年产30万吨甲醇制汽油MTG项目介绍

年产30万吨甲醇制汽油MTG项目介绍
年产30万吨甲醇制汽油MTG项目介绍

年产30万吨MTG项目情况介绍

一、MTG项目建设意义

1、能源安全:我国的煤炭资源相对丰富,以煤炭资源补充石油稀缺是一有效途径,国家能源政策要求能源供应实现多样化,除大力开拓国内外石油的多渠道供应以外,利用我国丰富的煤炭资源,采用洁净煤技术生产油品和石油替代产品是我国能源政策的重要组成部分,也是保证我国能源和国家安全的重要措施。

2、环保及市场需求:现阶段我国对汽油实施GB17930-2006 车用汽油(Ⅲ)标准,其中要求硫含量在150ppm以下。2014年将强制实施国四标准,其中硫含量将降低到50ppm以内。我国自产原油含硫量较高,而进口原油中俄罗斯、美洲等地含硫量、含蜡量更高。国内炼厂绝大数炼制的成品油含硫量还未能达到国四标准,而脱硫改造是一笔不菲的投资,一套规模百万吨级的加氢精制装置,需要上亿元投入,仅中石化旗下炼厂提升改造将花费数百亿技改费用,一些石油企业也被指不作为国四标准推迟。对于日趋要求严格的环保排放标准,MTG高清洁汽油适应当前形势的需要,优于国四标准,基本不含硫。在原油中添加近2/3的MTG甲醇汽油,才可满足国四标准,同时减少炼油项目的额外投资。由此可见,MTG市场极为广阔。

3、煤化工产业延伸:作为较为成熟的煤化工技术,煤基合成甲醇成为多数煤化工企业的首选项目。目前,甲醇的产能相对过剩,通过甲醇转化制清洁车用燃料(MTG),为我国甲醇拓宽了现实可行的

甲醇制汽油

甲醇制汽油 1976年Mobil公司开发成功的ZSM—5型合成沸石自甲醇制汽油(MTG)的方法。费托合成工艺(FT)、托普索一体化汽油合成技术工艺(TIGAS)、一步法甲醇转化制汽油技术工艺。 MTG工艺是指以甲醇作原料,在一定温度、压力和空速下,通过特定的催化剂的脱水、低聚、异构等作用转化为C11以下的烃类油。以煤或天然气作原料生产合成气,再以合成气制甲醇,最后将粗甲醇转化为高辛烷值汽油。该工艺有固定床、流化床和多管式反应器法三种工艺。 在1MPa——MPa,350℃——400℃条件下,甲醇的转化率为100%,且催化剂活性不易衰减。此方法产生的烯烃特点: 基本不产生碳素高于11的烃类,对原料的纯度要求不高,副产物价值高,产物性能优良。 (1)固定床法-工艺流程 原料甲醇经预热器、蒸发器及过热器后,进入脱水反应器,在Cu/Al203,催化剂上甲醇脱水生成二甲醚。从脱水反应器出来的未反应的甲醇、二甲醚、水与来自汽油分离塔的压缩循环气混合后,进入转化反应器,通过ZSM—5催化剂转化为烃。出转化反应器的气体,一部分预热原料甲醇,一部分与循环气换热,然后去汽油分离塔,分离出液态烃、气态烃和水。循环气与出脱水反应器的气体之比是9,控制温度可以增加汽油的收率。当反应产物中测定出未反应的甲醇时,表明催化剂已经结碳,活性达不到要求。这时,反应器内的催化剂需要再生,采取的办法是用空气与氮的混合气燃烧除去催化剂表面的焦炭。工业化的流程中并联设置4台转化反应器,3台运转,l台再生催化剂。 (2)流化床法-工艺流程 主要装置有流化床反应器、再生塔和外冷却器。流化床反应器包括一个浓相段,其下部为稀相提升管。原料甲醇和水按一定比例配料并进行汽化,过热到177℃后进入流化床反应器。流化床反应器顶部出来的反应产物经除去夹带的催化剂后进行冷却,分离为水、稳定的汽油和烃组分。流化床中的反应是急剧的放热反应,采用外部冷却器移走热量。为了控制催化剂表面积炭,将一部分催化剂循环至再生塔。l983年,该联合公司又改造了反应器,把原先在外部冷却催化剂的方法改为在反应器内部加一个冷却器。1千克汽油需要2.5千克甲醇。 特点:(1)汽油收率比固定床法略高; (2)操作中易于移去反应热,可将反应热用来生产高压蒸汽; (3)循环量比固定床大大降低。 (3)多管式反应器法(Lurqi—Mobil) Mobil工艺是在一个反应器内将甲醇部分转化为二甲基醚,在另一个反应器中再将甲醇和二甲基醚转化为烃类。而Lurqi—Mobil法则直接用一个多管式反应器将甲醇转换为烃类,也可以称为一步法。

