环境化学实验讲义.

环境化学实验讲义.
环境化学实验讲义.

实验一废水中生化需氧量(BOD5)的测定

一、实验目的

1.掌握水样的采集和处理方法;

2.掌握BOD5的测定原理和操作。

二、实验原理

对于生活污水,取其两份,一份测定当时的溶解氧;另一份在(20±1)℃下培养5天再测定溶解氧,两者之差即为BOD5。

溶解氧的测定原理是:在水样中加入硫酸锰和碱性碘化钾,二价锰先生成白色的Mn(OH)2沉淀,但很快被水中溶解氧氧化为三价或四价的锰,从而将溶解氧固定。在酸性条件下,高价的锰可以将I-氧化为I2,然后用硫代硫酸钠标准溶液滴定生成的I2,即可求出水中溶解氧的含量。

三、仪器和试剂

1.主要仪器

(1)恒温培养箱

(2)溶解氧瓶(200~300mL)带有磨口玻塞,并具有供水封闭的钟形口。

2.试剂

(1)硫酸锰溶液称取480g硫酸锰(MnSO4·H2O)溶于水,用水稀释至1000mL。此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。

(2)碱性碘化钾溶液称取500g氢氧化钠溶解于300~400mL水中,另称取150g碘化钾溶于200mL水中,待氢氧化钠溶液冷却后,将两溶液合并,混匀,用水稀释至1000mL。如有沉淀,放置过夜后,倾出上层清液,储于棕色瓶中,用橡皮塞塞紧,避光保存。此溶液酸化后,遇淀粉应不呈蓝色。

(3)硫代硫酸钠溶液称取2.5g硫代硫酸钠(Na2S2O3·5H2O)溶于煮沸放冷的水中,加0.2g碳酸钠,用水稀释至1000mL,储于棕色瓶中。使用前用重铬酸钾标准溶液标定。

6.浓硫酸(ρ=1.84g/mL)。

7.0.5%淀粉溶液称取0.5g可溶性淀粉,用少量水调成糊状,再用刚煮沸的水稀释至100mL。冷却后,加入0.1g水杨酸和0.4g氯化锌防腐。

四、操作步骤

1.样品采集

准备好6个溶解氧瓶,用虹吸法把水样转移到溶解氧瓶内,并使水样从瓶口溢出数秒钟。其中3瓶固氧,并测定其溶解氧,另3瓶放在恒温培养箱中培养5天后再测定溶解氧。

2.溶解氧固定

用吸液管插入溶解氧瓶的液面下,加入1mL 硫酸锰溶液、2mL 碱性碘化钾溶液,盖好瓶塞,颠倒混合数次,静置。

3.溶解氧的测定

打开瓶塞,立即用吸管插入液面下加入2.0mL 浓硫酸。盖好瓶塞,颠倒混合摇匀,至沉淀物全部溶解,放于暗处静置5min 。

吸取100.00mL 上述溶液于250mL 锥形瓶中,用硫代硫酸钠标准溶液滴定至溶液呈淡黄色,加1mL 淀粉溶液,继续测定至蓝色刚好褪去,并记录硫代硫酸钠溶液用量。

溶解氧(O 2,mg/L )=30

10412

??V cVM O

式中 c ——硫代硫酸钠标准溶液浓度,mol/L ;

V ——滴定消耗硫代硫酸钠标准溶液体积,mL ; V 0——滴定时所取水样的体积,mL 。 注意事项:

(1)水样的pH 值若超过6.5~7.5范围时,可用盐酸或氢氧化钠稀溶液调节至7,但用量不要超过水样体积的0.5%。

(2)若从水温较低的水域中采集的水样,可遇到含有过饱和溶解氧,此时应将水迅速升温至20℃左右,充分振摇,以赶出过饱和的溶解氧。

若从水温较高的水浴或污水排放口取得的水样,则应迅速使其冷却至20℃左右,并充分振摇,使与空气中氧分压接近平衡。

实验二工业废水中铬的测定(二苯碳酰二肼分光光度法)

一、实验目的

1.掌握二苯碳酰二肼分光光度法测定水中六价铬和总铬的原理和方法。

2.学习用Microsoft Office Excel求线性回归方程的方法。

二、实验原理

在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,吸光度与浓度的关系符合比尔定律。如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价,再进行测定。

三、仪器与试剂

1.仪器

分光光度计。

2.试剂

(1)丙酮。

(2)(1+1)硫酸。

(3)(1+1)磷酸。

(4)2g/L氢氧化钠溶液。

(5)氢氧化锌共沉淀剂称取硫酸锌(ZnSO4·7H2O)8g,溶于100mL水中;称取氢氧化钠2.4g,溶于120mL水中。将两溶液混合。

(6)40g/L高锰酸钾溶液。

(7)铬标准贮备液称取于120℃干燥2h的重铬酸钾(优级纯)0.2829g,用水溶解,移入1000mL容量瓶中,用水稀释至标线,摇匀。

(8)铬标准使用液吸取5.00mL铬标准贮备液于500mL容量瓶中,用水稀释至标线,摇匀。每毫升标准使用液含1.000ug六价铬。使用当天配制。

(9)200g/L尿素溶液。

(10)20g/L亚硝酸钠溶液。

(11)二苯碳酰二肼溶液称取二苯碳酰二肼(简称DPC,C13H14N4O)0.2g,溶于50mL丙酮中,加水稀释至100mL,摇匀,贮于棕色瓶内,置于冰箱中保存。颜色变深后不能再用。

(12)硝酸。

(13)硫酸(ρ=1.84g/mL)。

(14)三氯甲烷。

(15)(1+1)氨水。

(16)50g/L铜铁试剂称取5g铜铁试剂[C6H5N(NO)ONH4],溶于冰水中并稀释至100mL。临用时现配。

四、六价铬的测定

1.水样预处理

(1)对不含悬浮物、低色度的清洁地面水,可直接进行测定。

(2)如果水样有色但不深,可进行色度校正。即另取一份试样,加入除显色剂以外的各种试剂,以2mL丙酮代替显色剂,用此溶液为测定试样溶液吸光度的参比溶液。

(3)对浑浊、色度较深的水样,应加入氢氧化锌共沉淀剂,并进行过滤处理。

(4)水样中存在次氯酸盐等氧化性物质时,干扰测定,可加入尿素和亚硝酸钠消除。

(5)水样中存在低价铁、亚硫酸盐、硫化物等还原性物质时,可将Cr(Ⅵ)还原为Cr(Ⅲ)。此时,调节水样pH值至8,加入显色剂溶液,放置5min后再酸化显色,并以同样的方法绘制标准曲线。

