钢纤维复合材料

钢纤维复合材料
钢纤维复合材料

钢纤维增强水泥基复合材料的研究进展

唐猛

(材料科学与工程学院,无机非金属材料专业,12材1,201214030116)

摘要:

纤维增强水泥基复合材料是由水泥净浆、砂浆或水泥混凝土作基材,以非连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。和钢材、木材等其它的建筑材料比较,社会上应用范围最大的建筑材料是水泥砂浆、混凝土等水泥复合材料,具有耐久耐磨、不易燃烧、成本低廉、抗压能力强、稳定安全等优点,但水泥复合材料也有着严重的缺点,例如:容易断裂外、加剂影响混凝土质量、自重大、抗拉强度低、对基础要求高、养护周期长、影响建筑速度、施工过程对结构影响较大、韧性差等等。目前,掺加一定的纤维在水泥复合材料中,是在建筑工业界逐渐推广的水泥复合材料的增强手段。而钢纤维水泥基复合材料的影响现在抗拉、抗弯、抗剪强度和耐久性等方面,对抗压强度的提高效果不明显。钢纤维混凝土是将一种由短的不连续的且有一定长径比的钢纤维均匀乱向地分散于普通水泥混凝土中所构成的复合材料。与普通水泥混凝土相比,强度和重量的比值增大;另外,抗裂性、抗变形性、抗剪切性、抗疲劳性等都有明显的提高。

关键词:水泥基复合材料;钢纤维;混杂纤维;增强作用。

1.钢纤维在水泥基复合材料中的作用及其增强机理

1.1钢纤维在水泥基复合材料中的作用

纤维加入水泥基材有三个主要作用[1]:

(1)使水泥基材抗拉强度得以保证或提高;

(2)在水泥基材中有阻断作用;

(3)水泥基材的形变能力得到提高

因为水泥基材的极限延伸率远小于纤维增强材料,所以在拉力作用下,水泥基材在达到其极限延伸率时发生开裂。在纤维增强水泥基复合材料中纤维的主要作用在于吸收水泥基材开裂时释放的能量,并因而阻止基材中裂缝的扩展。水泥基材中出现裂缝后,纤维可以与基材脱黏而从基材中拔出、或在应力达到最大值时拉断、或跨越裂缝承受拉力,使复合材料的抗拉强度得到提高。

1.2钢纤维混凝土增强机理的基本理论[2]

主要有两种思想对纤维增强复合材料产生重要影响:一种是复合力学理论;另一种是纤维间距理论(或称为纤维阻裂理论)。

1.2.1 纤维间距理论

纤维间距理论是由线弹性断裂力学来说明纤维对于裂缝发生和发展的约束作用,这个理论认为要想使混凝土这样本身带有内部缺陷的脆性材料提高抗拉强

度,内部缺陷的尺寸必须尽可能地减少,提高韧性。

1.2.2 复合力学理论

由于混凝土自身具有多尺度层次、多相、多组分的非均质结构特征,使复合材料构成的混杂原理是其理论出发点,将纤维增强混凝土当作是纤维强化体系,推求纤维混凝土的弹性模量、强度、应力等,在拉伸方向上还要考虑复合材料非连续性短纤维的长度和取向修正及混凝土的非均匀和有效纤维体积率的比例特性。根据复合力学理论可得乱向短钢纤维混凝土抗拉强度的计算公式为:

2.钢纤维的不同因素对增强水泥基复合材料性能的影响

2.1纤维体积率

研究表明:高强混凝土基体开裂后,试件的拉伸变形主要来自于初始裂缝的不断扩张;在断裂处,通过纤维继续把荷载传递给未开裂的混凝土基体部分,钢纤维高强混凝土的力学性能取决于纤维与基体界面的粘结强度。随裂缝不断张开,桥联纤维也不断被拔出或拉断,其拔出阻力主要取决于纤维基体界面粘着力及纤维异性引起的机械抗力等。在钢纤维高强度混凝土中,钢纤维与高强度混凝土基体的紧密结合,增大了纤维对水泥基体的影响范围,纤维进一步缓和了缝端应力集中程度,从而更有效地阻止和限制了裂缝的开裂和扩展。钢纤维横贯裂缝,可提高抵抗裂纹进一步发展的抗力,使得断口变得相对粗糙。粗糙的断口形貌在某种程度上反映了钢纤维对断裂韧性的改善。高强混凝土试件不仅峰值载荷较小,且达到峰值载荷后,事件破坏,绝大部分试件被劈为两半。在钢纤维高强度混凝土试件的试验中,可以清晰地听到纤维拔出或拉断声,除极少数小体积率钢纤维高强度混凝土试件有个被劈为两半外,绝大部分试件没有完全裂开,钢纤维高强度混凝土断面内仍有钢纤维相连。由于钢纤维的存在,钢纤维混凝土裂缝的上升路径不同于高强度混凝土时的直线上升,而是不断的改变方向,裂缝数量也不是高强度混凝土的一条,而是呈现多点开裂。

毕巧巍、汪辉[3]等通过在轻骨料混凝土中掺入适量钢纤维,研究了钢纤维掺量对轻骨料混凝土抗压强度、抗折强度及抗碳化性能的影响。并从试验结果发现:随着钢纤维掺量的增加,对轻骨料混凝土的抗压强度提高作用有限,而

对抗折强度贡献较大。试件的抗碳化能力随着钢纤维含量的增大而增加,当钢纤维体积含量由0. 5%提高到 1.2%时,其碳化深度由8唧降低至5 mm ,降低了近40%。可见钢纤维对提高轻骨料混凝土的抗碳化能力效果比较显著。

2.2纤维的长径比

由实验可得,当纤维的长径比为70时,对混凝土试件的效果最明显,这是因为钢纤维在试件中是三维乱向分布的。长径比为80、100的钢纤维长度相对较大,长径比为40、60的相对较短,产生的边壁效应相对较强。钢纤维沿粗骨料界面分布起不到阻裂作用。而长径比为70的钢纤维边壁效应较弱,即使有一定数量的钢纤维与脚和骨料界面相交,一旦平衡与界面的初始微裂纹有发展的趋势,这部风钢纤维能很好地阻止其发展,推迟了初始裂纹的产生,有效的提高了混凝土的抗压强度。

尹久仁、刘小根[4]等研究了钢纤维的长径比对层布式钢纤维混凝土的力学性能和断裂性能的影响研究结果表明:钢纤维长径比对其抗压强度影响甚微,层布式钢纤维混凝土的抗压强度仍取决于混凝土基材本身的性能。劈裂强度随钢纤维长径比的增长而增长,在相同体积掺量下(P, =1.5% ) ,W/C = 0.40 时,长径比为 120 和 80 的劈裂强度比长径比为 40 的劈裂强度分别提高10.88%和 14.63%,W/C = 0.45 时,长径比为120和80的劈裂强度比长径比为40 的劈裂强度分别提高了7%和10.34%。

3维混凝土的力学强度

3.1抗压强度

钢纤维混凝土虽受压强度增加不明显,但受压韧性却大幅度提高了。这是由于钢纤维的存在,增大了试件的压缩变形,提高了受压破坏时的韧性。从宏观上呈现,钢纤维混凝土受压破坏时,没有明显的碎块或崩落,仍保持这整体性。

