} 如果一个数 列{a n}的第n 项a n与n之 间的关系可 以用一个公 式来表示,这 个公式就叫 这个数列的 通项公式 等 差 数 列

等 比 数 列 数列前n项和与通项的 关系: 无穷等比数列所有项的 和: 数 学 归 纳 法 适用范围证明步骤注意事项 只适用于证明与自 然数n有关的数学命 题 设P(n)是关于自然n的一个命 题,如果(1)当n取第一个值 n0(例如:n=1或n=2)时,命题成 立(2)假设n=k时,命题成立, 由此推出n=k+1时成立。那么 P(n)对于一切自然数n都成立。 (1)第一步是递推的基础,第 二步的推理根据,两步缺一不 可 (2)第二步的证明过程中必须 使用归纳假设 【三角函数】 角 一条射线绕着它的端点旋转所产生的图形叫做角。旋转开始时的射 线叫角的始边,旋转终止时的射线叫角的终边,射线的端点叫做角 的顶点。 角的单位制关系弧长公式扇形面积公式

高中数学复习专题讲座极限的概念及其运算

高中数学复习专题讲座极限的概念及其运算 高考要求 极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具 旧教材中原有的数列极限一直是历年高考中重点考查的内容之一 本节内容主要是指导考生深入地理解极限的概念,并在此基础上能正确熟练地进行有关极限的运算问题 重难点归纳 1 学好数列的极限的关键是真正从数列的项的变化趋势理解数列极限 学好函数的极限的关键是真正从函数值或图象上点的变化趋势理解函数极限 2 运算法则中各个极限都应存在 都可推广到任意有限个极限的情况,不能推广到无限个 在商的运算法则中,要注意对式子的恒等变形,有些题目分母不能直接求极限 3 注意在平时学习中积累一些方法和技巧,如 )1|(|0lim ,0)1(lim <==-∞→∞→a a n n n n n ???? ? ????><==++++++--∞→时当不存在时当时当l k l k l k b a b x b x b a x a x a l l k k k n ,,0,lim 0 1 1 10110 典型题例示范讲解 例1已知lim ∞ →x (12+-x x -ax -b )=0,确定a 与b 的值 命题意图 在数列与函数极限的运算法则中,都有应遵循的规则,也有可利用的规律, 既有章可循,有法可依 因而本题重点考查考生的这种能力 也就是本知识的系统掌握能力 知识依托 解决本题的闪光点是对式子进行有理化处理,这是求极限中带无理号的式子常用的一种方法 错解分析 本题难点是式子的整理过程繁琐,稍不注意就有可能出错 技巧与方法 有理化处理 解 b ax x x b ax x x b ax x x x x +++-+-+-=--+-∞ →∞ →1)()1(lim )1(lim 2 2 22 b ax x x b x ab x a x +++--++--=∞ →1) 1()21()1(lim 2 222 要使上式极限存在,则1-a 2=0, 当1-a 2=0时, 1) 21(1)21(1111)21(lim 1)1()21(lim 22 2 22=++-++-=+++--++-=+++--+--=∞→∞→a ab a ab a x b x x x b ab b ax x x b x ab x x 由已知得上式 ∴

常用的数学符号大全、关系代数符号

常用数学符号大全、关系代数符号 1、几何符号 丄 /∕∠c Θ≡BA 2、 代数符号 X ∧∨ ? ∫ ≠ ≤ ≥ ≈ ∞ : 3、运算符号 如加号( + ),减号(―),乘号(×或?),除号(÷或/), 交集(∩),根号(√),对数(log , Ig ,In ),比(:),微分 积分(/)等。 4、集合符号 U ∩ ∈ 5、 特殊符号 ∑ ∏ (圆周率) 6、 推理符号 Ial 丄 S U ≠≡±≥ ΓΔΘ Λ Ξ On Σ ① X Ψ αβ Y δ ε Zn θ IK λμ ξ OnP σ TU φ X ψω I IlmWV^W 两个集合的并集(U ), (dx ),积分(∫),曲线