2.标准曲线的绘制

取9支50mL比色管,依次加入0、0.20、0.50、1.00、2.00、4.00、6.00、8.00和10.00mL铬标准使用液,用水稀释至标线,加入0.5mL (1+1)硫酸和0.5m L(1+1)磷酸,摇匀。加入2mL显色剂溶液,摇匀。5~10min后,于540nm 波长处,用1cm或3cm比色皿,以水为参比,测定吸光度并作空白校正。以吸光度为纵坐标,相应六价铬含量为横坐标用Microsoft Office Excel绘制标准曲线,并求线性回归方程。

3.水样的测定

取适量(含铬少于50μg)无色透明或经预处理的水样于50mL比色管中,用水稀释至标线,测定方法同标准溶液。进行空白校正后根据所测吸光度从标准曲线上查得Cr(Ⅵ)含量。

4.计算

V

m L mg Cr =

)/,(ρ 式中 m ——从标准曲线上查得的Cr(Ⅵ)量,μg ; V ——水样的体积,mL 。

五、总铬的测定 1.水样预处理

一般清洁地面水可直接用高锰酸钾氧化后测定。

对含大量有机物的水样,需进行消解处理。取50mL 或适量(含铬少于50μg )水样,置于150mL 烧杯中,加入5mL 硝酸和3mL 硫酸,加热蒸发至冒白烟。如溶液仍有色,再加入5mL 硝酸,重复上述操作,至溶液清澈,冷却。用水稀释至10mL ,用氨水(1 + 1)中和至pH1~2,移入50mL 容量瓶中,用水稀释至标线,摇匀,备用。

如果水样中钼、钒、铁、铜等含量较大,先用铜铁试剂-三氯甲烷萃取除去,然后再进行消解处理。

2.高锰酸钾氧化三价铬

取50.0mL 或适量(铬含量少于50μg )清洁水样或经预处理的水样(如不到50.0mL ,用水补充至50.0mL )于150mL 锥形瓶中,用(1+1)氨水和硫酸溶液调至中性,加入几粒玻璃珠,加入(1+1)硫酸和(1+1)磷酸各0.5mL ,摇匀。加入40g/L 高锰酸钾溶液2滴,如紫色消退,则继续滴加高锰酸钾溶液至保持紫红色。加热煮沸至溶液剩约20mL 。冷却后,加入1mL 200g/L 的尿素溶液,摇匀。用滴管加20g/L 亚硝酸钠溶液,每加一滴充分摇匀,至紫色刚好消失。稍停片刻,待溶液内气泡逸尽,转移至50mL 比色管中,稀释至标线,供测定。

其余步骤同六价铬的测定。 注意事项:

(1)用于测定铬的玻璃器皿不能用重铬酸钾洗液洗涤。

(2)Cr(Ⅵ)与显色剂的显色反应一般控制酸度在0.05~0.3mol/L (1/2H 2SO 4)范围,以0.2mol/L 时显色最好。显色前,水样应调至中性。显色温度和放置时间对显色有影响,在15℃时,5~15min 颜色即可稳定。

(3)如测定清洁地面水样,显色剂可按以下方法配制:溶解0.2g 二苯碳酰

肼于100mL95%乙醇中,边搅拌边加入400mL(1+9)硫酸。该溶液在冰箱中可存放一个月。用此显色剂,在显色时直接加入2.5mL即可,不必再加酸。但加入显色剂后,要立即摇匀,以免Cr(Ⅵ)可能被乙酸还原。

六、数据记录与处理

1.实验数据记录

2.绘制标准曲线

3.计算水样中Cr含量

实验三混凝实验

主题词:混凝混凝剂投药量

主要操作:搅拌测定浊度

一、实验目的

分散在水中的胶体颗粒带有电荷,同时在布朗运动及其表面水化膜作用下,长期处于稳定分散状态,不能用自然沉淀法去除。向这种水中投加混凝剂后,可以使分散颗粒相互结合聚集增大,从水中分离出来。

由于各种原水有很大差别,混凝效果不尽相同。混凝剂的混凝效果不仅取决于混凝剂投加量,同时还取决于水的PH、水流速度梯度等因素。

通过本实验希望达到下述目的:

(1)观察混凝现象及过程,了解混凝的净水机理及影响混凝的重要因素;

(2)掌握求得某水样最佳混凝条件(投药量、pH)的基本方法。

二、实验原理

水中粒径小的悬浮物以及胶体物质,由于微粒的布朗运动,胶体颗粒间的静电斥力和胶体的表面作用,致使水中这种浑浊状态稳定。化学混凝的处理对象主要是废水中的微小悬浮物和胶体物质。根据胶体的特性,在废水处理过程中通常采用投加电解质、不同电荷的胶体或高分子等方法破坏胶体的稳定性,然后通过沉淀分离,达到废水净化效果的目的。关于化学混凝的机理主要有以下四种解释。

1、压缩双电层机理

当两个胶粒相互接近以至双电层发生重叠时,就产生静电斥力。加入的反离子与扩散层原有反离子之间的静电斥力将部分反离子挤压到吸附层中,从而使扩散层厚度减小。由于扩散层减薄,颗粒相撞时的距离减少,相互间的吸引力变大。颗粒间排斥力与吸引力的合力由斥力为主变为以引力为主,颗粒就能相互凝聚。

2、吸附电中和机理

异号胶粒间相互吸引达到电中和而凝聚;大胶粒吸附许多小胶粒或异号离子,ξ电位降低,吸引力使同号胶粒相互靠近发生凝聚。

3、吸附架桥机理

吸附架桥作用是指链状高分子聚合物在静电引力、范德华力和氢键力等作用下,通过活性部位与胶粒和细微悬浮物等发生吸附桥连的现象。

4、沉淀物网捕机理

当采用铝盐或铁盐等高价金属盐类作凝聚剂时,当投加量很大形成大量的金属氢氧化物沉淀时,可以网捕、卷扫水中的胶粒,水中的胶粒以这些沉淀为核心产生沉淀。这基本上是一种机械作用。

向水中投加混凝剂后,由于:①能降低颗粒间的排斥能峰,降低胶粒的ζ电位,实现胶粒“脱稳”;②同时也能发生高聚物式高分子混凝剂的吸附架桥作用;③网捕作用,而达到颗粒的凝聚。

消除或降低胶体颗粒稳定因素的过程叫做脱稳。脱稳后的胶粒,在一定的水力条件下,才能形成较大的絮凝体,俗称矾花。直径较大且较密实的矾花容易下沉。自投加混凝剂直至形成较大矾花的过程叫混凝。在混凝过程中,上述现象常不是单独存在的,往往同时存在,

只是在一定情况下以某种现象为主。

三、实验设备与试剂

1. 智能型混凝试验搅拌仪1台。

2. PHS-2型酸度计1台。

3. HACH 2100N浊度仪1台。

4. 烧杯(200mL,7个)

5. 移液管(1mL ,2mL ,5mL ,10mL ,各1支)

6. 洗耳球1个,配合移液管移药用。

7. 量筒(1000mL,1个,量原水体积)