3.2抗剪强度

钢纤维混凝土具有优异的抗剪性能,对提高钢筋混凝土结构抗剪能力有重要意义。通常在钢筋混凝土的构件中,其抗剪承载力主要靠箍筋和弯起钢筋承担,这些筋多了,不仅要提高工程投资,而且施工很不方便,尤其对薄壁、抗震结构和复杂形状的特种结构,问题则尤为突出。因此采用钢纤维混凝土是提高结构抗剪能力的有效途径。

3.3抗弯强度

钢纤维混凝土的抗弯强度,随着纤维掺量的增加而提高。钢纤维混凝土等级提高,使抗弯强度提高明显。在弯曲荷载作用下,钢纤维混凝土受拉区开裂,中性轴向上移,受拉区仍有部分纤维与基材的粘结力承受拉力,增加韧性,提高了混凝土的抗弯强度。而普通混凝土则很快发生断裂,以致脆性破坏。

4、维水泥基复合材料的发展

4.1粒钢纤维混凝土

哈尔滨建筑大学对此进行了进一步的研究,尝试在陶粒混凝土中掺入一定量的钢纤维制成一种新型的复合材料——陶粒钢纤维混凝土。他们主要从水泥浆稠度、水泥浆数量、砂率、骨料最大粒径、钢纤维掺量几个方面对混凝土性能的影响作了相应的分析。其结果表明[5]:(1)随着水泥浆稠度的减小、水

泥浆量的赠加、骨料最大粒径的增大,陶粒钢混凝土的流动性显著提高;(2)随着钢纤维掺量的增加,最佳砂率也随之增加,但混凝土中拌合物的流动性明显降低。

彭亚萍[6]对两根采用“人工塑性铰”配筋形式的陶粒混凝土连梁(其中一根掺入钢纤维)在反复载荷作用下的强度、刚度、延伸性及耗能情况等基本性能进行了研究和非线性有限元分析,结果表明:采用“人工塑性铰”配筋形式的钢纤维陶粒混凝土

连梁具有优良的抗震性能。

4.2射钢纤维混凝土

喷射钢纤维混凝土(SFRS),又称钢纤维喷射混凝土,是在普通混凝土中混入钢纤维,依靠压缩空气高速喷射在结构表面的一种性能优良的水泥基复合材料。需注意的是:喷射钢纤维混凝土的制备除需要考虑到普通混凝土配合比的设计,还必须考虑喷射混凝土的可泵性、回弹率以及混凝土在喷射面上的附着性等。云南省昆石高速公路小团山隧道采用喷射钢纤维混凝土进行初期支护,取得了很好的效果。对喷射钢纤维混凝土的研究主要集中在以下几个方面[7]:

(1)混凝土的配合比设计;

(2)喷射的方法,包括素喷法和湿喷法;

(3)钢纤维的分布特性的分析;

(4)支护长期效应的数值模拟;

(5)方向效能系数研究;

(6)弯曲韧性、抗拉强度的测试等。

4.3纤维活性粉末混凝土

1993年,法国Bouygues实验室研制出一种活性粉末混凝(RPC),是通过提高组分的细度和反应的活性来实现的。在此基础上,深圳市市政工程设计院和深圳大学选用粉煤灰部分取代硅灰,用天然河砂取代石英和石灰粉,利用本地原料制备RPC,并对钢纤维活性粉末混凝土的抗收缩、抗氯离子渗透、耐磨性、抗渗性等耐久性能进行了研究。结果表明:钢纤维的掺入可以分散毛细管的收缩能力,有效防止局部的应力集中现象,减少RPC裂缝的产生;而且,钢纤维RPC能抗氯离子渗透,并具有良好的耐磨性、耐久性 [8]。

解放军理工大学,为比较增强活性粉末混凝土在弹体作用下的抗侵彻性,对钢筋混凝土、钢丝网和钢纤维分别增强的活性粉末混凝土靶件进行对比炮击试验。结果表明:钢丝网和钢纤维的增强作用较优;但综合考虑经济性和工艺性,优选的抗侵彻材料是钢丝网增强活性粉末混凝土。[9]

4.4 上下层布式钢纤维混凝土

目前,许多学者已经对这种形式的构件的弯拉强度进行了研究,但大多集中于某单一因素的影响分析。针对这一情况,武汉理工大学设计研究院对弯拉强度的各因素之间的关系和最佳因素水平组合进行了探讨。他们主要利用正交实验的方法,选取3种长径比L f / d f : 60,80和100;三种体积率V f : 1.0%,1.5% 和2.0%,即两因素三水平。按正交表L9(34)来考虑各因素之间的关系,并对其进行方差分析,得出结论:当L f / d f=100,V f =1.5%时,最有利于提高层布式钢纤维混凝土的弯拉强度[10]。

参考文献:

[1] 沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[c].北京:中国建材工业出版社, 2004 : 10 — 50.

[2]刘建秀.钢纤维混凝土基本理论[M ].北京:科学技术文献出版社, 1994 : 232 — 243.

[3]毕巧巍,汪辉,项影明.粗纤维轻骨料混凝土的力学性能及抗碳化性能的试验研究[J].工业建筑, 2009(39) : 883—885

[4] 尹久仁,刘小根,张平等.层布式钢纤维混凝土力学行为与断裂性能研究[J].湘潭大学自然科学学报, 2007(29) : 86 — 9 1

[5] 郑秀华,刘晓林,张松榆.陶粒钢纤维混凝土流动性的试验研究[J].哈尔滨建筑大学学报.2000,33(3):71~73.

[6]彭亚萍.陶粒混凝土剪力墙中连梁的抗震性能研究.山东建材学院学

报.2000,14(2):134~137.

[7]曾云川.喷射钢纤维混凝土在小团山隧道的应用[J].云南交通科技.2003,19 (2):36~38.

[8]李忠,黄利东.钢纤维活性粉末混凝土耐久性能研究[J].市政技术.2005,23(4):255~257.

[9]肖燕妮,王耀华等.增强活性粉末混凝土抗侵彻试验[J].解放军理工大学学报(自然科学版).2005,6(3):262~264.

[10] 戴绍斌,宋名海.上下层布式钢纤维混凝土弯拉强度正交试验研究[J].华中科技大学学报(城市科学版).2005,22(2):5~7.

主要性能参数

智能辅助驾驶(ADAS)测试能力构建申请 1 背景 JT/T 1094-2016营运客车安全技术条件要求,9米以上营运车应安装车道偏离预警系统和自动紧急制动系统。GB7258-2016送审稿中要求11米以上公路客车和旅游车客车应装备车道保持系统和自动紧急制动系统。为了满足法规需求和智能汽车未来发展趋势,我司汽车电子课也立项进行自动驾驶技术研究(QC201701030006),第一阶段预计17年底开发完成。 智能辅助驾驶是自动驾驶的低级阶段也是必经之路。现阶段,智能辅助驾驶主要包含FCW(前撞预警)、LDW(车道偏离报警)、AEB (自动紧急制动)LKA(车道保持)ACC (自适应巡航)。从功能的实现到批量商用需要经过软件仿真→硬件在环(HiL)→室内试验室→受控场地测试→开放公路测试这一历程。ADAS技术涉及主动安全,目前还不完全成熟,需要大量测试以提高产品精度和可靠性,为了降低委外测试费用,提高我司ADAS配置装车性能,道路试验课申请分阶段构建ADAS测试能力,包含人员培训和设备采购,本次申请主要是测试设备购买。 2 ADAS测试能力构建计划(2017-2020) 智能辅助驾驶测试设备要求精度高,价格昂贵,考虑到成本因素,建议分阶段构建测试能力,构建计划见表1 表1 ADAS能力构建计划 201 7 年 AD AS 测 试能构建计划 设备测试功能仅满足现阶段法规和研发需求,并考虑未来功能拓展性,能力构建见表2。试验用假车和假人采用自制方式,暂不购买;与汽车电子课协商,目前满足2车测试需求即可,暂不购买第三车设备;用于开放道路测试的移动基站暂不购买。 数据采集与分析用笔记本电脑建议单独购买,要求性能稳定,坚固耐用,抗震防水性好。配置要求:15寸屏幕,酷睿i7处理器,128G以上固态硬盘,500G以上机械硬盘。推 荐型号:tkinkpadT570,Dell的Latitude系列。