i ii iii iv VVigi 血ix X

∈∏∑∕√χ∞∟∠∣∕∕∧∨∩u ∫e .?.?.?: ::S ≈ B= ≠≡≤≥ W 仝< > ? O 丄 "C C 指数0123 : 0123 7、数量符号 如:i, 2+i,a,x,自然对数底e,圆周率n。 &关系符号 如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“v”是 小于符号,“≥”是大于或等于符号(也可写作“),"≤”是小于或等于符号(也可写作“》”),。“→”表示变量变化的趋势,“s”是相似符号,“B”是全等号,“//” 是平行符号,“丄”是垂直符号,“%”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“€”是属于符号,“??”是“包含”符号等。 9、结合符号 如小括号“()”中括号“ □”,大括号“”横线“一” 10、性质符号 如正号“ + ”,负号“ —”,绝对值符号“I I ”正负号“ ± ?因为,(一个脚站着的,站不住) ???所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出 r个元素所有不同的组合数(C(r)(n)),幕(A, Ac, Aq, x^n )等。

高中数学公式口诀大全

高中数学公式口诀大全 一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。?nbsp; 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 三、《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。 四、《数列》 等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。 五、《复数》 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

高一数学公式大全

两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 降幂公式 (sin^2)x=1-cos2x/2 (cos^2)x=i=cos2x/2 万能公式 令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα

高中数学三角函数公式大全

第一部分 集合 1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值还是因变量的取值还是曲线上的点… ; 2.数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.(1)含n 个元素的集合的子集数为2n ,真子集数为2n -1;非空真子集的数为2n -2; (2);B B A A B A B A =?=?? 注意:讨论的时候不要遗忘了φ=A 的情况。 4.φ是任何集合的子集,是任何非空集合的真子集。 第二部分 函数与导数 1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。 2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ; ⑤换元法 ;⑥利用均值不等式 2 2 2 2b a b a ab +≤ +≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(x a 、 x sin 、x cos 等);⑨导数法 3.复合函数的有关问题 (1)复合函数定义域求法: ① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。 (2)复合函数单调性的判定: ①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =; ②分别研究内、外函数在各自定义域内的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。 5.函数的奇偶性 ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....; ⑵)(x f 是奇函数?f(-x)=-f(x);)(x f 是偶函数?f(-x)= f(x) ⑶奇函数)(x f 在原点有定义,则0)0(=f ;

高中数学主要是代数

高中数学主要是代数,三角,几何三个部分.内容相互独立但是解题时常互相提供方法,等高三你就知道了. 必修的: 代数部分有: 1 集合与简易逻辑.其实就是集合,命题,充要条件三点,很浅显高考也不会单出这类的题 2 函数.先是对于函数的描述,有映射定义域对应法则植域;然后是性质,三个,单调性奇偶性周期性;最后是指数函数还有对数函数,是两个基本的函数,要研究他们的性质和图象 3 三角.三角其实就是个工具,比较烦人,公式背下来再多练练用的滚瓜烂熟就行了 4 几何.也就是平面解析几何,用坐标法定量的研究平面几何问题.学几个定义,然后是直线的方程,圆的方程,圆锥曲线方程. 高考的重点一般在常用函数常用双曲线+直线数列三角 二项式定理立体几何排列组合加概率等其他一些知识是比较小的部分 重要的是基础高一的话上课的基本解题方法一定要熟练掌握并且不能忘记到了高三再练习就很麻烦了还有不要忽视概念往往很多题目是考概念的 难度方面要视文理科而定但是70%题目肯定用基本知识就能做的20%需要结合各种知识并且动脑真正有难度的题目只有10% 高中数学学习方法谈 进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。 一、高中数学与初中数学特点的变化 1、数学语言在抽象程度上突变 初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。2、思维方法向理性层次跃迁 高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。 3、知识内容的整体数量剧增 高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。 4、知识的独立性大 初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。 二、如何学好高中数学 1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知