8. 混凝剂:硫酸铝(Al2(SO4)3)、聚合硫酸铁(PFS)、聚合氯化铝(PAC)、聚合硫酸铁铝(PAFS)、聚丙烯酰胺(PAM)等;浓度1%或10g/L

9. 盐酸、氢氧化钠(浓度10%)

10. 实验用原水(取河水或用黏土和自来水配成水样20L,静沉6h,其上清液为实验用原水)

四、实验步骤

混凝实验分为最佳投药量、最佳pH、最佳水流速度梯度三部分。在进行最佳投药量实验时,先选定一种搅拌速度变化方式和pH,求出最佳投药量。然后按照最佳投药量求出混凝最佳pH。最后根据最佳投药量、最佳pH,求出最佳的速度梯度。

1. 最佳投药量实验步骤

(1)确定原水特征,即测定原水水样浑浊度、pH、温度。

(2)确定形成矾花所用的最小混凝剂量。方法是通过慢速搅拌(或50r/min)烧杯中800mL原水,并每隔1min增加1mL混凝剂投加量,直至出现矾花为止。这时的混凝剂量作为形成矾花的最小投加量。

(3)用6个1000mL的烧杯,分别放入800mL原水,置于混凝试验搅拌仪平台上。

(4)确定实验时的混凝剂投加量。根据步骤(2)得出的形成矾花最小混凝剂投加量,取其1/4作为1号烧杯的混凝剂投加量,取其1/2,3/4,1,3/2,2倍作为2~6号烧杯的混凝剂投加量。加药时,把混凝剂分别加到仪器上1~6号加药管中,这样可以保证同时加药。

(5)启动搅拌机,快速搅拌30 s,转速约300 r/min;中速搅拌6min,转速约100 r/min;慢速搅拌6min,转速约50 r/min。

如果用污水进行混凝实验,污水胶体颗粒比较脆弱,搅拌速度可适当放慢。

(6)关闭搅拌机,抬起搅拌桨,静置沉淀10 min,取出上清液放入烧杯内,立即用浊度仪测定浊度(每杯水样测定三次),记入表1中。

2. 最佳pH实验步骤

(1)用6个1000mL的烧杯,分别放入800mL原水,置于混凝试验搅拌仪平台上。

(2)调整原水pH,用移液管依次向1号,2号,3号装有水样的烧杯中分别加入1.5mL,1.0mL,0.5mL 10%浓度的盐酸。依次向5号,6号装有水样的烧杯中分别加入0.5mL ,1.0mL 10%浓度的氢氧化钠。

(3)启动搅拌机,快速搅拌30 s,转速约300 r/min。用酸度计测定各水样的pH,记入表2中。

(4)利用仪器的加药管,向各烧杯中加入相同剂量的混凝剂(最佳剂量采用实验1中得出的最佳投药量结果)。

(5)启动搅拌机,快速搅拌30 s,转速约300 r/min;中速搅拌6min,转速约100 r/min;慢速搅拌6min,转速约50 r/min。

如果用污水进行混凝实验,污水胶体颗粒比较脆弱,搅拌速度可适当放慢。

(6)关闭搅拌机,抬起搅拌桨,静置沉淀10 min,取出上清液放入烧杯内,立即用浊度仪测定浊度(每杯水样测定三次),记入表2中。

注意事项:

①在最佳投药量、最佳pH实验中,向各烧杯投加药剂时要求同时投加,避免因时间间隔较长各水样加药后反应时间长短相差太大,混凝效果悬殊。

②在测定水的浊度、抽吸上清液时,不要扰动底部沉淀物。同时,各烧杯抽吸的时间间隔尽量减小。

五、实验结果记录与整理

混凝剂混凝剂浓度

原水浊度原水pH 原水温度

最小混凝剂量(mL)相当于(mg/L)

1. 最佳投药量实验结果整理

(1)把原水特征、混凝剂投加情况、沉淀后的剩余浊度记入表1中。

(2)以剩余浊度为纵坐标,投药量为横坐标,绘制剩余浊度与投药量关系曲线,从曲线上可求得不大于某一剩余浊度的最佳投药量值。

表1 最佳混凝剂投加量

2. 最佳pH实验结果整理

(1)把原水特征、混凝剂投加情况、酸碱加注情况、沉淀后的剩余浊度记入表2中。(2)以剩余浊度为纵坐标,水样pH为横坐标,绘制剩余浊度与pH关系曲线,从图上求出所投加混凝剂的混凝最佳pH及其适用范围。

六、思考题

1. 根据实验结果以及实验中所观察到的现象,简述影响混凝的几个主要因素。

2. 为什么最大投药量时,混凝效果不一定好?

3. 根据最佳投药量实验曲线,分析沉淀水浊度与混凝剂投加量的关系。

附录一2100P型便携式浊度仪的使用说明

一、校准浊度仪

注意:为得到最好的精确度,在整个校准期间请使用同一个样品池或四个匹配的样品池。通常应将样品池按匹配过程中所标注的方向标记插入。

1. 用稀释水将清洁的样品池冲洗几次。然后将稀释水或使用StablCal <0.1NTU标准液加入样品池至刻度线(约15mL)。

注意:在该步骤中必须使用与准备标准液相同的稀释水。

2. 将样品池放入仪器的样品池盒中,使样品池上的方向标识与样品池盒前面的方向标识在一条线上。盖上池盖。按下I/O键。

注意:在按下CAL键前,请先选择信号平均模式选项(开或关)—在校准模式下,信号平均功能不起作用。

3. 按下CAL键。

屏幕上将显示CAL和S0图标(0将闪烁)。4-位显示值显示的是以前校准的S0标准液值。如果空白值被强制赋予为0.0,显示的将是空白(如图所示)。按下→,得到一个数字显示值。

4. 按下READ键。

仪器将由60到0计数(如果信号平均功能开启,则由67到0计数),读取空白值并作为计算20NTU标准液测试值的校正因子。如果稀释水的浊度大于0.5NTU,当计算校准时,屏幕上将出现E1字样。显示屏将自动递增到下一个标准液的测试。将样品池从样品池盒中取出。注意:通过按下→键而不是读取稀释水读数的方法,可以将稀释水的浊度强制赋予为零值。显示屏将显示S0 NTU,为继续测试下一个标准液必须按下↑键。

5. 屏幕上将显示S1图标(1将闪烁)和20NTU或者是以前校准的S1标准液值。如果该值不正确,请按下→键直到需要编辑的数字闪烁,然后编辑该数值。使用↑键滚动到正确的数字。编辑后,将混合好的20NTU StablCal标准液或20NTU Foamazin标准液加入清洁的样品池至标记线。将样品池放入仪器的样品池盒中,使样品池上的方向标识对准样品池盒前面的方向标识。盖上池盖。