(完整word版)纤维增强复合材料

纤维增强复合材料由增强纤维和基体组成。纤维(或晶须)的直径很小,一般在l0μm以下,缺陷较少又小,断裂应变不大于百分之三,是脆性材料,容易损伤、断裂和受到腐蚀。基体相对于纤维来说,强度和模量要低得多,但可经受较大的应变,往往具有粘弹性和弹塑性,是韧性材料。 纤维增强复合材料,由纤维的长短可分为短纤维增强复合材料、长纤维复合材料和杂乱短纤维增强复合材料。纤维增强复合材料由于纤维和基体的不同,品种很多,如碳纤维增强环氧、硼纤维增强环氧、Kevlar纤维增强环氧、Kevlar 纤维增强橡胶、玻璃纤维增强塑料、硼纤维增强铝、石墨纤维增强铝、碳纤维增强陶瓷、碳纤维增强碳和玻璃纤维增强水泥等。(1新型纺织材料及应用宗亚宁主编中国纺织出版社) 纤维增强复合材料的性能体现在以下方面: 比强度高比刚度大,成型工艺好,材料性能可以设计,抗疲劳性能好。破损安全性能好。多数增强纤维拉伸时的断裂应变很小、叠层复合材料的层间剪切强度和层间拉伸强度很低、影响复合材料性能的因素很多,会引起复合材料性能的较大变化、用硼纤维、碳纤维和碳化硅纤维等高性能纤维制成的树脂基复合材料,虽然某些性能很好,但价格昂贵、纤维增强复合材料与传统的金属材料相比,具有较高的强度和模量,较低的密度、纤维增强复合材料还具有独特的高阻尼性能,因而能较好地吸收振动能量,同时减少对相邻结构件的影响。 从本世纪40年代起,复合材料的发展已经历了整整半个世纪。随着技术的提高,应用领域已从航空航天和国防军工扩展到建筑与土木工程、陆上交通运输、船舶和近海工程、化工防腐、电气与电子、体育与娱乐用品、医疗器械与仿生制品以及家庭与办公用品等等各部门。复合材料在建筑上可作为结构材料、装饰材料、功能材料以及用来制造各种卫生洁具和水箱等。 纤维增强复合材料由增强材料和基体材料构成,每部分都有各自的作用,影响复合材料的性能。 作为增强材料的纤维是组成复合材料的主要成分。在纤维增强复合材料中占有相当的体积分数,同时是结构复合材料承受载荷的主要部分。增强纤维的类型、数量和取向对纤维增强复合材料的性能十分重要,它主要影响以下的方面:(1)密度;

纤维增强复合材料嵌入式加固技术

?综 述? 纤维增强复合材料嵌入式加固技术 3 岳清瑞 李庆伟 杨勇新 (国家工业建筑诊断与改造工程技术研究中心 北京 100088) 摘 要:纤维增强复合材料嵌入式加固方法近几年来在国外得到了广泛的研究与应用。介绍了此项技术的研究、应用状况,并详细阐述了嵌入式加固方法的特点、施工方法以及施工中需要注意的问题。嵌入式加固方法施工方便快捷、防火性能好、能防止人为或环境因素的破坏,是一种有效的加固方法,值得在我国进行研究、推广和应用。 关键词:纤维增强复合材料 嵌入式(NS M ) 加固 结构 施工步骤 工程应用 TECHNIQUE OF STRUCTURES STRENGTHENE D WITH NEAR SURFACE MOUNTE D FRP Y ue Qingrui Li Qing wei Y ang Y ongxin (National Engineering Research Center of Industrial Building Diagnosis and Rehabilitation Beijing 100088)Abstract :T echnique of structures strengthened with near surface m ounted (NS M )FRP has been studied and applied widely in abroad recent years.This paper introduces the research and applications of this technology ,discusses the characters of this technique ,construction process ,and s ome problems that merit attention in field application.NS M method is convenient and can prevent structures from fire or destruction of other factors.NS M method is effective and w orthy of being researched and applied in our country. K eyw ords :FRP near surface m ounted (NS M ) strengthening structures construction process field application 3国家863计划项目(编号2001AA336010)、2003年科研院所技术开发研究专项资金项目(编号2003EG 213003)资助。 第一作者:岳清瑞 男 1962年1月出生 教授级高级工程师收稿日期:2003-09-20 我国有大量的建筑物因种种原因需要维修加固,因此,探寻更为有效的加固方法成为土木工程界 的研究热点。近几年来,嵌入式(Near Surface M ount 2ed ,简称NS M )加固方法在国外得到了广泛的研究和 应用。所谓嵌入式加固方法是将加固材料放入结构表面预先开好的槽中,并向槽中注入粘结材料使之形成整体,以此来改善结构性能的方法。在20世纪40年代末瑞典的Asplund [1] 曾用此项技术加固瑞典 一座桥梁。他把钢筋置于在混凝土结构表面所开的槽中,在槽中灌入水泥浆,然后用喷浆混凝土覆盖进行表面处理。然而,由于水泥浆的粘结性能不是很好,所以加固部分与原结构的粘结效果不太好,从而影响了加固效果。正是由于材料的限制,使得这项技术在当时没有推广。随着材料产业日新月异的发展,新型材料不断出现,嵌入式方法也逐渐发展起来。20世纪60年代,研究人员开始在槽中注入环氧树脂来粘结钢筋,然而钢筋的易锈蚀性使得表面需要较厚的保护层 [2] 。当FRP 材料出现后,嵌入式 加固方法才真正显示出了其优良的加固效果。研究 人员开始采用FRP 筋或板带代替钢筋应用于嵌入式加固方法中,与钢筋相比,其优势不言自明:FRP 材料轻质高强,施工方便,省时省力;耐腐蚀,不象钢筋那样需要较厚的保护层;形状、规格可以根据实际工程的要求定做。 嵌入式加固方法近年来在国外工程中得到较多的应用,尤其是在混凝土结构加固工程中的应用尤其广泛。Hakan Nordin [2] 于1999年秋天用嵌入式方法加固了瑞典一座桥梁的桥板,材料为CFRP 板带(规格为35mm ×5mm ),工程开槽尺寸为40mm ×8mm ,加固效果令人十分满意。Alkhrdaji [3] 等人在 1998年对美国正在使用中的J -857桥梁进行加固, 其中有3块混凝土实心板是用嵌入式方法加固,应用CFRP 砂磨筋,直径约11mm ,开槽的尺寸为:长约6m ,宽约14mm ,深约19mm 。施工完毕后,经试验测 1 Industrial C onstruction V ol 134,N o 14,2004 工业建筑 2004年第34卷第4期