甲醇制烯烃及制汽油工艺概述_郝占全

甲醇制烯烃及制汽油工艺概述 郝占全 (晋城无烟煤矿业集团有限责任公司天溪煤制油分公司,山西晋城048000) 摘要:本文主要介绍了甲醇制烯烃的工艺及晋城无烟煤矿业集团有限责任公司天溪煤制油分公司甲醇制汽油(MTG)装置的运行情况。 关键词:甲醇制烯烃甲醇制汽油 甲醇制乙烯、丙烯的MTO工艺和甲醇制丙烯的MTP工艺是目前重要的化工技术。该技术以煤或天然气合成的甲醇为原料,生产低碳烯烃,是发展非石油资源生产乙烯、丙烯等产品的核心技术。由于我国是一个富煤缺气的国家,采用天然气制烯烃势必会受到资源上的限制。因此,以煤为原料,走煤-甲醇-烯烃-聚烯烃工艺路线符合国家能源政策需要,是非油基烯烃的主流路线。 1甲醇制烯烃(MTO) 1.1工艺路线的开发过程 甲醇制烯烃工艺是煤基烯烃产业链中的关键步骤,其工艺流程主要是:在合适的操作条件下,以甲醇为原料,选取适宜的催化剂(ZSM-5沸石催化剂、SA-PO-34分子筛等),在固定床或流化床反应器中通过甲醇脱水制取低碳烯烃。根据目的产品的不同,甲醇制烯烃工艺分为甲醇制乙烯、丙烯(MTO),甲醇制丙烯(MTP)。MTO工艺的代表技术有环球石油公司(UOP )和海德鲁公司共同开发的UOP/Hydro MTO技术,中国科学院大连化学物理研究所自主创新研发的DMTO 技术;MTP工艺的代表技术有鲁奇公司开发的Lurgi MTP技术和我国清华大学自主研发的FMTP技术。 自1976年美国UOP公司科研小组首次发现甲醇在ZSM-5催化剂和一定的反应温度下,可以转化得到包括烯烃、烷烃和芳香烃在内的烃类以来,至今甲醇制烯烃工艺技术在各国工业研究和设计部门的努力研究下已经取得了长足的进展。尤其是其关键技术催化剂的选择和反应器的开发均已比较成熟。目前,UOP/ Hydro MTO技术、DMTO技术、Lurgi MTP均已建有示范装置,FMTP技术也在安徽淮化集团建成了实验装置。 1.2甲醇制烯烃的基本原理 在一定条件下,甲醇蒸汽先脱水生成二甲醚,然后二甲醚与原料甲醇的平衡混合物气体脱水继续转化为以乙烯、丙烯为主的低碳烯烃;少量C+2 C+5的低碳烯烃由于环化、脱氢、氢转移、缩合、烷基化等反应进一步生成分子量不同的饱和烃、芳烃、C+6烯烃及焦炭。整个反应过程可分为两个阶段:脱水阶段、裂解反应阶段,反应方程式如下所示: 脱水阶段:2CH3OH→CH3OCH3+H2O+Q 裂解反应阶段:该反应过程主要是脱水反应产物二甲醚和少量未转化的原料甲醇进行的催化裂解反应,包括主反应(生成烯烃)和副反应(生成烷烃、芳烃、碳氧化物并结焦)。 主反应的方程式如下所示: nCH 3 OH→C n H 2n +nH 2 O+Q nCH 3 OCH 3 →2C n H2n+nH2O+Q n=2和3(主要),4、5和6(次要),以上各种烯烃产物均为气态。 副反应(生成烷烃、芳烃、碳氧化物并结焦)方程式如下所示: (n+1)CH 3 OH→C n H 2n+2 +C+(n+1)H 2 O+Q (2n+1)CH 3 OH→2C n H 2n+2 +CO+2nH 2 O+Q (3n+1)CH 3 OH→3C n H 2n+2 +CO 2 + (3n-1)H 2 O+Q n=1、2、3、4、5……… n CH 3 OCH 3 →C n H2n-6+3H2+n H2O+Q n=6、7、8……… 以上产物有气态和固态之分。 1.3甲醇制烯烃催化剂 甲醇转化制烯烃所用的催化剂以分子筛为主要活性组分,以氧化铝、氧化硅、硅藻土、高岭土等为载体,在黏结剂等加工助剂的协同作用下,经加工成型、烘干、焙烧等工艺制成分子筛催化剂,分子筛的性质、合成工艺、载体的性质、加工助剂的性质和配方、成型工艺等各素对分子筛催化剂的性能都会产生影响。 分子筛的研究主要集中在20世纪80年代和90年代。近年来,对于分子筛的合成和改性还在进行研究,但研究的力度明显降低,发表文章和申请专利的数量也显著下降。分子筛的粒径是合成分子筛催化剂的一个重要因素,一般小粒径的分子筛由于孔道短,内扩散的行程短,有利于提高分子筛催化剂的表观活性和乙 22江西化工2013年第4期

甲醇制汽油文献综述

刘于英,原丰贞,赵霄鹏. 甲醇制汽油工艺概述[J].山西化工,2009,29(4):2-3 随着世界石油资源的日益匮乏和甲醇生产成本的降低,甲醇作为新的石化原料来源已经成为一种趋势,因此甲醇制汽油(MTG)项目备受关注。 与其他甲醇下游技术相比,甲醇制汽油技术相对简单,并在反应器技术、油品后处理技术及油品品质等方面都有一定优势。特别是甲醇转化生产的汽油经简单加工后既可以直接使用,也可以作为优质油组分进行高清洁汽油(国家Ⅲ类标准)的调和。甲醇制汽油(MTG)工艺是由Mobil公司开发的甲醇于ZSM 25 分子筛催化剂上转化成芳烃的基础上发展而来的。Mobil法甲醇制汽油技术首次发表于1976 年,它首先以煤或天然气作原料生产合成气,再以合成气制甲醇,最后将粗甲醇转化为高辛烷值汽油。 甲醇制汽油工艺在中国能否立足,取决于煤制甲醇是否过剩。一旦煤制甲醇过剩,MTG 就有可能成为甲醇的后继产业链。甲醇加入汽油不如甲醇制汽油,后者对环境、发动机都没有影响,因此此技术具有非常广阔的应用前景 埃克森美孚公司在1990年代所作的改进包括减少了投资和操作费用。采用MTG技术的第一套煤制汽油工艺设计和建设已在中国山西晋城无烟煤矿公司进行之中。该装置初期阶段设计能力为10万t/a,但预计该项目第二阶段将扩增至100万t/a。埃克森美孚公司于2008年12月也将采用MTG技术建设美国第一套MTG型CTL项目。DKRW先进燃料公司通过其旗下的Medicine Bow燃料和电力公司接受MTG技术转让,在怀俄明州Medicine Bow建设1.5万桶/d CTL装置。晋城无烟煤矿公司和DKRW先进燃料公司的装置都将比新西兰原有装置有很大改进,并积累了10a多来的操作经验。 从事气化技术的美国合成能源系统公司(SES)与埃克森美孚公司合作,加快推广通过甲醇途径的煤制汽油技术,截至2008年9月底,在全球推行其u·GAS煤炭气化装置,已转让甲醇制汽油(MTG)技术达15套。SES公司已计划利用MTG技术与美国西弗吉尼亚州、密西西比州和北达科塔州的合作伙伴在其煤气化项目中应用。如果这些项目建成,将可生产约1亿加仑/a汽油。将埃克森美孚公司的MTG技术与SES公司专有的U—GAS气化技术相结合,可利用低成本、丰富的煤炭,包括褐煤和废煤转化生产高价值的运输燃料。 据埃克森美孚公司计算,460万t煤炭进料可生产约140万t/a(约3.6万桶/d)汽油。产率和投资成本取决于煤质(灰分、湿度、硫含量和热值)。据UC Davis公司于2007年公布的加州低碳燃料标准所作技术分析,由MTG工艺生产的全部能源产品总的生命循环周期温室气体排放(无碳捕集和封存,CCS),最多可与平均的煤制油工艺的排放(48.7g/MJ炼制产品)相当。然而,每MJ汽油的排放较高(64.69 g/MJ汽油)。相对比较,从常规石油生产的汽油总的排放为25.7g/MJ,从焦油砂或超重质石油生产的燃料为29.4~35.9g/MJ。油砂燃料为33~70g/MJ。以Pittsburgh和Houston为基地从事合成能源系统开发、美国最的沥青煤生产商Consol能源公司与合成能源系统公司(SES)于2008年9月组建合资企业,推动通过甲醇使煤制汽油技术,合资企业在美国西弗吉尼亚州Benwood附近Marshall郡工业园区建设煤制汽油工厂,该工厂邻近Consol能源公司Shoemaker煤炭生产联合企业。计划于201 1年投产,这将是美国采用SES公司U—Gas气化技术的第一套装置。该公司从美国气体技术研究院取得该技术转让。Shoemaker煤炭生产联合企业将为转化生产合成气供应3 000 t/a煤炭。合成气将用于生产约72万t/a甲醇,甲醇再转化成l亿加仑/a辛烷值为87的汽油。该合资企业与埃克森美孚研究与工程公司签约以取得甲醇制汽油技术。在U—Gas气化过程中,粒状煤炭在单段、流化床气化器中于约1。8500F和200磅/平方英寸下被气化。U—Gas技术也包括以下过程,将使来自煤炭的二氧化碳副产品封存地下,以有助于减小对影响的影响。SES公司在中国的第一套商业化煤制甲醇装置于2008年1月投产,在中国的第二套煤制甲醇装置将于2010年投运。煤炭制取甲醇,由甲醇再制汽油(MTG)路线正在我国山西省跃跃欲试。山西晋城无烟煤矿公司与德国伍德公司于2006年12月签署了