6. 按下READ键。

仪器将由60到0计数(如果信号平均功能开启,则由67到0计数),然后测试浊度并存储该值。显示屏将自动递增到下一个标准液的测试。将样品池从样品池盒中取出。

7. 屏幕上将显示S2图标(2将闪烁)和100NTU或者是以前校准的S2标准液值。如果显示值不正确,请按→键直到需要编辑的数字闪烁,然后编辑该数值。使用↑键滚动到正确的数字。编辑后,使用充分混合好的100NTU StablCal标准液或100NTU Foamazin标准液加入到清洁的样品池至标记线。将样品池放入仪器的样品池盒中,使样品池上的方向标识对准样品池盒前面的方向标识。盖上池盖。

8. 按下READ键。

仪器将由60到0计数(如果信号平均功能开启,则由67到0计数),然后测试浊度并存储该值。显示屏将自动递增到下一个标准液的测试。将样品池从样品池盒中取出。

9. 屏幕上将显示S3图标(3将闪烁)和800NTU或者是以前校准的S3标准液值。如果该值不正确,请按→键直到需要编辑的数字闪烁,然后编辑该数值。使用↑键滚动到正确的数字。

编辑后,请使用充分混合好的800NTU StablCal标准液或800NTU Foamazin标准液加入清洁的样品池至标记线。将样品池放入仪器的样品池盒中,使样品池上的方向标识对准样品池盒前面的方向标识。盖上池盖。

10. 按下READ键。

仪器将由60到0计数(如果信号平均功能开启,由67到0计数),然后测试浊度并存储该值。显示屏将自动递增到下一个标准液的测试。将样品池从样品池盒中取出。

11. 按下CAL键确认校准值。仪器将自动返回到测试模式。

注意:按下CAL键完成校准系数的校准。如果在校准过程发生校准错误,则按下CAL键后将会出现错误信息。如果出现E1或E2,请检查标准液的准备过程和校准过程;必要时请重新校准。如果出现CAL?,可能是在校准过程中发生错误。如果CAL?闪烁,表示仪器正在使用默认的校准值。

注意事项

如果在校准时按下I/O键,新的校准数据将会丢失,但旧的校准数据将用于测试。一旦进入校准模式,只有READ、I/O、↑和→键起作用。信号平均功能和范围选择模式必须在进入校准模式之前选择。

如果E1或E2出现在显示屏上,表明在校准过程中发生了错误。请检查标准液准备过程和校准过程;如有必要,请重新校准。按下DIAG键以清除错误信息(E1或E2)。如果想在未进行重新校准的情况下继续测试,请按两次I/O键恢复原校准值。如果显示CAL?,表明在校准过程发生了错误。原校准值也可能不能恢复。要么重新校准,要么使用当前的校准值。

为查看校准值,请按下CAL键,然后按下↑键查看校准标准液的值。只要没有按下READ 键且CAL不闪烁,校准值将不会更新。再次按下CAL键将返回到测试模式。

二、浊度测试步骤

1. 用一个清洁的容器收集具有代表性的样品。将样品加入样品池至刻度线(约15mL)。操作时小心拿住样品池的上部。然后盖上样品池盖。注意:如果5.5分钟内没有按键,仪器将自动关闭,为重新开启仪器,请按I/O键。

2. 用不起毛的软布擦拭样品池,以除去水滴和手指印。

3. 滴加一小滴硅油,用油布擦拭,使整个表面均匀分布一层硅油。

4. 按I/O键。

仪器将打开,请将仪器放在平坦稳定的板面上。当测试时,不要用手拿着仪器。

5. 将样品池放入仪器的样品池盒中,使菱形标记或方向标识对准样品池盒前面凸起的方向标识。盖上盖板。

6. 按RANGE键,选择手动或自动范围选择模式。当仪器处于自动选择范围模式时,显示屏将显示AUTO RNG。

7. 按SIGNAL AVG键,选择合适的信号平均模式。当仪器使用信号平均模式时,屏幕上将显示SIG AVG。如果样品引起噪声信号(即显示值不断变化),请使用信号平均模式。

8. 按READ键

屏幕上将显示----NTU,然后显示以NTU为单位的浊度数值。在灯信号关闭后请记录浊度值。注意:仪器将默认最近一次选择的操作模式。如果前一次测试选择了自动选择范围和信号平均模式,在接下来的测试中将自动选择这些选项。

2100P 便携式浊度仪在工厂时已用Formazin一级标准液进行了校准,所以使用前不要求进行再次校准。哈希公司建议每3个月用Formazin进行重新校准或根据经验增加校准次数。仪器附带的Gelex二级标准液已标明了使用的基本范围,但经过Formazin校准的,必须在使

用前重新确定其值。

附录二pH410A型酸度计测定pH值

一、pH计的标定校正

1.按菜单键选择“零点”标定功能;

2.将已清洗电极置入6.86标准液中;

3.显示值稳定后,按上下键至读数为6.86;

4.稳定约10秒钟,按菜单键确认并进入“斜率”校正状态;

5.取出电极,清洗,然后置入4.01标准液中;

6.显示值稳定后,按上下键至读数为4.01;

7. 稳定约10秒钟,按菜单键确认并进入“pH”测量状态;

8. 取出电极,清洗。

在pH计的软件设计中实施了6.86/4.01和6.86/9.18的两组二点标定校正方案供在0~14.00pH 范围内依据要求进行应用。

二、仪器的pH测量

在测量之前可以先回测6.86和4.01的标准液,检验仪器的测量精度是否在要求范围内。如有不符,可以重复上述标定校正步骤,对仪器实施二次标定和校正,也可以针对零点或斜率实施单点重复标定或校正(一次标定未能到位的原因可能是电极受温度因素的影响)。

在完成标定校正作业和验证步骤后,便可将已清洗待用的电极置入被测溶液中并充分搅拌,使pH传感器的感应球泡与被测溶液充分接触;当显示屏上的显示值稳定后,便可读取数值。建议:从标定、校正至测量的过程尽可能在磁力搅拌器的配合下进行;

如果被测溶液中含有有机物或干扰氢离子活度的因素,应先行妥当处理,避免仪器的测量结果出现不稳定的现象;

为确保测量的客观性,从仪器的标定校正到测量,对电极清洗的用水务必是去离子水,或是蒸馏水。

仪器具有记忆当前标定校正值的功能,当频繁使用时,在不更换电极和不改变校正值的前提下,重复使用该仪器测量时,可以省去每一次的标定校正作业,前提是可以关闭仪器电源,但不可以切断电源。

三、仪器的温度补偿

1.手动温补

将精密温度测量计依照pH计的标定→校正→测量顺序,依次分别测量出标定液、校正液和被测溶液的当前实际温度,并依次按菜单键(model)在“℃”功能状态下依次按上下键输入各自的当前实际温度。例如,按菜单键选择“℃”功能,设置当前温度,返回零点标定状态,进行零点标定。依次进行斜率校正,测量作业。如果标定液、校正液和被测溶液的温度相同,只需在“℃”功能状态下一次设定温度值即可。