传感器的主要参数特性

传感器的主要参数特性 传感器的种类繁多,测量参数、用途各异.共性能参数也各不相同。一般产品给出的性能参数主要是静态特性利动态特性。所谓静态特性,是指被测量不随时间变化或变化缓慢情况下,传感器输出值与输入值之间的犬系.一般用数学表达式、特性曲线或表格来表示。动态特性足反映传感器随时间变化的响应特性。红外碳硫仪动恋特性好的传感器,其输出量随时间变化的曲线与被测量随时间变化的曲线相近。一般产品只给出响应时间。 传感器的主要特性参数有: (1)测量范围(量程) 量程是指在正常工种:条件下传感器能够测星的被测量的总范同,通常为上限值与F 限位之差。如某温度传感器的测员范围为零下50度到+300度之间。则该传感器的量程为350摄氏度。 (2)灵敏度 传感器的灵敏度是指佑感器在稳态时输出量的变化量与输入量的变化量的比值。通常/d久表示。对于线性传感器,传感器的校准且线的斜率就是只敏度,是一个常量。而非线性传感器的灵敏度则随输入星的不同而变化,在实际应用巾.非线性传感器的灵敏度都是指输入量在一定范围内的近似值。传感器的足敏度越高.俏号处理就越简单。 (3)线性度(非线性误差) 在稳态条件下,传感器的实际输入、输出持件曲线勺理想直线之日的不吻合程度,称为线性度或非线性误差,通常用实际特性曲线与邵想直线之司的最大偏关凸h m2与满量程输出仪2M之比的百分数来表示。该系统的线性度X为 (4)不重复性 z;重复性是指在相同条件下。传感器的输人员技同——方向作全量程多次重复测量,输出曲线的不一致程度。通常用红外碳硫仪3次测量输11j的线之间的最大偏差丛m x与满量程输出值ym之比的百分数表示,1、2、3分别表示3次所得到的输出曲线.它是传感器总误差中的——项。 (5)滞后(迟滞误差) 迟滞现象是传感器正向特性曲线(输入量增大)和反向特性曲线(输入量减小)的不重合程度,通常用yH表示。

钢纤维混凝土在钢筋混凝土

钢纤维增强钢筋网混凝土(SFRC) 在桥面铺装改造工程中的应用 李永鳞 (江苏扬子大桥股份有限公司江苏靖江 214500) 摘要:桥面铺装层常被设计和施工所忽视,往往造成桥面铺装开裂等病害,引起桥梁使用质量下降,成为桥梁结构安全隐患,降低使用寿命。钢纤维混凝土作为桥面铺装材料及铺装层的修复材料是目前国内外纤维混凝土较为成功的领域,江阴大桥南接线引桥采用剪切异型钢纤维混凝土修复桥面铺装,成功解决了桥面铺装开裂、渗水等问题。本文介绍了剪切异型钢纤维混凝土的优点、施工要求和使用效果。 关键词:钢纤维桥面铺装改造应用 1 钢筋混凝土桥梁桥面铺装存在的问题 桥面铺装层不是桥梁的主体结构,因而常被设计和施工所忽视,所以桥面铺装经常出现混凝土强度不足,发生裂缝、表面蜂窝、麻面等病害;同时,道路超载现象屡禁不止,桥面铺装层在重车荷载作用下容易开裂、破碎,引起混凝土渗水,腐蚀主梁混凝土,锈蚀钢筋,从而使桥梁的使用质量下降,使用寿命降低,严重的甚至造成桥梁的破坏。桥面铺装层一旦损坏,修复非常麻烦,所以重视铺装结构,采用高质量的桥面铺装材料,保证桥面铺装的良好使用状态非常重要。 2 钢纤维增强钢筋网混凝土的优点、作用 钢纤维混凝土作为桥面铺装材料以及铺装层的修复材料也是目前国内外纤维混凝土较为成功的领域。钢纤维增强钢筋网混凝土是由钢筋、钢纤混凝土复合而成的高性能混凝土材料,简称为SFRC,研究表明,钢纤维混凝土具有比钢筋混凝土更为优良的抗拉性能、抗裂度,其耐磨性能,其韧性和疲劳性能为同等级普通混凝土的数倍,在公路、机场、桥梁、建筑等工程领域得到广泛的应用。大量工程实践证明,钢纤维增强钢筋混凝土大大提高了桥面铺装的抗裂度、耐磨耐久性,延长桥梁的使用寿命。采用钢纤维增强钢筋混凝土作为桥面铺装对于减少桥面铺装病害效果明显,有着良好的经济效益。 2.1钢纤维混凝土的力学强度 2.1.1抗压强度 钢纤维混凝土虽受压强度较普通混凝土增加不明显,但受压韧性却大幅度提高了。这是由于钢纤维的存在,增大了试件的压缩变形,提高了受压破坏时的韧性。从宏观上呈现,钢纤维混凝土受压破坏时,没有明显的碎块或崩落,仍保持这整体性。 2.1.2抗剪强度 钢纤维混凝土具有优异的抗剪性能,对提高钢筋混凝土结构抗剪能力有重要意义。通常在钢筋混凝土的构件中,其抗剪承载力主要靠箍筋和弯起钢筋承担,这些筋多了,不仅要提高工程投资,而且施工很不方便,尤其对薄壁、抗震结构和复杂形状的特种结构,问题则尤为突出。因此采用钢纤维混凝土是提高结构抗剪能力的有效途径。

纤维增强复合材料筋蠕变性能试验方法

附录A纤维增强复合材料筋蠕变性能试验方法 A.1.1 1 范围 本试验方法适用于测定结构用纤维增强复合材料筋的蠕变性能,包括应变-时间关系,荷载水平-蠕变断裂时间曲线和蠕变断裂应力。 A.1.2 2 仪器 A.1.3 2.1 试验机 蠕变试验机或试验装置,应满足以下要求: ——试样的最大拉伸荷载应在试验机加载能力的15%-85%之间。 ——试验机夹具之间的最小长度应符合试件的基本要求。 ——能够提供稳定的恒定荷载。 A.1.4 2.2 应变测试装置 用于测量筋材伸长的引伸计或应变片应该能够记录在计测范围内的所有变化。 A.1.5 2.3 数据采集系统 系统应能以最小速率为每秒记录两次连续记录荷载、应变和位移。荷载、应变和位移的分辨率分别应不大于100N、10×10-6和0.001mm。 A.1.6 3 试件制备 A.1.7 3.1 试件选择 蠕变试验每组3个试件,其他试件选择要求与拉伸试验一致。 A.1.8 3.2 原始标距的标记和测量 引伸计或应变片应安装在试件的中部,距锚固端至少8倍试件计算直径。 A.1.9 4 试验条件 试验条件与拉伸试验一致。 A.1.10 5 试验方法 蠕变试验的开始时间以试验荷载达到既定蠕变试验恒定荷载的时刻计算。蠕变试验荷载应取试件极限荷载的0.2到0.8倍,在荷载达到既定荷载前发生破坏的试件为无效时间,若连续3个试件出现该情况,则应考虑降低恒定荷载。为了最终形成蠕变断裂应力预测曲线,蠕变断裂试验应至少包含3种不同的恒定荷载水平的试验组,蠕变断裂时间应分布在1~10小时,10~100小时和100~1000小时,且应包含至少1个在1000h内不发生破坏的试验组。