甲醇制汽油技术进展及相关问题探讨

CH3OH→Zeo-OHCH3OH2O-Zeo+-[:CH2+H3O]-O- -Zeo + a→CH2=CH2 c[CH3++H2O]-O--Zeo b (7)甲醇制汽油技术进展及相关问题探讨 王银斌臧甲忠于海斌 (中海油天津化工研究设计院,天津300131) 收稿日期:2011-03-30 作者简介:王银斌(1985—),男,2007年本科毕业于中国石油大学(华东)应用化学专业,助理工程师,现从事煤化工相关科研工作。 摘 要 综述了甲醇制汽油(MTG)的反应机理及固定床、流化床、列管式反应器等工艺流程;介绍了MTG工 艺的工业化应用情况;分析了MTG工艺的优点、经济性及制约因素。指出发展MTG可以优化我国的能源配置,降低对石油进口的依存度,还可以为国内甲醇提供一条切实可行的出路。 关键词 甲醇制汽油 反应机理 工艺技术 经济性 风险 文章编号:1005-9598(2011)-03-0016-04中图分类号:TQ223.12+1 文献标识码:A 引言 近年来,在石油价格高位运行背景下,煤制油 (CTL)研究不断升温,而甲醇制汽油(MTG)作为CTL后半段的核心技术之一,也再次受到青睐。MTG工艺是在Mobil公司开发的甲醇在ZSM-5分子筛上转化为芳烃的基础上发展而来的———以煤或天然气作原料生产合成气,再以合成气制甲醇,最后将粗甲醇转化为高辛烷值汽油。Mobil法MTG技术首次公开于1976年,历经30多年的改进和创新后,该工艺技术有了很大的进步[1],与石油炼制生产汽油路线的竞争力也越来越强,这对我国来说尤为重要。 1 MTG 工艺技术 1.1 反应机理 在甲醇制汽油反应过程中,首先甲醇通过分子间 脱水生成二甲醚和水,然后二甲醚在催化剂的作用下转化成轻烯烃(C2~C4),最后轻烯烃通过聚合、烷基化、异构化、氢转移等多步反应生成高级烯烃、正/异构石蜡烃、芳烃和环烷烃的混合物[2]。反应式如下: 2CH3OH→CH3OCH3+H2O (1)CH3OH或CH3OCH3→轻烯烃+H2O (2) 轻烯烃→高级烯烃+石蜡烃+环烷烃+芳烃(3) 这其中,速控步是二甲醚转化生成轻烯烃,即C-C键的形成过程,具体的反应机理至今没有形成统一的说法,根据生成的中间产物的不同,主要分为碳烯机理、甲基碳离子机理、链反应机理、氧正离子机理和自由基机理等[2-4],现以碳烯机理和甲基碳正离子机理为例进行说明。1.1.1 碳烯机理 Swabb等[5]认为,在沸石晶格的碱中心和酸中心的作用下,首先甲醇发生α-消去反应,生成中间产物碳烯[:CH2],它可以直接生成低碳烯烃,也可以和甲醇或二甲醚通过sp3轨道的C-H键插入生成乙烯,反应式如下,其中R为H原子或甲基: → [Zeo-O H-CH2-O H H-O-Zeo]→(4) 2[:CH2]→C2H4 (5)[:CH2]+CH3OR→CH3CH2OR→C2H4+HOR (6) C.D.Chang等[5]提出C-C键的生成与碳烯和正碳离子两种中间体有关。首先甲醇或二甲醚通过α-消去反应生成亚甲基,接着生成表面键合的碳烯,进一步通过沸石为媒介,[:CH2]与[CH3+]相互作用生成乙烯,反应模式如下: 第3期(总第154期) 2011年6月 煤化工 Coal Chemical Industry No.3(Total No.154) Jun.2011 CH3OH Zeo-O- (碱中心 )Zeo-OH(酸中心) } [:CH2]+H2O Zeo-O - Zeo-OH }

MTG(甲醇制汽油)工艺过程

甲醇制汽油工艺过程 固定床绝热反应器一步法甲醇转化制汽油技术及JX6021催化剂 固定床绝热反应器一步法甲醇转化制汽油主要应用于煤化工领 域和石油化工领域。属于以煤炭为原料生产清洁汽油的煤炭转化技术。 要实现甲醇转化制汽油过程,需要解决两个方面的问题。一方面需要解决催化剂问题,通过对催化剂表面酸性、孔道结构等的调整,使生成的烃集中在C5~C10范围内;另一方面,需要采取适当的工艺 措施,将反应释放的大量热量移出反应器,使反应器温度得以控制。 一步法甲醇转化制汽油过程的化学原理 该反应的主要原理是,甲醇在酸性催化剂作用下脱水,生成完全不含氧元素的烃类物质:

在适当的催化剂和适当的工艺条件下,由于分子筛催化剂的孔道制约和择型作用,上述反应生成的烃类物质的碳原子数主要集中在C5~C10之间,符合汽油馏分的基本要求,可以直接作为产品汽油使用,也可以作为石油路线炼制汽油的优良组分油使用,以提高石油路线汽油的品质。上述反应同时生成部分C3~C4烃,经分离后,这部分产物可以作为液化石油气(LPG)使用;同时生成少量甲烷、乙烷,可以作为生产过程的燃料使用。上述反应是一个放热过程,每转化1kg 甲醇,放出热量为1.74MJ。 甲醇转化制汽油的ZSM-5分子筛催化剂由山西煤化所独立开发,工艺过程由山西煤化所和化学工业第二设计院合作开发。技术的主要特色是甲醇在分子筛催化剂的作用下,一步转化为以汽油为主的烃类产物。固定床绝热反应器一步法甲醇转化制汽油技术与国外MTG技术的区别是,一步法技术省略了甲醇转化制二甲醚的步骤,甲醇在ZSM-5分子筛催化剂的作用下一步转化为汽油和少量LPG产品,其显著优点是工艺流程短,汽油选择性高,催化剂稳定性和单程寿命等指标均优于已有技术。 甲醇转化部分的工艺流程示意图见图1。