2.自动温补

实验四 活性炭吸附实验

主题词:活性炭 亚甲基蓝 吸附等温线

主要操作:测定标准曲线 间歇吸附 连续吸附

一、实验目的

1、了解活性炭的吸附工艺及性能。

2、掌握用实验方法(含间歇法、连续法)确定活性炭吸附处理污水的设计参数的方法。

二、实验原理

活性炭具有良好的吸附性能和稳定的化学性质,是目前国内外应用比较多的一种非极性吸附剂。与其他吸附剂相比,活性炭具有微孔发达、比表面积大的特点。通常比表面积可以达到500~1700m 2

/g ,这是其吸附能力强,吸附容量大的主要原因。

活性炭吸附主要为物理吸附。吸附机理是活性炭表面的分子受到不平衡的力,而使其他分子吸附于其表面上。当活性炭溶液中的吸附处于动态平衡状态时称为吸附平衡,达到平衡时,单位活性炭所吸附的物质的量称为平衡吸附量。在一定的吸附体系中,平衡吸附量是吸附质浓度和温度的函数。为了确定活性炭对某种物质的吸附能力,需进行吸附试验。当被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再发生变化,此时被吸附物质在溶液中的浓度称为平衡浓度。活性炭的吸附能力用吸附量q 表示,即

m

C C V q )

(0-=

式中 q ——活性炭吸附量,即单位质量的吸附剂所吸附的物质量,g/g ;

V ——污水体积,L ;

C 0,C ——分别为吸附前原水及吸附平衡时污水中的物质的浓度,g/L ;

m ——活性炭投加量,g 。 在温度一定的条件下,活性炭的吸附量q 与吸附平衡时的浓度c 之间关系曲线称为等温线。在水处理工艺中,通常用的等温线有Langmuir 和Freundlich 等。其中Freundlich 等温线的数学表达式为

n

KC q 1=

式中 K ——与吸附剂比表面积、温度和吸附质等有关的系数;

n ——与温度、pH 值、吸附剂及被吸附物质的性质有关的常数; q ——同前。

K 和n 可以通过间歇式活性炭吸附实验测得。将上式取对数后变换为

C n

K q lg 1

lg lg +=

将q 和c 相应值绘在双对数坐标上,所得直线斜率为1/n,截距为K 。

由于间歇式静态吸附法处理能力低,设备多,故在工程中多采用活性炭进行连续吸附操作。连续流活性吸附性能可用博哈特(Bohart )和压当斯(Adams )关系式表达,即

t Kc v

H

KN c c B 000]1)ln[exp(]1ln[--=-

因exp(KN 0H/v)>>1,所以上式等号右边括号的1可忽略不计,则工作时间t 由上式可得

)]1ln([0000--=

B

c c KN v H v c N t 式中 t ----工作时间,h ;

v ----流速,即空塔速度,m/h ; H ----活性炭层高度,m ;

K ----速度常数,m 3/(mg/h)或 L/(mg/h);

N 0----吸附容量,即达到饱和时被吸附物质的吸附量,mg/L ; C 0----入流溶质浓度,mol/m 3 或 mg/L ;

C B ----允许流出溶质浓度,mol/m 3 或 mg/L ;

在工作时间为零的时候,能保持出流溶质浓度不超过c B 的炭层理论高度称为活性炭层的临界高度H 0。其值可根据上述方程当t=0时进行计算,即

)1ln(000-=

B

c c

KN v H 在实验时,如果取工作时间为t,原水样溶质浓度为c 01,用三个活性炭柱串联(见上图),第一个柱子出水为c B1,即为第二个活性炭柱的进水c 02,第二个活性炭柱的出水为c B2,就是第三个活性炭柱的进水c 03,由各炭柱不同的进、出水浓度C 0,C B 便可求出流速常数K 值及吸附容量N 。

三、实验设备及试剂

1、间歇式活性炭吸附装置:间歇式吸附用三角烧杯,在烧杯内放入活性炭和水样进行振荡。

2、连续流式活性炭吸附装置:连续式吸附采用有机玻璃柱D25mm ╳1000mm,柱内500~750mm 高烘干的活性炭,上、下两端均用单孔橡皮塞封牢,各柱下端设取样口。装置具体结构如图所示。

3、间歇与连续流实验所需的实验器材 (1)振荡器(一台)。

(2)有机玻璃柱(3根D25mm ╳1000mm )。 (3)活性炭。

(4)三角烧瓶(11个,250mL )。 (5)可见光光度计

(6)漏斗(10个)及滤纸 (7)配水及投配系统。 (8)酸度计(1台)。 (9)温度计(1只)

(10)亚甲基蓝(分析纯)。

活性炭柱串联工作图

四、实验步骤

1.画出标准曲线

(1)配制100 mg/L亚甲基蓝溶液。

(2)用紫外可见分光光度计对样品在250~750nm波长范围内进行全程扫描,确定最大吸收波长。一般最大吸收波长为662~665nm。

(3)测定标准曲线(亚甲基蓝浓度0~4 mg/L时,浓度C与吸光度A成正比)。

分别移取0 mL,0.5 mL,1.0 mL,2.0 mL,2.5 mL,3.0 mL,4.0 mL 的100 mg/L亚甲基蓝溶液于100mL容量瓶中,加水稀释至刻度,在上述最佳波长下,以蒸馏水为参比,测定吸光度。

以浓度为横坐标,吸光度为纵坐标,绘制标准曲线,拟合出标准曲线方程。

2.间歇式吸附实验步骤

(1)将活性炭放在蒸馏水中浸泡24h,然后在105℃烘箱内烘至恒重(烘24h),再将烘干的活性炭研碎成能通过200目的筛子的粉状活性炭。

因为粒状活性炭要达到吸附平衡耗时太长,往往需数日或数周,为了使实验能在短时间内结束,所以多用粉状炭。

(2)在三角烧瓶中分别加入0mg、20mg、40mg、60mg、80mg、100mg、120mg、140mg、160mg、180mg和200mg粉状活性炭。

(3)在三角烧瓶中各注入100mL 10mg/L的亚甲基蓝溶液。

(4)将上述三角烧瓶放在振荡器上振荡,当达到吸附平衡时即可停止振荡(振荡时间一般为2h),然后用静沉法或滤纸过滤法移除活性炭。

(5)测定各三角烧瓶中亚甲基蓝的吸光度,计算亚甲基蓝的去除率、吸附量。

上述原始资料和测定结果计入表中。

3.连续流吸附实验步骤

(1)在吸附柱中加入经水洗烘干后的活性炭。

(2)用自来水配制10mg/L的亚甲基蓝溶液。

(3) 以40~200 mL/min 的流量,按降流方式运行(运行时炭层中不应有空气气泡)。实验

至少要用三种以上的不同流速进行。

(4)在每一流速运行稳定后,每隔10~30min 由各炭柱取样,测定出水的亚甲基蓝的吸光

度。

五、实验数据及结果整理

1. 间歇式吸附实验

根据记录的数据,以lg q 为纵坐标,lg c 为横坐标,得出Freundlich 吸附等温线,该等温线截距为lgK ,斜率为1/n, 或利用q 、c 相应数据和式C n

K q lg 1

lg lg +

=经回归分析,求出K 、n 值。

2. 连续流吸附实验

(1)绘制穿透曲线,同时表示出亚甲基蓝在进水、出水中的浓度与时间的关系。 (2)计算亚甲基蓝在不同时间内转移到活性炭表面的量。计算方法可以采用图解积分法(矩形法或梯形法),求得吸附柱进水或出水曲线与时间之间的面积。 (3)画出去除量与时间的关系曲线。

六、思考题

1.吸附等温线有什么实际意义?