光敏三极管的主要技术特性及参数

光敏三极管的主要技术特性及参数 1、光谱特性 光敏三极管由于使用的材料不同,分为错光敏三极管和硅光敏三极管,使用较多的是硅光敏三极管。光敏三极管的光谱特性与光敏二极管是相同的。 2、伏安特性 光敏三极管的伏安特性是指在给定的光照度下光敏三极管上的电压与光电流的关系。光敏三极管的伏安特性曲线如图下图所示。 3、光电特性 与光照度之间的关光敏三极管的光电特性反映了当外加电压恒定时,光电流I L 系。下图给出了光敏三极管的光电特性曲线光敏三极管的光电特性曲线的线性度不如光敏二极管好,且在弱光时光电流增加较慢。 4、温度特性 温度对光敏三极管的暗电流及光电流都有影响。由于光电流比暗电流大得多,在一定温度范围内温度对光电流的影响比对暗电流的影响要小。下两图中分别给出了光敏三极管的温度特性曲线及光敏三极管相对灵敏度和温度的关系曲线。

5、暗电流I D 在无光照的情况下,集电极与发射极间的电压为规定值时,流过集电极的反向漏电流称为光敏三极管的暗电流。 6、光电流I L 在规定光照下,当施加规定的工作电压时,流过光敏三极管的电流称为光电流,光电流越大,说明光敏三极管的灵敏度越高。 7、集电极一发射极击穿电压V CE 在无光照下,集电极电流IC为规定值时,集电极与发射极之间的电压降称为集电极一发射极击穿电压。 8、最高工作电压V RM 在无光照下,集电极电流Ie 为规定的允许值时,集电极与发射极之间的电压降称为最高工作电压。 9、最大功率P M 最大功率指光敏三极管在规定条件下能承受的最大功率。 10、峰值波长λp 当光敏三极管的光谱响应为最大时对应的波长叫做峰值波长。 11、光电灵敏度 在给定波长的入射光输入单位为光功率时,光敏三极管管芯单位面积输出光电流的强度称为光电灵敏度。 12、响应时间 响应时间指光敏三极管对入射光信号的反应速度,一般为1 X 10-3--- 1 X 10-7S 。 13、开关时间 1.脉冲上升时间t τ:光敏三极管在规定工作条件下调节输入的脉冲光,使光敏三极管输出相应的脉冲电流至规定值,以输出脉冲前沿幅度的10% - 90% 所需的时间。 2.脉冲下降时间t :以输出脉冲后沿幅度的90% - 10% 所需的时间。 t 3.脉冲延迟时间t :从输入光脉冲开始到输出电脉冲前沿的10% 所需的时间。 d 4.脉冲储存时间t :当输入光脉冲结束后,输出电脉冲下降到脉冲幅度的90% 所 s 需的时间。

钢纤维及钢纤维混凝土的技术及规定

钢纤维及钢纤维混凝土知识 混凝土用纤维的分类: 所用纤维按其材料性质可分为:①金属纤维。如钢纤维(钢纤维混凝土)、不锈钢纤维(适用于耐热混凝土)。②无机纤维。主要有天然矿物纤维(温石棉、青石棉、铁石棉等)和人造矿物纤维(抗碱玻璃纤维及抗碱矿棉等碳纤维)。③有机纤维。主要有合成纤维(聚乙烯、聚丙烯、聚乙烯醇、尼龙、芳族聚酰亚胺等)和植物纤维(西沙尔麻、龙舌兰等),合成纤维混凝土不宜使用于高于60℃的热环境中。 钢纤维的性能和规格: 钢纤维是以切断细钢丝法、冷轧带钢剪切、钢锭铣削或钢水快速冷凝法制成长径比(纤维长度与其直径的比值,当纤维截面为非圆形时,采用换算等效截面圆面积的直径)为40~80的纤维。 因制取方法的不同钢纤维的性能有很大不同,如冷拔钢丝拉伸强度为800-2000MPa、冷轧带钢剪切法拉伸强度为600-900MPa、钢锭铣削法为700MPa;钢水冷凝法虽为380MPa,但是适合生产耐热纤维。 为增强砂浆或混凝土而加入的、长度和直径在一定范围内的细钢丝。常用截面为圆形的长直钢纤维,其长度为10~60毫米,直径为0.2~0.6毫米,长径比为50~100。为增加纤维和砂浆或混凝土的界面粘结,可选用各种异形的钢纤维,其截面有矩形、锯齿形、弯月形的;截面尺寸沿长度而交替变化的;波形的;圆圈状的;端部放大的或带弯钩的等。 钢纤维的规格:

钢纤维是当今世界各国普遍采用的混凝土增强材料。钢纤维混凝土是在普通混凝土中掺入乱向分布的短钢纤维所形成的一种新型的多相复合材料。这些乱向分布的钢纤维能够有效地阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,显著地改善了混凝土的抗拉、抗弯、抗冲击及抗疲劳性能,具有较好的延性。 纤维混凝土的作用: 制造纤维混凝土主要使用具有一定长径比(即纤维的长度与直径的比值)的短纤维。但有时也使用长纤维(如玻璃纤维无捻粗纱、聚丙烯纤化薄膜)或纤维制品(如玻璃纤维网格布、玻璃纤维毡)。其抗拉极限强度可提高30~50%。 纤维在纤维混凝土中的主要作用,在于限制在外力作用下水泥基料中裂缝的扩展。在受荷(拉、弯)初期,当配料合适并掺有适宜的高效减水剂时,水泥基料与纤维共同承受外力,而前者是外力的主要承受者;当基料发生开裂后,横跨裂缝的纤维成为外力的主要承受者。 若纤维的体积掺量大于某一临界值,整个复合材料可继续承受较高的荷载并产生较大的变形,直到纤维被拉断或纤维从基料中被拨出,以致复合材料破坏。与普通混凝土相比,纤维混凝土具有较高的抗拉与抗弯极限强度,尤以韧性提高的幅度为大。 钢纤维主要用于制造钢纤维混凝土,任何方法生产的钢纤维都能起到强化混凝土的作用。 纤维的增强效果主要取决于基体强度(fm),纤维的长径比(钢纤维长度l与直径d的比值,即I/d),纤维的体积率(钢纤维混凝土中钢纤维所占体积百分数),纤维与基体间的粘结强度(τ),以及纤维在基体中的分布和取向(η)的影响。当钢纤维混凝土破坏时,大都是纤维被拔出而不是被拉断,因此改善纤维与基体间的粘结强度是改善纤维增强效果的主要控制因素之一。 钢纤维混凝土的力学性能: 加入钢纤维的混凝土其抗压强度、拉伸强度、抗弯强度、冲击强度、韧性、冲击韧性等性能均得到较大提高。 1、具有较高的抗拉、抗弯、抗剪和抗扭强度 在混凝土中掺入适量钢纤维,其抗压强度提高10%~80%(C50以上混凝土提高幅度显著),抗拉强度提高50%~100%,抗弯强度提高50%~80%,抗剪强度提高50%~100%。试验表明,长度为5~15mm,长径比为10~30的超短钢纤维抗压强度提高幅度较短纤维大得多,但抗拉强度、抗折强度较短纤维低得多。 2、具有卓越的抗冲击性能 材料抵抗冲击或震动荷载作用的性能,称为冲击韧性,在通常的纤维掺量下,冲击抗压韧性可提高2~7倍,冲击抗弯、抗拉等韧性可提高几倍到几十倍。 3、收缩性能明显改善 在通常的纤维掺量下,钢纤维混凝土较普通混凝土的收缩值降低