甲醇制汽油工艺技术及特点简介

MTG工艺技术及特点简介 1、ZSM-5催化剂 对MTG工艺的研究,核心技术是催化剂的研制。ZSM-5催化剂是MTG法取得成功的关键。这种合成沸石具有两种相互交叉的孔道,椭圆形+元环直孔道和圆形正弦状弯曲孔道。孔道的孔经大小恰好保证生产在汽油沸程内的烃类。 ZSM-5合成沸石具有下述特点: 1)选择性好。由于ZSM-5合成沸石具有特定结构和孔道尺寸,所以它能使汽油沸点范围内的烃分子通过,而临界尺寸大于均四甲基苯的分子很难通过。也就是说,反应产物是以10或11个碳原子的烃类为高限,基本上不生成C11以上的烃,因而该催化剂的选择性好。 2)活性高。在甲醇制汽油的反应中,ZSM-5沸石与其他沸石相比不仅C—C键的形成能力强,而且活性下降也较慢。用Y型分子筛不能生产芳烃。用丝光沸石时,在300 ℃时也只能生成少量芳构化产物,但用ZSM-5沸石在300℃时已发生明显的芳构化,在380 ℃芳构化程度很高。ZSM-5分子筛除了具有缩合、芳构化的功能外,还有许多用途,如石油馏分脱蜡,由乙烯和苯制取乙苯,甲苯歧化为苯和二甲苯等工艺中均使用。因此,它是人们熟知的经典催化剂。 2、反应原理 甲醇转化的反应较复杂,首先甲醇脱氢转化为低分子烯烃,再进一步与较大分子的烯烃反应生成烷烃、环烷烃和芳烃。用ZSM-5沸石把甲醇转化成汽油的工艺过程可以表示为:nCH3OH → (—CH2—)n 反应是放热反应,甲醇可以完全转化。 起始的脱水反应很快地形成了甲醇、二甲醚和水的混合物,含氧物进一步脱水得到C2~C5轻质烯烃。当甲醇脱水反应完成后,进一步反应则是C2~C5烯烃的缩合、环化,生成分子量更高、在汽油沸程内的烃类,以及C6以上的芳香烃、链烷烃等,最终形成C2~C11的烃类混合物。 反应速率的控制步骤是含氧物转化为烯烃这一步。它是一种自催化反应,如果没有烯烃,反应速率就缓慢;若增加烯烃浓度,反应就加快,因此采用轻烃再循环的办法,对提高反

甲醇制汽油工艺技术及特点简介

MTG 工艺技术及特点简介 起始的脱水反应很快地形成了甲醇、 二甲醚和水的混合物, 含氧物进一步脱水得到 C 2? C 5 轻质烯烃。当甲醇脱水反应完成后,进一步反应则是 子量更高、在汽油沸程内的烃类,以及 C 6以上的芳香烃、链烷烃等,最终形成 C 2?C 11的 烃类混合物。 反应速率的控制步骤是 含氧物转化为烯烃 这一步。它是一种自催化反应, 如果没有烯烃, 1、 ZSM-5 催化剂 对 MTG 工艺的研究,核心技术是催化剂的研制。 ZSM-5 催化剂是 MTG 法取得成功的 关键。这种合成沸石具有两种相互交叉的孔道, 椭圆形 +元环直孔道和圆形正弦状弯曲孔道。 孔道的孔经大小恰好保证生产在汽油沸程内的烃类。 ZSM-5 合成沸石具有下述特点: 1)选择性好。由于 ZSM-5 合成沸石具有特定结构和孔道尺寸, 所以它能使汽油沸点范 围内的烃分子通过, 而临界尺寸大于均四甲基苯的分子很难通过。 也就是说, 反应产物是以 10或11个碳原子的烃类为高限,基本上不生成 C 11以上的烃,因而该催化剂的选择性好。 2)活性高。在甲醇制汽油的反应中, ZSM-5沸石与其他沸石相比不仅 C — C 键的形成 能力强,而且活性下降也较慢。用 丫型分子筛不能生产芳烃。用丝光沸石时,在 300 C 时 也只能生成少量芳构化产物,但用 ZSM-5沸石在300C 时已发生明显的芳构化,在 380 C 芳构化程度很高。 ZSM-5 分子筛除了具有缩合、芳构化的功能外,还有许多用途,如石油 馏分脱蜡, 由乙烯和苯制取乙苯,甲苯歧化为苯和二甲苯等工艺中均使用。 因此, 它是人们 熟知的经典催化剂。 2、反应原理 甲醇转化的反应较复杂, 首先甲醇脱氢转化为低分子烯烃, 再进一步与较大分子的烯烃 反应生成烷烃、环烷烃和芳烃。 用 ZSM-5 沸石把甲醇转化成汽油的工艺过程可以表示为: nCH 30H 7 ( -CH 2—)n 反应是放热反应,甲醇可以完全转化。 C 2?C 5烯烃的缩合、环化,生成分

甲醇燃料市场推广方案(参考)