(完整版)高中数学公式大全

高中数学公式大全.txt鲜花往往不属于赏花的人,而属于牛粪。。。道德常常能弥补智慧的缺陷,然而智慧却永远填补不了道德空白人生有三样东西无法掩盖:咳嗽贫穷和爱,越隐瞒,就越欲盖弥彰。抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f ,)(x g ~

辛普森求积公式分解

摘要 在工程实验及研究中,实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系.可以说,曲线拟合模型与我们的生活生产密切相关. 本课题着重介绍曲线拟合模型及其应用,其中包括它的基本思想、模型的建立、以及具体应用.为了更好的了解曲线拟合模型,可以将它分为线性与非线性模型,在模型建立的基础上我们可以用最小二乘法来解决一些我们日常所应用的问题. 关键词曲线拟合;线性与非线性模型;最小二乘发

目录 引言 (1) 第一章曲线拟合 (2) §1.1 基本思想及基本概念 (2) §1.1.1 方法思想 (2) §1.1.2几个基本概念 (2) §1.2辛普森算法基本定义及其应用 (4) §1.2.1辛普森求积公式的定义 (4) §1.2.2辛普森求积公式的几何意义 (5) §1.2.3辛普森求积公式的代数精度及其余项 (5) §1.2.4辛普森公式的应用 (6) 第二章辛普森求积公式的拓展及其应用 (7) §2.1 复化辛普森求积公式 (7) §2.1.1问题的提出 (7) §2.1.2复化辛普森公式及其分析 (7) §2.1.3复化辛普森公式计算流程图 (8) §2.1.4复化辛普森公式的应用 (9) §2.2 变步长辛普森求积公式 (10) §2.2.1变步长辛普森求积公式的导出过程 (10) §2.2.2变步长辛普森求积公式的加速过程 (12) §2.2.3变步长辛普森求积公式的算法流程图 (13) §2.2.4变步长辛普森公式算法程序代码 (14) §2.2.5变步长辛普森求积公式的应用 (14) §2.2.6小结 (14) §2.2.7数值求积公式在实际工程中的应用 (14) 参考文献 (16) 附录A (17)

代数精度

3、1 数值积分公式与代数精度,Newton-Cotes 求积公式习题 一、填空题 1、辛普生求积公式具有 次代数精度,其余项表达式为 。 (答案:3,4(4)()(),(,)1802b a b a f a b ζζ--- ∈) 2、设()(0,1,2)j l x j n =L 就是区间[a,b ]上的一组n 次插值基函数。则插值型求积公式的代数精度为 ;插值型求积公式中求积系数j A = ;且0n j j A ==∑ 。 (答案:至少就是n,()b k a l x dx ?, b-a ) 3、牛顿—柯特斯求积公式的系数与()0n n k k C ==∑ 。 (答案: 1 ) 二、计算题 1.试确定下列求积公式中的待定系数,指出其所具有的代数精度。 ① 2''0()[(0)()][(0)()]2 h h f x dx f f h h f f h ≈++-?α; ② 101()()(0)();h h f x dx A f h A f A f h --≈-++? 解:①分别将()1,f x x =代入求积公式,易知求积公式精确成立, 代入2()f x x =,令求积公式精确成立,于就是有33 3232 h h h α===-左右,可得112α=, 代入3 ()f x x =,于就是44h =左,444 ,244h h h =-==右左右,求积公式成立, 代入4 ()f x x =,55h =左,544 ,236h h h =-=≠右左右,求积公式不精确成立, 综合以上可知,该求积公式具有三次代数精度。 ②将21(),,f x x x =分别代入求积公式,令求积公式成立,则有 0120222 022023()()A A A h h A A h A A h ?++=???--=????+=? 从而解得0211433 ,A A h A h ===,所求公式至少具有两次代数精度,且进一步有

高中全部数学公式

高中全部数学公式 【数学】【高中,全部,公式】搞到这么份资料,开心到疯.. 高中的数学公式定理大集合 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα2cotα=1 sinα2cscα=1 cosα2secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα

cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα2tanβ tanα-tanβ tan(α-β)=—————— 1+tanα2tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2)

相关文档
最新文档