2.作吸附等温线时为什么要用粉状活性炭?

3.间歇式吸附与连续式吸附相比,吸附容量q 是否一样?为什么?

4. Freundlich 吸附等温线和Bohart-Adams 关系式各有什么实验意义?

(完整版)大学化学实验考试各实验注意事项及思考题答案

一、皂化反应 注意事项 1、每次更换电导池溶液时,都要用电导水淋洗电极和电导池,接着用被测溶液淋洗2~3次,注意不要接触极板,用滤纸吸干电极时,只吸电极底部和两侧,不要吸电极板。 2、电极引线不能潮湿,否则将测不准。 3、高纯水被盛入容器后应迅速测量,否则电导率变化很快,因空气中CO2溶于水中,变为CO32-。 4、盛被测溶液的容器必须清洁、无离子污染。 5、本实验需用电导水,并避免接触空气及灰尘杂质落入。 6、配好的NaOH溶液要防止空气中的CO2气体进入。 7、乙酸乙酯溶液和NaOH溶液浓度必须相同。 8、乙酸乙酯溶液需临时配制,配制时动作要迅速,以减少挥发损失。 思考题 1、为何本实验要在恒温条件下进行,而且乙酸乙酯和氢氧化钠溶液在混合前还要预先加热? 答:温度对反应速率常数k影响很大,故反应过程应在恒温条件下进行。预温后混合,可以保证反应前后温度基本一致,保证了恒温条件,排除了温度变化对该实验测定的影响 2、反应级数只能通过实验来确定,如何从实验结果来验证乙酸乙酯皂化反应为二级反应? 答:选择不同的乙酸乙酯浓度和氢氧化钠浓度,测定不同浓度的反应物在相同反应条件下的反应速率。 3、乙酸乙酯皂化反应为吸热反应,在实验过程中如何处理这一影响而使实验得到较好的结果? 答:在恒温水浴中进行,并尽量采用稀溶液已控制反应速率,并不断搅拌。 4、如果氢氧化钠和乙酸乙酯溶液均为浓溶液,能否用此方法求k值?为什么? 答:不能。这时体系的影响因素太多了。比如大量放热使体系温度不恒定,溶液较大的粘度对反应也有影响。 二、热值测定 注意事项 1.试样在氧弹中燃烧产生的压力可达14 MPa。因此在使用后应将氧弹内部擦干 净,以免引起弹壁腐蚀,减小其强度。 2.氧弹、量热容器、搅拌器在使用完毕后,应用干布擦去水迹,保持表面清洁干燥。 3.氧气遇油脂会爆炸。因此氧气减压器、氧弹以及氧气通过的各个部件,各连接部分不允许有油污,更不允许使用润滑油。如发现油垢,应用乙醚或其他有机溶剂清洗干净。 4.坩埚在每次使用后,必须清洗和除去碳化物,并用纱布清除粘着的污点。 思考题 1.在本实验装置中哪些是体系?哪些是环境?体系与环境通过哪些方式进行热交换?如何 进行校正? 答:在本实验装置中,氧弹的内部是被测物质的燃烧空间,也就是燃烧反应体系,氧弹壳及环境恒温式量热计及内外筒内的水为环境。对流、辐射、热传递,雷诺作图法校正。 2.使用氧气要注意哪些问题? 答:氧气不能过量也不能少量,一定要纯,使用前要检查连接部位是否漏气,可涂上肥皂液进行检查,调整至确实不漏气后才进行实验;由于氧气只要接触油脂类物质,就会氧化发热,甚至有燃烧、爆炸的危险。因此,必须十分注意,不要把氧气装入盛过油类物质之类的容器里,或把它置于这类容器的附近或火源附近;使用时,要把钢瓶牢牢固定,以免摇动或翻倒;开关气门阀要慢慢地操作,切不可过急地或强行用力把它拧开。 3.在燃烧热测定实验中,哪些因素容易造成误差。 答:热量计与周围环境的热交换、温度、气压、样品干燥度、操作读数 三、气相色谱 思考题 1. 在同一操作条件下为什么可用保留时间来鉴定未知物? 答:保留时间是由色谱过程中的热力学因素所决定,在一定的色谱操作条件下,任何一种物

环境工程专业--分析化学实验

实验一-1 NaOH 标准溶液的配制与标定 【实验目的】 (1) 学会标准溶液的配制和利用基准物质对其进行浓度标定的方法。 (2) 基本掌握滴定操作和滴定终点的判断。 【实验原理】 NaOH 容易吸收空气中的CO 2而使配得的溶液中含有少量Na 2CO 3,配制不含Na 2CO 3的NaOH 标准溶液的方法很多,最常见的是用NaOH 饱和水溶液(120:100)配制。Na 2CO 3在NaOH 饱和水溶液中不溶解,待Na 2CO 3沉淀后,量取上层澄清液,再稀释至所需浓度,即可得到不含Na 2CO 3的NaOH 标准溶液。 作为标定NaOH 标准溶液的基准物质有很多,如:草酸、苯甲酸、氨基磺酸、邻苯二甲酸氢钾等。本实验中,利用邻苯二甲酸氢钾(KHP)作为基准物质,酚酞做指示剂,其滴定反应如下: COOH COOK NaOH COOK COONa H 2 O 设此时消耗NaOH 标准溶液的体积为V (mL),邻苯二甲酸氢钾(KHP)的质量为m (g),则NaOH 标准溶液的浓度c (mol/L)可用下面的公式计算: 100022 .204NaOH KHP NaOH ??= V m c 【实验过程】 1实验准备 1.1仪器准备 25 mL 碱式滴定管;250 mL 锥形瓶;1000 mL 的容量瓶;250 mL 烧杯;10 mL 移液管;电子天平;分析天平。 1.2试剂准备 (1) NaOH ; (2) 邻苯二甲酸氢钾(KHP):基准试剂,于105 ℃ ~ 110℃干燥至恒重; (3) 酚酞指示剂(2 g/L 乙醇溶液)。