甲醇燃料市场推广方案(参考) 一、项目介绍 甲醇液体燃料是以廉价的粗甲醇为主要原料,按特定工艺经生化合成的一种清洁液体燃料。可在常温常压下储存、运输、使用,无需高压钢瓶存储,可用普通金属或塑料容器存储。但传统的甲醇燃料热值低,只有5300大卡/KG左右,达不到烧火做饭的要求,并且耗量大,达不到厨房用油的标准,没有明显的经济效益;其次,甲醇液体燃料稳定性差,易挥发,大家都知道甲醇是一种非常容易挥发的可燃性化工原料,它在温度64度就会由液体变为可燃性蒸汽,在狭小不通风的环境中极易引起爆炸,即使在比较宽敞的空间也会使人吸入过量的甲醇蒸汽,导致人员甲醇中毒,失明,在运输过程中也极易发生爆炸.贮存也会因为挥发而减少.因此必须解决甲醇燃料的热量和稳定性.。 我公司潜心研究,在2年前我们已成功研制出甲醇液体燃料增热稳定剂,它不仅很好的解决了甲醇热值不足,用量大的历史问题,加入2——5%即可提高甲醇 1/3左右的热值;而且,它首次解决了甲醇燃料不稳定,易挥发,不安全的问题, 产品通过国家环保检验部门检测,并经过2年多的试点推广使用,其技术性能和安全指标符合民用燃料的要求,是一种理想的绿色燃料,深受用户的欢迎!是在传统甲醇燃料改进合成的绿色能源,它热值高达8300大卡以上,完全符合厨房用油的标准,稳定性极好,挥发非常小,贮存、运输、使用都非常安全. 二、甲醇燃料技术市场现状 甲醇能源其实并不象有的网上,广告上说的那样简单:几样常见的化工燃料简单的搅拌在一起就行了,我们都知道甲醇是一种可燃的化工原料,不管和几种原料搅在一起,它都能燃烧,如果象宣传的那样简单,在今天不知道有多少人在搞了,那样简单,那样赚钱,谁不想做. 还有,即使这样的宣传能生产出产品,那怎样使用呢,也不象他们宣传的那样 简单;更换一个炉头就行了,要知道柴油和甲醇燃烧的原理都不一样,怎能那样简 单呢. 市场上的甲醇液体燃料技术存在两个缺点: 一,所提供的所谓技术配方其实早已公开,并且产品成本太高,无利润可言,有的原料批量购买困难,比如丙酮,现在1万多元一吨,并且要公安机关备案登记,根本就无法规模性生产。 二,没有一家提供甲醇炉具或灶具改造技术,他们所提供的都是一台两眼如液化气灶模样的灶具,这样的灶具燃烧时火力小,根本无法作饭,最严重的是非常容 易泄露引发火灾,绝对没有推广价值.他们没有或他们自己都不知道怎样生产和改造普通炉具的技术,有的人好不容易道听途说的勉强可以改造普通炉具了,但火力又远远低于液化气或柴油,客户怨声载道.

甲醇制汽油原理工艺介绍

序言MTG(甲醇制汽油)工艺是指以甲醇作原料,在一定温度、压力和空速下,通过特定的催化剂进行脱水、低聚、异构等步骤转化为C11以下烃类油的过程。这是甲醇制烃类工艺中的一种,是未来甲醇化工的主线之一。图1为甲醇化工示意图。 图1 甲醇化工图 1 历史起伏 人们虽然能将甲醇直接掺和到汽油中形成甲醇汽油,但是把甲醇转化成汽油要比掺和到汽油中使用更具吸引力。 由于世界煤储藏量远比石油和天然气多得多,因此从煤出发制合成气、甲醇,最后制汽油的研究在国外曾经受到重视。其中尤以Mobil公司开发成功的采用ZSM-5型合成沸石催化剂的方法最引人注目。这种方法制得的汽油抗爆震性能好,不像常用的汽油存在硫、氯等组分,而有用的组分与常用汽油很相似。 Mobil法甲醇制汽油技术于1976年问世,其总流程是首先以煤或天然气作原料生产合成气,再用合成气制甲醇,最后将粗甲醇转化为高辛烷值汽油。 甲醇合成烃类的方法,从一出现就为人们所注意。这是一个相当好的方法,在常压~3 MPa、350~400 ℃的条件下,甲醇的转化率达100%,且催化剂的活性不易衰减。由这个方法制造烃类,有如下特点。 (1)基本上不生成碳数为11以上的烃类 Mobil方法不会出现碳数11以上的烃类,这是采用ZSM-5沸石分子筛的缘故。如果将沸石进行改性,适当改变反应条件,生成物的分布就会发生变化。将这一反应的产物油用作石化工业裂解的原料时,乙烯和丙烯的收率可提高。 (2)对原料的纯度要求不高 无需将粗甲醇中其他含氧化合物除去就可以用作MTG工艺的原料。 (3)副产物价值高 该工艺产生的少量副产物是液化石油气和高热值燃料气。 (4)产物性能优良

甲醇制汽油路线及其应用

收稿日期:2009-09-22 作者简介:钱伯章(1939110-),男,江苏南通市人,1963年毕业于华东理工大学,主要从事技术与经济情报调研与传播工作。 甲醇制汽油路线及其应用 钱伯章 (上海擎督信息科技,上海 200126) 摘 要:介绍了甲醇制汽油路线及其应用。 关键词:甲醇;汽油;路线 中图分类号:TQ233112+1 文献标识码:A 文章编号:1003-6490(2009)04-0031-06 1 甲醇制汽油(M TG )路线的应用 现状 费托合成工艺是间接煤制油一般所选用的方案,当前,另一方案:煤制甲醇再制汽油(M TG )方案正在成为合成气转化为运输燃料的途径之一,并受到关注。 煤制油(CTL )项目最近的升温使甲醇制汽油(M TG )技术在市场上重新受到青睐。M TG 技术在 新西兰于上世纪1980年获得商业应用以来又有了一些发展。埃克森美孚公司在1990年代所作的改进包括减少了投资和操作费用。采用M TG 技术的第一套煤制汽油工艺设计和建设已在中国山西晋城无烟煤矿公司进行之中。该装置初期阶段设计能力为10万t/a ,但预计该项目第二阶段将扩增至100万t/a 。埃克森美孚公司于2008年12月也将采用M TG 技术建设美国第一套M TG 型CTL 项目。D KRW 先进燃料公司通过其旗下的Medicine Bow 燃料和电力公司接受M TG 技术转让,在怀俄明州Medicine Bow 建设115万桶/d CTL 装置。晋城无烟煤矿公司和D KRW 先进燃料公司的装置都将比新西兰原有装置有很大 改进,并积累了10a 多来的操作经验。 甲醇制汽油(M TG )技术可使粗甲醇直接转化为低硫、低苯含量、辛烷值为87的汽油,它可直接销售或与常规的炼油厂汽油相调合。由该工艺过程生产的汽油产率约为89%,L P G 产率约为10%,燃料气约为1%。 从事气化技术的美国合成能源系统公司(SES )与埃克森美孚公司合作,加快推广通过甲醇途径的煤制汽油技术,截至2008年9月底,在全球推行其U -G AS 煤炭气化装置,已转让甲醇制汽油(M TG )技术 达15套。 SES 公司已计划利用M TG 技术与美国西弗吉 尼亚州、密西西比州和北达科塔州的合作伙伴在其煤气化项目中应用。如果这些项目建成,将可生产约1亿加仑/a 汽油。 将埃克森美孚公司的M TG 技术与SES 公司专有的U -G AS 气化技术相结合,可利用低成本、丰富的煤炭,包括褐煤和废煤转化生产高价值的运输燃料。 埃克森美孚公司的M TG 技术于20a 前曾在新西 第35卷第4期2009年12月 化工设计通讯 Chemical Engineering Design Communications Vol 135No 14Dec 12009