纤维增强复合材料(FRP) 在工程结构加固中的应用

纤维增强复合材料(FRP)在工程结构加固中的应用 肖萍 (福建信息职业技术学院福州,350019) 摘要:介绍FRP这种新型高性能复合材料的种类、性能特点及对钢筋混凝土构件的加固方式,并 介绍了FRP复合材料在土木工程不同领域的应用发展,展望了FRP复合材料在今后土木工程领域的广 阔发展前景。 关键词: FRP 复合材料;材料性能;钢筋混凝土构;修复加固 随着社会科学技术的进步,土木工程结构学科的发展,在很大程度上得益于性质优异的新材料、新技术的应用和发展,而纤维增强复合材料(fiber reinforced polymer 简称FRP)以其优异的力学性能及适应现代工程结构向大跨、高耸、重载、轻质发展的需求,正被越来越广泛地应用于桥梁工程、各类民用建筑、海洋工程、地下工程中,受到结构工程界广泛关注。 1 FRP复合材料的种类 FRP复合材料是由纤维材料与基体材料按一定地比例混合,经过特别的模具挤压、拉拔而形成的高性能型材料。目前工程结构中常用的FRP主材主要有碳纤维(CGRP)、玻璃纤维(GFRP)、及芳纶纤维(AFRP),这些材料性能如表1所示,其材料形式主要有片材(纤维布和板)、棒材(筋材和索材)及型材(格栅型、工字型、蜂窝型等)。 1.1 在FRP片材中,纤维布是目前应用最为广泛的形式,它由连续的长纤维编织而成,通常是单向纤维布,使用前布浸润树脂,在采用FRP布加固时布的形状可以根据被加固结构的外形随意调整,加上它本身没有刚度,运输方便,较适用于梁与柱的抗剪、抗弯加固,柱与节点的抗震加固。但由于FRP布的厚度较薄,需多层粘贴才能满足要求,所以施工工艺较繁杂,操作较为困难。而FRP板则可以承受纤维方向上的拉和压,所以FRP板较适用于梁板柱的抗弯加固和抗剪加固。1.2 在FRP棒材中,FRP筋是采用单向成型工艺,将单向长纤维与树脂混合为棒材;而FRP索是将连续的长纤维单向编织,再用少量树脂浸润固化或不用树脂固化而制成的索状FRP制品。FRP 筋和FRP索可以在钢筋混凝土代替钢筋和预应力筋,特别是FRP筋用作预应力筋时,它的高强度、低弹性模量和抗腐蚀性对结构都十分有力。同时它们还可用于大跨度支撑结构、张拉结构和悬挑结构,且一般可节约劳动力和大量后期的维护费用。但工程造价一般高于采用钢筋的方案。 1.3 在FRP型材中,FRP格栅型材可代替钢筋网或钢筋笼,直接用作结构中作为楼面或夹心板等构件,同时FRP其他型材也可用于管道、桩基等尺寸较大或形状复杂的结构构件中。 2 FRP复合材料的基本力学性能和特点: 2.1 抗拉强度高,FRP的抗拉强度均明显高于钢筋,与高强钢丝抗拉强度差不多,一般是钢筋的两倍甚至达十倍。但FRP材料在达到抗拉强度前,几乎没有塑性变形产生,受拉时应力-应变呈线弹性上升直至脆断,因此FRP复合材料在与混凝土结构共同作用的过程中,往往不是由于FRP 材料被拉断破坏,而是由于FRP-混凝土界面强度不足导致混凝土结构界面被剥离破坏,所以,FRP-混凝土界面粘结性能问题成为今后工程应用的一个重点和难点。 2.2 FRP复合材料热膨胀系数与混凝土相近,这样当环境温度发生变化时,FRP与混凝土协调工作,两者间不会产生大的温度应力。 2.3 与钢材相比,大部分FRP产品弹性模量小。约为普通钢筋的25%~75%。因此,FRP结构的设计通常由变形控制。 2.4 FRP的抗剪强度低,其强度仅为抗拉强度的5%~20%,这使得FRP构件在连接过程中需要研制专门的锚具、夹具。也使得FRP构件的适度成为研究突出的问题。

长玻纤增强PET复合材料的力学性能研究_姜润喜

长玻纤增强PET复合材料的力学性能研究y 姜润喜1,周洪梅2,韩克清2,王 恒1,余木火2 (1.中国石化仪征化纤股份有限公司技术中心,江苏仪征211900; 2.东华大学纤维材料国家重点实验室,上海200051) 摘要:采用自制的浸润装置,以PET浸渍长波纤,经切粒后得到长度为6mm的长纤维增强PET预浸料切片,经一定温度热处理,可得到长纤增强PET复合材料。研究了注塑样条中玻纤含量对其力学性能及玻纤长度分布的影响,并采用SE M观察了长玻纤增强PE T注塑样条的断面形貌。结果表明,复合材料力学性能随玻璃纤维含量的提高均有不同程度的提高,当玻纤的质量分数在40%~50%时,力学性能基本达到最佳,且由本方法制备的长玻纤增强PET复合材料的力学性能已达到并超过了国外同类产品的水平。 关键词:长玻璃纤维;PE T复合材料;力学性能 中图分类号:TQ323 4+1 文献标识码:A 文章编号:1005-5770(2005)07-0017-03 S tudy on Mechanical Properties of Long Glass Fiber Reinforced PET Composite JIANG Run-xi1,ZHOU Hong-mei2,HAN Ke-qing2,W ANG Heng1,YU Mu-huo2 (1.Technical Center of Yizheng Chemical Fibre Co ,Ltd ,SINOPEC,Yizheng211900,China; 2.State Key Lab of Chemical Fibers and Polymer Materials,Donghua Universi ty,Shanghai200051,China) Abstract:Long glass fibre reinforced PE T composites(LGF/PE T)produced by a ne w melt impregnation pro-cess were injection molded to testing bars,in which long glass fibers were impregnated with PE T by a sel-f made im-pregnator,and the impre gnated fibers were pelleted into LGF/PE T flake materials with a length of6mm The effect of the glass fibre content in the testing bar on the mechanical properties and the glass fibre length distribution were studied,and SE M was used to investigating the section surface of the testing bars The results showed that the me-chanical properties of LGF/PE T composites increased with the increase of the glass fibre content,and the mechan-i cal properties were the best when the mass fraction of glass fibre was between40%to50%,the mechanical proper-ties of the LGF/PET composites produced by the ne w melt impregnation method had attained to and e xceeded those of the sa me products from other countries Keywords:Long Glass Fiber;PE T Composite;Mechanical Properties 随着纤维增强复合材料的发展,热塑性复合材料由于具有较高的环境稳定性、高冲击强度、可回收性等优点受到日益广泛的关注,其中短纤增强热塑性复合材料已商品化且应用十分广泛。但目前商品化的短纤增强复合材料在抗冲击性能等方面仍显不足,因此复合材料的应用范围受到一定的限制。而长玻纤增强复合材料的出现,不仅可以提高玻纤含量,而且可以使复合材料的性能得到大幅提高。但传统的制备长玻纤增强热塑性复合材料的工艺[1,2],如熔融浸渍法、悬浮液浸渍法、溶液浸渍法、流态化床浸渍法等以及一些新型的生产方法,如反应注射拉挤成型法等[3],都存在一些缺点。本文针对传统热塑性复合材料生产工艺的缺陷,采用新的熔融浸渍法制备了长玻纤增强PE T复合材料,对注塑样品的力学性能及界面性能进行了研究。 1 实验部分 1 1 长玻纤增强PET切片的制备 采用自制的长玻璃纤维浸润装置,以PE T树脂浸渍长玻璃纤维,经切粒后得到长度为6mm的长玻璃纤维增强PE T预浸料切片,然后在一定温度下热处理。 1 2 长玻纤增强PET切片的注塑成型 将上述热处理的切片按表1的工艺条件注塑成型,注塑后的样条置于干燥器中待用。 17 第33卷第7期2005年7月 塑料工业 C HINA PLASTICS INDUS TRY y 作者简介:姜润喜,男,1956年生,高级工程师,从事聚酯改性结构性能研究和分析检测技术与管理工作,已在发表论文20余篇。wangheng1211@163 com