2实验步骤 2.1 NaOH饱和溶液的配制 称取120 g NaOH于250 mL烧杯中,加入100 mL水,搅拌。 2.2 0.10 mol/L NaOH溶液的配制 量取5.6 mL NaOH饱和溶液的上清液,转入1000 mL容量瓶中,加水稀释至标线,充分摇匀。 2.3 0.10 mol/L NaOH溶液的标定 准确称取0.4 g ~ 0.5 g邻苯二甲酸氢钾于250 mL锥形瓶中,加入20 mL ~ 30 mL水,温热使之溶解,冷却后加1~2滴酚酞,用0.10 mol/L NaOH溶液滴定至溶液呈微红色,半分钟不褪色,即为终点,记录所耗用的NaOH溶液的体积,平行标定3份。 3结果分析 表1-1 测定结果 【注意事项】 (1) 用来配制NaOH溶液的水应在使用前加热煮沸,放冷使用,以除去其中的CO2。 (2) NaOH溶液的配制时,一定要待Na2CO3沉淀后再取NaOH饱和溶液上清液。 【思考题】 (1) 如何计算称取基准物邻苯二甲酸氢钾的质量范围?称得太多或太少对标定有何影 响? (2) 称取NaOH及邻苯二甲酸氢钾各用什么天平?为什么? 【参考文献】

环境化学期末考试复习资料

环境化学期末考试复习资料 一、名词解释: 1、环境问题:人类各种活动或自然因素作用于环境而使环境质量发生变化,由此对人类的生产、生活、生存与持续发展造成不利影响的问题称为环境问题。 2、环境污染:由于人为因素使环境的构成或状态发生变化,环境素质下降,从而扰乱和破坏了生态系统和人们的正常生活和生产条件,叫做环境污染。 3、富营养化:是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其它浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其它生物大量死亡的现象。 4、分配系数:非离子性有机化合物可以通过溶解作用分配到土壤有机质中,并经过一段时间达到分配平衡,此时有机化合物在土壤有机质和水中的含量的比值称为分配系数。 5、标化分配系数:达分配平衡后,有机毒物在沉积物中和水中的平衡浓度之比称为标化分配系数。 6、辛醇-水分配系数:达分配平衡时,有机物在辛醇中的浓度和在水中的浓度之比称为有机物的辛醇-水分配系数。 7、生物浓缩因子:有机毒物在生物体内浓度与水中该有机物浓度之比。 8、亨利定律常数:化学物质在气——液相达平衡时,该化学物质在在水中的平衡浓度和其水面大气中的平衡分压之比。 9、水解常数:有机物在水中水解速率与其在水中浓度之比称为水解常数。 10、直接光解:有机化合物本身直接吸收太阳光而进行分解反应。 11、敏化光解:腐殖质等天然物质被光激发后,将激发的能量转移给有机化合物而导致分解反应。

12、光量子产率:进行光化学反应的光子占吸收总光子数之比称为光量子产率。 13、生长代谢:微生物可用有机化合物(有机污染物)作唯一碳源和能源从而使该化合物降解的代谢。 14、共代谢:某些有机污染物不能作为微生物的唯一用碳源和能源,须有另外的化合物提供微生物的碳源和能源,该化合物才能降解。 15、生物富集(Bio-enrichment):指生物通过非吞食方式(吸收、吸附等),从周围环境(水、土壤、大气)中蓄积某种元素或难降解的物质,使其在机体内的浓度超过周围环境中浓度的现象。 16、生物放大(Bio-magnification):同一食物链上的高营养级生物,通过吞食低营养级生物富集某种元素或难降解物质,使其在机体内的浓度随营养级数提高而增大的现象。 17、生物积累(Bio-accumulation) :指生物从周围环境(水、土壤、大气)和食物链蓄积某种元素或难降解物质,使其在机体中的浓度超过周围环境中浓度的现象。 18、半数有效剂量(ED50)和半数有效浓度(EC50):毒物引起一群受试生物的半数产生同一毒作用所需的毒物剂量和毒物浓度。 19、阈剂量:是指长期暴露在毒物下,引起机体受损害的最低剂量。 20、最高允许剂量:是指长期暴露在毒物下,不引起引起机体受损害的最高剂量。 15、基因突变:指DNA中碱基对的排列顺序发生改变。包括碱基对的转换、颠换、插入和缺失四种类型。 16、遗传致癌物:1)直接致癌物:直接与DNA反应引起DNA基因突变的致癌物,如双氯甲醚。 2)间接致癌物(前致癌物):不能直接与DNA反应,需要机体代谢活化转变后才能与DNA反应导致遗传密码改变。如二甲基亚硝胺、苯并(a)芘等。

环境化学实验讲义

实验一有机物的正辛醇—水分配系数 有机化合物的正辛醇-水分配系数(K ow)是指平衡状态下化合物在正辛醇和水相中浓度的比值。它反映了化合物在水相和有机相之间的迁移能力,是描述有机化合物在环境中行为的重要物理化学参数,它与化合物的水溶性、土壤吸附常数和生物浓缩因子密切相关。通过对某一化合物分配系数的测定,可提供该化合物在环境行为方面许多重要的信息,特别是对于评价有机物在环境中的危险性起着重要作用。测定分配系数的方法有振荡法、产生柱法和高效液相色谱法。 一、实验目的 1、掌握有机物的正辛醇—水分配系数的测定方法; 2、学习使用紫外分光光度计。 二、实验原理 正辛醇—水分配系数是平衡状态下化合物在正辛醇相和水相中浓度的比值,即: K ow = c o/c w 式中:K ow—分配系数; c o—平衡时有机化合物在正辛醇相中的浓度; c w—平衡时有机化合物在水相中的浓度。 本实验采用振荡法使对二甲苯在正辛醇相和水相中达平衡后,进行离心,测定水相中对二甲苯的浓度,由此求得分配系数。 K ow=(c0V0-c w V w)/ c w V w 式中:c0、c w—分别为平衡时有机化合物在正辛醇相和水相中的浓度; V0、V w—分别为正辛醇相和水相的体积。

三、仪器与试剂 1、仪器 (1)紫外分光光度计 (2)恒温振荡器 (3)离心机 (4)具塞比色管:10mL (5)玻璃注射器:5mL (6)容量瓶:5mL,10mL 2、试剂 (1)正辛醇:分析纯 (2)乙醇:95%,分析纯 (3)对二甲苯:分析纯 四、实验内容及步骤 1.标准曲线的绘制 移取1.00mL对二甲苯于10mL容量瓶中,用乙醇稀释至刻度,摇匀。取该溶液0.10mL于25mL容量瓶中,再用乙醇稀释至刻度,摇匀,此时浓度为400μL/L。在5只25mL容量瓶中各加入该溶液1.00、2.00、3.00、4.00和5.00mL,用水稀释至刻度,摇匀。在紫外分光光度计上于波长227nm处,以水为参比,测定吸光度值。利用所测得的标准系列的吸光度值对浓度作图,绘制标准曲线。 2.溶剂的预饱和 将20mL正辛醇与200mL二次蒸馏水在振荡器上振荡24h,使二者相互饱和,静止分层后,两相分离,分别保存备用。 3.平衡时间的确定及分配系数的测定 (1)移取0.40mL对二甲苯于10mL容量瓶中,用上述处理过的被水饱和的正辛醇稀