MTG甲醇制汽油工艺介绍

MTG工艺的起伏 关键词:MTG, 工艺 序言 MTG(甲醇制汽油)工艺是指以甲醇作原料,在一定温度、压力和空速下,通过特定的催化剂进行脱水、低聚、异构等步骤转化为C11以下烃类油的过程。这是甲醇制烃类工艺中的一种,是未来甲醇化工的主线之一。图1为甲醇化工示意图。 图1 甲醇化工图 1、历史起伏 人们虽然能将甲醇直接掺和到汽油中形成甲醇汽油,但是把甲醇转化成汽油要比掺和到汽油中使用更具吸引力。 由于世界煤储藏量远比石油和天然气多得多,因此从煤出发制合成气、甲醇,最后制汽油的研究在国外曾经受到重视。其中尤以Mobil公司开发成功的采用ZSM-5型合成沸石催化剂的方法最引人注目。这种方法制得的汽油抗爆震性能好,不像常用的汽油存在硫、氯等组分,而有用的组分与常用汽油很相似。 Mobil法甲醇制汽油技术于1976年问世,其总流程是首先以煤或天然气作原料生产合成气,再用合成气制甲醇,最后将粗甲醇转化为高辛烷值汽油。 甲醇合成烃类的方法,从一出现就为人们所注意。这是一个相当好的方法,在常压~3 MPa、350~400 ℃的条件下,甲醇的转化率达100%,且催化剂的活性不易衰减。由这个方法制造烃类,有如下特点:

(1)基本上不生成碳数为11以上的烃类 Mobil方法不会出现碳数11以上的烃类,这是采用ZSM-5沸石分子筛的缘故。如果将沸石进行改性,适当改变反应条件,生成物的分布就会发生变化。将这一反应的产物油用作石化工业裂解的原料时,乙烯和丙烯的收率可提高。 (2)对原料的纯度要求不高 无需将粗甲醇中其他含氧化合物除去就可以用作MTG工艺的原料。 (3)副产物价值高 该工艺产生的少量副产物是液化石油气和高热值燃料气。 (4)产物性能优良 此种产物油作为汽油使用时,性能是非常优良的。其生成物中,一部分为芳香族烃,其中大部分被甲基化;另一部分是脂肪族烃类,其中支链烃类占多数。在无四乙基铅的情况下,产物汽油的辛烷值为90~95。而目前F-T合成法(用铁系催化剂由CO+H2直接合成烃类的方法)所得到的烃类,主要是直链的烯烃和烷烃,且碳数分布范围较广,产物中有半数是蜡,裂解后主要是柴油。 由此可见,Mobil法提供了从非石油资源变成高辛烷值汽油的新合成路线,它与F-T 合成工艺有异曲同工之妙。它主攻的方向是汽油,产品的质量好,工艺简单,价格低廉。 1979年,新西兰政府决定在该国普利茅斯建设一套14500桶/日的工业装置。1984年,Mobil公司与新西兰合作,在新西兰建立一座占地400 hm2(400公顷)、日产汽油2000 t的工业装置。1985年,该装置投入运行,在成功运行10年以后,改为化学级甲醇生产装置。 应该说,这个工艺的隐匿是由于经济方面的问题,而不是技术的缘故。当时,原油比较便宜,人们普遍认为MTG在经济上站不住脚。但是,当原油价格上涨到60美元/桶以上时,这个工艺又被提出来,就有进一步改进工艺使之再工业化的必要。今天,当原油价格爬升到110美元/桶以上时,MTG的大门已经完全洞开!国内近期出现的有关这方面的新技术,就是这个原因。 从甲醇合成烃类,正在受到人们极大的关注。如果将已经成熟的甲醇合成及其他技术适当组合,就可以实现合成汽油的综合工艺。 CH4+H2O → C O+3H2 (天然气的转化) C+H2 O → CO+H2 (煤的气化) CO+2H2 → CH3OH (甲醇的合成)

甲醇制汽油(MTG)路线的应用现状

费托合成工艺是间接煤制油一般所选用的方案,当前,另一方案:煤制甲醇再制汽油(MTG)方案正在成为合成气转化为运输燃料的途径之一,并受到关注。 煤制油(CTL)项目最近的升温使甲醇制汽油(MTG)技术在市场上重新受到青睐。MTG技术在新西兰于上世纪80年获得商业应用以来又有了一些发展。埃克森美孚公司在90年代所作的改进包括减少了投资和操作费用。采用MTG技术的第一套煤制汽油工艺设计和建设已在中国山西晋城无烟煤矿公司进行之中。该装置初期阶段设计能力为10万吨/年,但预计该项目第二阶段将扩增至100万吨/年。埃克森美孚公司于2008年12月也将采用MTG技术建设美国第一套MTG型CTL项目。DKRW先进燃料公司通过其旗下的Medicine Bow燃料和电力公司接受MTG技术转让,在怀俄明州Medicine Bow建设1.5万桶/天CTL装置。晋城无烟煤矿公司和DKRW先进燃料公司的装置都将比新西兰原有装置有很大改进,并积累了10多年来的操作经验。 甲醇制汽油(MTG)技术可使粗甲醇直接转化为低硫、低苯含量、辛烷值为87的汽油,它可直接销售或与常规的炼油厂汽油相调合。由该工艺过程生产的汽油产率约为89%,LPG产率约为10%,燃料气约为1%。 从事气化技术的美国合成能源系统公司(SES)与埃克森美孚公司合作,加快推广通过甲醇途径的煤制汽油技术,截至2008年9月底,在全球推行其U-GAS煤炭气化装置,已转让甲醇制汽油(MTG)技术达15套。 SES公司已计划利用MTG技术与美国西弗吉尼亚州、密西西比州和北达科塔州的合作伙伴在其煤气化项目中应用。如果这些项目建成,将可生产约1亿加仑/年汽油。 将埃克森美孚公司的MTG技术与SES公司专有的U-GAS气化技术相结合,可利用低成本、丰富的煤炭,包括褐煤和废煤转化生产高价值的运输燃料。 埃克森美孚公司的MTG技术于20年前曾在新西兰实现商业化应用。 据埃克森美孚公司计算,460万吨煤炭进料可生产约140万吨/年(约3.6万桶/天)汽油。产率和投资成本取决于煤质(灰分、湿度、硫含量和热值)。 据UC Davis公司于2007年公布的加州低碳燃料标准所作技术分析,由MTG工艺生产的全部能源产品总的生命循环周期温室气体排放(无碳捕集和封存,CCS),最多可与平均的煤制油工艺的排放(48.7 g/MJ炼制产品)相当。然而,每MJ汽油的排放较高(64.69 g/MJ汽油)。 相对比较,从常规石油生产的汽油总的排放为25.7 g/MJ,从焦油砂或超重质石油生产的燃料为29.4~35.9 g/MJ。油砂燃料为33 ~70 g/MJ 以Pittsburgh和Houston为基地从事合成能源系统开发、美国最大的沥青煤生产商Consol能源公司与合成能源系统公司(SES)于2008年9月组建合资企业,推动通过甲醇使煤制汽油技术,合资企业在美国西弗吉尼亚州Benwood附近Marshall郡工业园区建设煤制汽油工厂,该工厂邻近Consol能源公司Shoemaker煤炭生产联合企业。计划于2011年投产,这将