钢纤维混凝土配合比

C50钢纤维混凝土配合比 1,设计依据及参考文献 《普通混凝土配合比设计规程》JGJ55-2000(J64-2000) 《公路桥涵施工技术规范》JTJ041-2000 《国内公路招标文件范本》之第二卷技术规范(1) 《混凝土配合比设计计算手册》——刘长俊主编,辽宁科学技术出版社 2,确定钢纤维掺量: 选定纤维掺入率P=1.5%, T0=(78.67*P)kg=78.67*1.5=118kg; 3,确定水灰比 取W/C=0.45 (水灰比一般控制在0.40-0.53); 4,确定用水量: 取W=215kg(用水量一般控制在180-220kg),施工中采用掺用UNF-2A型高效减水剂,掺量为水泥用量的1%,减水率达10%,但考虑钢纤维混凝土的和易性较差,且施工中容易结团,故在试配中不考虑其减水效果,在试拌过程中观察其坍落度及施工性能。 5,计算水泥用量: C O=W O/(W/C)=215/0.45=478kg; 6,确定砂率: 取S P=65%(从强度和稠度方面考虑,砂率在60%-70%之间); 7,计算砂石用量: 设a=2 V S+G=1000L-[(W O/ρw+C O/ρc+T O/ρt+10L*a)] =1000L-[(215/(1/L)+478/(3.1/L)+118/(7.85/L)+10L*2)] =1000L-404L=596Lkg; S O = V S+G * S P * ρs=596 * 0.65 * 2.67 = 1034kg; G O = V S+G * (1-S P)*ρs = 596*0.35*2.67kg/L=557kg;

8,初步配合比: C O:S O:G O:T O:W O:W外= 478 : 1034 : 557 : 118 : 215 : 4.78 kg/m3 = 1: 2.16 : 1.17 : 0.25: 0.45 : 1% 9、混凝土配合比的试配、调整与确定: 试拌材料用量为: 水泥:砂:碎石:钢纤维:水:减水剂 = 11: 23.76: 12.87:2.75:4.95:0.11 kg; 拌和后,坍落度为10mm,能符合设计要求。观察拌和物施工性能: 棍度:中;保水性:少量;含砂:多; 拌和物在拌和过程中比普通砼困难,较难搅拌,但经机械振捣易密实。 6、经强度检测(数据见试表),28天抗压符合试配强度要求,故确定该配合比为基准配合比,即: 水泥: 砂: 碎石: 钢纤维: 水: 减水剂 = 11 : 23.76 : 12.87 : 2.75 : 4.95 : 0.11 kg = 1 : 2.16 : 1.17 : 0.25 : 0.45 : 1% = 478 : 1034 : 557 : 118 : 215 : 4.78kg/m3

纤维增强聚丙烯复合材料应用

纤维增强聚丙烯复合材料及其在汽车中的应用 玻璃纤维毡增强热塑性片材(Glass Mat Reinforced Thermoplastics,简称GMT)作为先期研发应用成功的一种热塑性复合材料,曾对汽车工业采用新材料产生了积极而又深远的影响,至今仍方兴未艾。近年来,车用纤维增强聚丙烯复合材料的研究和应用又有了新的发展——自增强聚丙烯(SR-PP)和长玻纤增强聚丙烯(LGFPP)的开发应用成功使其成为汽车工业中的新宠。1 N# H* U$ H9 Z 在汽车塑料件所用塑料材料中,聚丙烯是用量最大、发展最快的塑料品种,其原因不仅是由于聚丙烯材料本身具有密度小、成本低、产量大、性价比高、化学稳定性好、易于加工成型和可回收利用等突出特点,而且还因为该种材料可通过共聚、共混、填充增强等方法得到改性,因而可适合不同的汽车零件的使用性能要求。 目前可用于汽车零部件的聚丙烯材料已有多个牌号的品种,可分别作为汽车保险杠、仪表板、方向盘、车门护板、发动机冷却风扇以及车身暖风组件等多种零部件的材料。尽管如此,为了提供高性能品种以满足高品质汽车在美观、舒适、安全、防腐以及轻量化方面提出的更高要求,人们仍然在不断地进行着聚丙烯材料的改性和应用方面的研究。自增强聚丙烯复合材料8 N" g: f: K+ E- N% T0 o/ d 自增强聚丙烯复合材料(Self-Reinforced Polypropylene Composite,简称SR-PP)是一种由高定向性的聚丙烯纤维和各向同性的聚丙烯基材组成的100%聚丙烯片材。SR-PP是继GMT之后国外最新开发应用的一种热塑性复合材料,它由英国Leads大学研制成功。2002年初,Amoco纤维有限公司在德国Gronau建立了第一条年产5000t SR-PP的生产线,其生产的产品目前主要用作车底遮护板。 自增强聚丙烯片材加工制备工艺的要素可概述为:将高模量的聚丙烯带排列起来,在适宜的温度和压力条件下,使每条带的薄层表皮熔融在一起,在冷却过程中,这种熔融的材料凝固或重结晶,从而粘合成为一个整体结构。由于生成的热压实片材由同一种聚合物材料所组成,再加上物相之间分子的连续性,使片材中纤维/基材间有着优异的粘合性。此外,由于每条定向带表面膜层的熔融效应,从而克服了GMT材料中增强玻璃纤维需要浸润处理的问题。自增强聚丙烯片材热压实制备工艺如图1所示。 国外有关专家在对自增强聚丙烯复合材料的性能进行研究后指出,SR-PP片材的刚性和强度与GMT材料很接近(弹性模量均在5GPa左右),但较GMT材料轻20%~30%。此外,与随意纤维方向排布的GMT片材和NMT(天然纤维增强聚丙烯)片材不同的是,SR-PP片材生产中使用的编织纤维结构使整个零件具有均匀一致的机械性能,可将加工零件的厚度进一步减薄20%~30%,这样就可以使成品的总重量减轻50%左右。表1列出了SR-PP、GMT和均聚PP三种材料的性能对比。