甲醇制汽油

甲醇制汽油工业工艺 一、世界甲醇燃料发展情况 甲醇是一种重要的有机化工原料,它在化工、医药、轻工、纺织等行业具有广泛的用途。随着世界石油资源的日益匮乏和甲醇生产成本的降低,甲醇作为新的石化原料来源已经成为一种趋势,因此利用甲醇做燃料,甲醇汽油燃料,以及甲醇制汽油等想法引起世界的关注。越来越多的人开始对其进行研究和开发。 上世纪二十年代甲醇汽油开始用作车用燃料;在二次世界大战期间,甲醇汽油广泛应用于德国;上世纪七十年代受二次石油危机的影响,美国、日本、德国和瑞典等国先后投入人力、物力进行甲醇燃料及甲醇汽车配套技术的研究开发。 美国对甲醇燃料和甲醇汽车进行开发和应用,重点开发燃烧M85(含甲醇85%)、M100(含甲醇100%)专用甲醇燃料汽车。 日本汽车研究所也曾先后用大型公共汽车、载货车使用M85、M100燃料,进行道路试验,以检验发动机的耐久性、可靠性。1996年,日本本田技研工业株式会社,试用汽油、甲醇自由混合双燃料车,已完成确保与汽油大致相同耐久、可靠的灵活燃料车,得出的结论是,成本降低,有利于批量生产。 这些研究的成功表明,使用甲醇汽油用于汽车是完全可行的。据统计,目前,瑞典、新西兰已推广使用M15汽油,意大利计划用含甲醇80%的混合燃料代替汽油。而德国已大量推广使用甲醇汽油作为汽车的燃料。 二、甲醇制汽油的发展史 1.甲醇制汽油是基于世界甲醇燃料发展的基础上开始推出的一个新的燃料工

业工艺。 甲醇虽然能直接掺和到汽油中作甲醇—汽油混合燃料。但是把它转化成汽油要比掺和到汽油中使用更具吸引力。由于世界煤储藏量远比石油和天然气多得多,再加上世界上的石油越来越短缺。因此,从煤出发制合成气、甲醇,最后制汽油的研究在国外越来越多。试验规模也越来越大,其中尤以Mobil公司开发成功的ZSM—5型合成沸石自甲醇制汽油(MTG)的方法最引起世界注目。这种方法制得的汽油抗爆震性能好;不存在常用汽油中的硫、氯等组分;而烃类组成与常用汽油很相似。 .20世纪70年代初期发现独特的“形状选择”催化原理 .重大挑战——利用甲醇生产商品汽油 .70年代开展对各种工艺方案的研究 ——在美国中试装置规模为4桶/日 ——在德国中试装置规模为100桶/日 .1979年新西兰政府决定在新西兰新普利茅斯建设一套14500桶/日工业装置。·装置的所有权75%归新西兰政府.25%归埃克森美孚公司。 .装置于1985年投产并成功地运行了大约10年,后改为化学级甲醇生产装置。 2.从甲醇合成烃类的反应,正在受到人们的极大关注。如果将已经成熟的甲醇合成技术适当地组合,就可以实现合成汽油工业的综合工艺。 CH4+H2O—CO+H2(天然气的转化) C + H2O—CO+H2(煤的气化) CO+2H2—CH3OH (甲醇的合成) nCH3OH—(CH2)n + nH2O (烃类的合成) 3.甲醇工业制各类烃的工艺概况

MTG甲醇制汽油

MTG(甲醇制汽油)工艺是指以甲醇作原料,在一定温度、压力和空速下,通过特定的催化剂进行脱水、低聚、异构等步骤转化为C11以下烃类油的过程。这是甲醇制烃类工艺中的一种,是未来甲醇化工的主线之一。图1为甲醇化工示意图。 1 历史起伏 人们虽然能将甲醇直接掺和到汽油中形成甲醇汽油,但是把甲醇转化成汽油要比掺和到汽油中使用更具吸引力。由于世界煤储藏量远比石油和天然气多得多,因此从煤出发制合成气、甲醇,最后制汽油的研究在国外曾经受到重视。其中尤以Mobil公司开发成功的采用ZSM-5型合成沸石催化剂的方法最引人注目。这种方法制得的汽油抗爆震性能好,不像常用的汽油存在硫、氯等组分,而有用的组分与常用汽油很相似。Mobil法甲醇制汽油技术于1976年问世,其总流程是首先以煤或天然气作原料生产合成气,再用合成气制甲醇,最后将粗甲醇转化为高辛烷值汽油。甲醇合成烃类的方法,从一出现就为人们所注意。这是一个相当好的方法,在常压~3 MPa、350~400℃的条件下,甲醇的转化率达100%,且催化剂的活性不易衰减。由这个方法制造烃类,有如下特点。(1)基本上不生成碳数为11以上的烃类; Mobil方法不会出现碳数11以上的烃类,这是采用ZSM-5沸石分子筛的缘故。如果将沸石进行改性,适当改变反应条件,生成物的分布就会发生变化。将这一反应的产物油用作石化工业裂解的原料时,乙烯和丙烯的收率可提高。 (2)对原料的纯度要求不高 无需将粗甲醇中其他含氧化合物除去就可以用作MTG工艺的原料。 (3)副产物价值高 该工艺产生的少量副产物是液化石油气和高热值燃料气。 (4)产物性能优良,此种产物油作为汽油使用时,性能是非常优良的。其生成物中,一部分为芳香族烃,其中大部分被甲基化;另一部分是脂肪族烃类,其中支链烃类占多数。在无四乙基铅的情况下,产物汽油的辛烷值为90~95。而目前F-T合成法(用铁系催化剂由CO+H2直接合成烃类的方法)所得到的烃类,主要是直链的烯烃和烷烃,且碳数分布范围较广,产物中有半数是蜡,裂解后主要是柴油。由此可见,Mobil法提供了从非石油资源变成高辛烷值汽油的新合成路线,它与F-T合成工艺有异曲同工之妙。它主攻的方向是汽油,产品的质量好,工艺简单,价格低廉。1979年,新西兰政府决定在该国普利茅斯建设一套14500桶/日的工业装置。1984年,Mobil公司与新西兰合作,在新西兰建立一座占地400 hm2(400公顷)、日产汽油2000,t的工业装置。1985年,该装置投入运行,在成功运行10年以后,改为化学级甲醇生产装置。应该说,这个工艺的隐匿是由于经济方面的问题,而不是技术的缘故。当时,原油比较便宜,

甲醇制烯烃工艺流程简述

甲醇制烯烃工艺流程简述 一、反应-再生单元 (1)甲醇进料预热系统 来自装置外地甲醇经家畜-气提水换热器、甲醇-凝结水换热器、甲醇、蒸汽换热器、甲醇-反应气换热器完成甲醇的加热、气化和过热后通过甲醇气体冷却器控制甲醇进料温度,进入反应器。 (2)反应再生系统 达到进料温度的甲醇进入反应器,在反应器内甲醇与来自再生器的高温再生催化剂直接接触,甲醇在催化剂表面迅速进行放热反应。生成的反应气体经设在反应器内两级旋风分离器和第三级旋风分离器除去所夹带的催化剂后引出,经甲醇-反应气换热器降温后,送至后部急冷塔。 反应后积碳的待生催化剂进入待生汽提器汽提,汽提后的待生催化剂经待生催化剂输送管向上进入再生器中部。在再生器内烧掉积存在催化剂表面上的焦炭以恢复催化剂的活性。烧焦后的再生催化剂进入再生汽提器汽提。汽提后的再生催化剂送回反应器中部。烧焦产生的烟气经再生器内两级旋风分离器和第三级分选分离器除去所夹带的催化剂后,经双动滑阀、降压孔板进入CO焚烧炉和余热锅炉,回收烟气中的化学能和热能后经烟囱排放大气。再生器内部设有主风分布环。 催化剂再生烧焦所需的主风由主风机提供。主风经辅助燃烧室进入再生器,提供催化剂再生烧焦用风。 (3)能量和热量回收系统 在再生器内设置内取热器,外部设置外取热器。回收催化剂再生过程中烧焦放出的过剩热量。 来自再生器的再生烟气经烟气水封罐进入CO燃烧炉,经补充空气燃烧后烟气进入余热锅炉,依次经过余锅过热段、蒸发段、省煤段回收再生烟气的化学能和热能。降温后的烟气排入烟囱。 能量回收系统所发生的蒸汽为4.0MPa(G)等级蒸汽。

(4)急冷、水洗系统 来自反应器富含乙烯、丙烯的反应器经降温后一起送入急冷塔,自上而下经人字型挡板与急冷塔顶冷却水逆流接触,冷却水自急冷塔塔底抽出,经急冷塔底泵升压,进入急冷塔底泵出口过滤器,过滤除去急冷水中携带的催化剂,过滤后的急冷水分成两路,一路送至烯烃分离单元作为低温热源,经换热后返回的急冷水再经急冷水干式空冷器冷却后,一部分急冷水作为急冷剂返回急冷塔,另一部分送至装置外(正常不开)。另一路未经换热的急冷水直接进入沉降罐。 急冷塔顶反应气进入水洗塔下部,水洗塔底冷却水抽出后经水洗塔底泵升压后分成两路,一路进入沉降罐,另一路水洗水送至烯烃分离单元丙烯精馏塔底重沸器作为热源,换热后经水洗水干式空冷器和水洗水冷却器冷却后进入水洗塔中、上部,水洗塔顶反应气经气压机压缩后送至烯烃分离系统。 (5)水汽提系统 急冷水、水洗水经沉降罐沉降后,经汽提塔进料泵升压后与汽提塔进料换热器换热后进入污水汽提塔,汽提后的塔底净化水经净化水泵升压后经汽提塔进料换热器、甲醇-汽提水换热器、净化水干式空冷器和净化水冷却器后送出装置。 污水汽提塔顶汽提气经污水汽提塔顶气冷却器冷却后进入污水汽提塔顶回流罐,浓缩水(含有甲醇或二甲醚)经汽提塔顶回流泵升压,一部分作为塔顶冷回流返回污水汽提塔上部,另一部分进入浓缩水储罐,经甲醇-浓缩谁混合器与甲醇进料混合后,送至反应器。污水汽提塔顶回流罐顶得不凝气送至反应器。 二、烯烃精制单元 (1)反应混合气压缩机Ⅰ~Ⅱ 进入压缩机一段吸入罐的来自DMTO反应单元的混合气经一段吸入罐送到压缩机一段进行压缩,压缩后的气体经冷却器冷却至40℃后进入压缩机二段吸入罐。二段吸入罐中水被分离出来返回一段吸入罐,由一段吸入罐排出至DMTO反应单元的急冷塔。二段吸入罐的气相,进入压缩机二段,压缩后冷却至40℃进入甲醇洗涤塔和碱洗塔。 (2)甲醇水洗和酸性气体碱洗

甲醇制汽油工艺方案

甲醇制汽油工业技术方案 1、甲醇制汽油工艺比选 a)经典的固定床工艺-Mobil法工艺 甲醇汽油是由10%~25%的甲醇与其他化工原料、添加剂合成的新型车用燃料,但可达到90#~97#国标汽油的性能和指标。MTG 固定床工艺流程示于图1。 图l经典的固定床法MTG 工艺流程图 原料甲醇经预热器、蒸发器及过热器后,进入脱水反应器,在Cu/A12O3催化剂上甲醇脱水生成二甲醚。从脱水反应器出来未反应的甲醇、二甲醚、水,与来自汽油分离塔的压缩循环气混合后,进入转化反应器,通过ZSM-5催化剂转化为烃。出转化反应器的气体,一部分预热原料甲醇,一部分与循环气换热,然后去汽油分离塔,分离出液态烃、气态烃和水。循环气与出脱水反应器的气体之比是9:1,控制温度可以增加汽油的收率。 当反应产物中能测定出甲醇时,表明催化剂已经结炭,活性达不到要求。这时,反应器内的催化剂需要再生,采取的办法是用空气与氮的混合气燃烧除去催化剂表面的焦炭。工业化的流程中并联设置四台转化反应器,三台运转,一台再生催化剂。 操作条件和产品收率列于表1。生成物中C1和C2极少,同时副产少量的C3和C4,80%左右的是C5+。烃类产物中85%为汽油,其辛烷值(研究法)高达93;其他是液化石油气和少量的燃料气。固定床法的优点是转化率比较高。 表1 MTG法固定床、流化床的工艺条件和产品收率

b)流化床URBK-Mobil 工艺 (1)工艺过程 西德的URBK(联合褐煤)公司、伍德公司和美国Mobil 公司,在原Mobil法固定床反应工艺的基础上,开发流化床工艺。使用的也是Mobil 的ZSM-5催化剂。 该技术获得了西德政府的资助。1980年至1981年做冷模试验,1982年在Wesseling 的UK公司联合石油化工厂建成20 t/d 的中试示范厂,其工艺流程见图2。

相关文档
最新文档