玻纤增强复合材料

玻纤增强ABS复合材料 金敏善,李贺,曲凤书,鲁建春 中国石油吉林石化公司研究院,吉林,132021, Email: sunnyjin327@https://www.360docs.net/doc/7415260156.html, 关键词:苯乙烯-丙烯腈-丁二烯三元共聚物玻璃纤维玻纤增强复合材料ABS是一种以聚丁二烯链为骨架的苯乙烯和丙烯腈的接枝共聚物与苯乙烯、丙烯腈共聚物共混而成的多相聚合物。ABS以其突出的综合性能如:良好的耐化学腐蚀性和加工流动性以及较高的表面硬度、耐热性、韧性、抗冲击性能和刚性已被广泛地用于制作各种机械、仪器设备的零部件,及电器、仪表的外壳上,但是,ABS较大的成型收缩率给其制品的加工和后组装带来了一定的难度。 玻纤增强复合材料,是以聚合物为基体,以玻纤为增强材料而制成的复合材料。它综合了塑料基体和玻纤的综合性能,已成为一种具有优越性能和广泛用途的工程材料。玻纤增强的复合材料还可以按纤维的长度分类,分为长纤维复合材料和短纤维复合材料。玻璃纤维按化学组分可分为无碱铝硼硅酸盐(简称无碱纤维)和有碱无硼硅酸盐(简称中碱纤维)。玻纤增强塑料具有比强度高、耐腐蚀、隔热、成型收缩率小等优点,此外利用玻纤增强可以使塑料材料的拉伸性能大幅度地提高[1~6]。本文以通用ABS树脂为基体,利用短切玻璃纤维(事先用硅烷偶联剂进行表面处理)对其进行共混改性,并对复合材料的各项性能与玻纤的含量,玻纤的长径比及螺杆挤出温度的关系进行较详细的研究和讨论。 ABS/玻纤复合材料的弯曲性能随高模量玻纤含量的增加而明显提高,而ABS/玻纤复合材料的缺口冲击性能随玻纤含量的增加而迅速降低。这是由于,随着玻纤含量的增加复合材料的缺陷也增多,从而导致材料的应力集中点大大增加,另一方面,当受到外力冲击时裂纹可以沿着玻纤迅速扩大,所以随着玻纤含量的增加复合材料的缺口冲击性能显著降低。此外,随着玻纤含量的增加,材料中能够吸收大量冲击能的橡胶粒子浓度也相对降低,所以材料的缺口冲击性能进一步降低(Fig.1.)。当玻纤含量达到30%时,复合材料的熔融指数由空白ABS 树脂的18(g/10min)下降到10(g/10min)以下(Fig.2.)。这是由于随着玻纤含量的增加,玻纤与玻纤之间,玻纤与高聚物分子之间,以及玻纤之间的高聚物分子之间的内摩擦阻力变大,导致聚合物的分子链之间的相对运动困难,所以在同

钢纤维混凝土

钢纤维混凝土 随着国民经济建设和公路交通事业的飞速发展,城市道路和国道干线公路上的车辆荷载及密度越来越大,行驶速度越来越快,致使路面的损坏也日趋严重起来。特别是对损坏的水泥混凝土路面而言,它不仅翻修投资大,且施工周期较长,严重影响交通畅通及行车安全。如用普通水泥混凝土修复路面虽有强度高,板块性好,有一定的抗磨性及承受气象作用的耐久性好等特点,但它的最大缺陷是脆性大、易开裂、抗温性差,路面板块容易受弯折而产生断裂,所以就要求路面面板应有足够的抗弯、抗拉强度和厚度。用钢纤维混凝土修筑路面,就是意将钢纤维均匀地分散于基体混凝土中(与混凝土一起搅拌),并通过分散的钢纤维,减小因荷载在基体混凝土引起的细裂缝端部的应力集中,从而控制混凝土裂缝的扩展,提高整个复合材料的抗裂性。同时由于混凝土与钢纤维接触界面之间有很大的界面粘结力,因而可将外力传到抗拉强度大、延伸率高的纤维上面,使钢纤维混凝土作为一个均匀的整体抵抗外力的作用,显着提高了混凝土原有的抗拉、抗弯强度和断裂延伸率。特别是提高了混凝土的韧性和抗冲击性。 实践证明,采用钢纤维混凝土这一新型高强复合材料对路面修理,既可提高路面的抗裂性、抗弯曲、耐冲击和耐疲劳性,而且可改善路面的使用性能,延长使用寿命从而减少老路开挖,对节省工程造价等具有重要的经济效益和社会效益;为提高道路补强与改造提供了良好的途径。 1、基本要求 1.1钢纤维混凝土材料 钢纤维混凝土就是在一般普通混凝土中掺配一定数量的短而细的钢纤维所组成的一种新型高强复合材料。由于钢纤维阻滞基体混凝土裂缝的产生,不但具有普通混凝土的优良性能,而且具有良好的抗折、抗冲击、抗疲劳以及收缩率小、韧性好、耐磨耗能力强等特性。可使路面厚度减薄50%以上,缩缝间距可增至15m~30m,不用设胀缝和纵缝。钢纤维混凝土用钢纤维类型有圆直型、熔抽型和剪切型钢纤维。其长度分为各种不同规格,最佳长径比为40~70,截面直径在0.4mm~0.7mm范围内,抗拉强度不低于380mpa.在施工时钢纤维在混凝土中的掺入量为1.0%~2.0%(体积比),但最大掺量不宜超过2.0%。水泥采用425#~525#普通硅酸盐水泥,以保证混合料具有较高的强度和耐磨性能。钢纤维混凝土用的粗骨料最大粒径为钢纤维长度的23.不宜大于20mm.细集料采用中粗砂,平均粒径0.35mm~ 0.45mm,松装密度1.37g/cm3.砂率采用45%~50%。 1.2钢纤维混凝土配合比 钢纤维混凝土混合料配合比的要求首先应使路面厚度减薄,其次是保证钢纤维混凝土有较高的抗弯强度,以满足结构设计对强度等级的要求即抗压强度与抗折强度,以及施工的和易性。钢纤维混凝土配合比设计基本按以下步骤进行。 (1)根据强度设计值以及施工配制强度提高系数,确定试配抗压强度与抗折强度;钢纤维混凝土抗折强度设计值的确定:fftm=ftm(1+atmpflf/df) 式中fftm――钢纤维混凝土抗折强度设计值;ftm――与钢纤维混凝土具有相同的配合材料、水灰比和相近稠度的素混凝土的抗折强度设计值;atm――钢纤维对抗折强度的影响系数(试验确定);pf――钢纤维体积率,%;lf/df――钢纤维长径比,当ftm<6.0n/mm2时,可按表1采用。 (2)根据试配抗压强度计算水灰比;

纤维增强水泥基复合材料

纤维增强型水泥基复合材料 一、纤维增强型水泥基复合材料的概述 纤维增强型水泥基复合材料是以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体,以不连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。 普通混凝土是脆性材料,在受荷载之前内部已有大量微观裂缝,在不断增加的外力作用下,这些微裂缝会逐渐扩展,并最终形成宏观裂缝,导致材料破坏。 加入适量的纤维之后,纤维对微裂缝的扩展起阻止和抑制作用,因而使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。 二、纤维增强型水泥基复合材料的力学性能 在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。 ? 2.1 抗拉强度 ?在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材料的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。 ? ? 2.2 抗裂性

在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生; 在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。 ? 2.3 抗渗性 纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。 2.4 抗冲击及抗变形性能 在纤维增强水泥基复合材料受拉(弯)时,即使基体中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。 2.5 抗冻性 纤维可以缓解温度变化而引起的水泥基复合材料内部应力的作用,从而防止水泥固化过程中微裂纹的形成和扩散,提高材料的抗冻性;同时,水泥基复合材料抗渗能力的提高也有利于其抗冻能力的提高。 ?纤维的纤维掺量对混凝土强度的影响很大 ?合成纤维可有效地控制由混凝土内应力产生的裂缝,使混凝土早期收缩裂缝减少50~90%,显著提高混凝土的抗渗性和耐久性,使混凝 土内钢筋锈蚀时间推迟2.5倍。除抗裂外,合成纤维还能提高混凝土的粘 聚性和抗碎裂性。 ?以聚丙烯合成纤维为例 ?掺入聚丙烯合成纤维后,混凝土的性能将发生变化,当纤维含量适当时,混凝土抗压强度、抗弯强度等均有不同程度的提高。纤维掺量对混凝土强 度的影响见下表。 三、几种主要增强型水泥基复合材料的应用现状

相关文档
最新文档