《环境化学实验》指导书(环科+环工)16学时

实验一不同水域水碱度的分析 实验项目性质:设计性实验 所属课程名称:环境化学及实验 实验计划学时: 4学时 水的碱度是指水中所含能与强酸定量作用的物质总量。 水中碱度的来源是多种多样的。地表水的碱度,基本上是碳酸盐、重碳酸盐及氢氧化物含量的函数,所以总碱度被当作这些成分浓度的总和。当水中含有硼酸盐、磷酸盐或硅酸盐等时,则总碱度的测定值也包含它们所起的作用。废水及其他复杂体系的水体中,还含有有机碱类、金属水解性盐类等,均为碱度组成成分。在这些情况下,碱度就成为一种水的综合性特征指标,代表能被强酸滴定的物质的总和。 碱度的测定值因使用的终点pH值不同而有很大的差异,只有当试样中的化学成分已知时,才能解释为具体的物质。对于天然水和未污染的地表水,可直接用酸滴定至pH为8.3时消耗的量,为酚酞碱度。以酸滴定至pH为4.4-4.5时消耗的量,为甲基橙碱度。通过计算,可以求出相应的碳酸盐、重碳酸盐和氢氧根离子的含量;对于废水、污水,则由于组分复杂,这种计算无实际意义,往往需要根据水中物质的组分确定其与酸作用达到终点时的pH值。然后,用酸滴定以便获得分析者感兴趣的参数,并做出解释。 1.方法的选择 用标准酸滴定水中碱度是各种方法的基础。有两种常用的方法,即酸碱指示剂滴定法和电位滴定法。电位滴定法根据电位滴定曲线在终点时的突跃,确定特定pH值下的碱度,他不受水样浊度、色度的影响,适用范围较广。用指示剂判断滴定终点的方法简便快速、适用于控制性试验及例行分析。二法均可根据需要和条件选用。 2.样品保存 样品采集后应在4℃保存,分析前不应打开瓶塞,不能过滤、稀释或浓缩。样品应用于采集后的当天进行分析,特别是当样品中含有可水解盐类或含有可氧化态阳离子时,应及时分析。 实验目的: 1.了解不同水域水碱度的意义

环境化学实验(讲义)

环境化学实验(讲义) 课程英文名称:The e xperiment of Environmental Chemistry 课程总学时:17总学分:0.5 推荐使用教材:自编 一、课程教学目标与基本要求: 《环境化学实验》包括环境分析化学、环境污染化学和污染控制化学三部分内容,重点是环境污染化学部分,着重探讨污染物来源及其在环境介质中的存在形态、浓度水平和迁移、转化与降解等环境行为及其影响因素等。通过《环境化学实验》课程的学习,深化《环境化学》课程讲授的基本知识,促进对环境化学领域研究动态及前沿的理解,掌握研究环境化学问题的基本方法和手段,提高实验数据科学分析能力和实验技能,使学生具备初步的独立科研能力。 二、相关教学环节安排 整个教学环节分为“基础实验”和“综合实验”两个部分,增加了以独立科研能力培养为目标的“综合实验”环节。在此环节中,教师设计了多个研究题目供学生参考选择,要求学生在查阅文献的基础上,写出开题报告,并在教师的配合下自行设计实验方案、自行准备实验所需的材料。在研究过程中,实验室(包括仪器设备)向学生开放,在教师的配合下,学生自主进行实验活动。在学期末,学生应完成一篇符合规范的研究论文。 三、课程的主要内容及学时分配 第一部分基础实验 1、有机物的正辛醇—水分配系数5学时 第二部分综合实验 2、水中重金属的污染评价6学时 3、海洋沉积物中砷的污染分析6学时 四、考试要求 依据平时实验进行情况进行考查(包括预习和知识准备情况、实验过程中操作动手能力及判断和解决问题能力、对实验得到的数据结果进行科学思考能力、实验报告的写作水平等)。 五、学习参考书: 1、环境化学实验.董德明,朱利中主编.北京:高等教育出版社,2002. 2、环境化学实验.康春莉,徐自力和冯小凡主编.长春:吉林大学出版社,2000. 3、环境化学实验.孔令仁主编.南京:南京大学出版社,1990. 4、土壤农业化学分析方法.鲁如坤主编.中国农业科技出版社,2000. 实验一有机物的正辛醇—水分配系数

环境分析化学实验指导复习过程

实验一水中化学需氧量的测定(4学时) 一、实验目的和要求 掌握化学需氧量的测定原理及方法。 二、实验原理 化学需氧量的测定是在强酸性溶液中,用一定量的重铬酸钾氧化水样中还原性物质,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵溶液回滴。根据硫酸亚铁铵的用量算出水样中还原性物质消耗氧的量。 酸性重铬酸钾氧化性很强,可氧化大部分有机物,加入硫酸银作催化剂时,直链脂肪族化合物可完全被氧化,而芳香族有机物却不易被氧化,吡啶不被氧化,挥发性直链脂肪族化合物、苯等有机物存在于蒸气相,不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸盐氧化,并且能与硫酸银作用产生沉淀,影响测定结果,故在回流前向水样中加入硫酸汞,使成为络合物以消除干扰。氯离子含量高于1000mg/L的样品,应先做定量稀释,使其含量降低至1000mg/L以下再行测定。 用0.25mol/L的重铬酸钾溶液可测定COD值大于50mg/L 的水样,未经稀释水样的测定上限是700mg/L,用浓度0.025 mol/L的重铬酸钾溶液可测5~50mg/L的COD值,但COD值低于10mg/L时,测量准确度较差。 三、实验内容 1. 仪器、试剂 主要仪器: (1)回流装置。 带250mL锥形瓶的全玻璃回流装置(如取样量在30mL以上,采用500mL锥形瓶的全玻璃回流装置)。 (2) 加热装置:变阻电炉。 (3) 50mL酸式滴定管。 主要试剂: (1) 重铬酸钾标准溶液(1/6K2CrO7=0.2500mol/L)。

称取预先在120℃烘干2h 的基准或优级纯重铬酸钾12.258g 溶于水中,移入1000mL 容量瓶,稀释至标线,摇匀。 (2) 试亚铁灵指示液。 称取1.458g 邻菲罗啉(C 12H 8N 2·H 2O ,1,10-phenanthroline )0.695g 硫酸亚铁(FeSO 4·7H 2O) 溶于水中,稀释至100mL ,储于棕色瓶内。 (3) 硫酸亚铁铵标准溶液[(NH 4)2Fe(SO 4)2·6H 2O≈0.lmol/L]。 称取39.5g 硫酸亚铁铵溶于水中,边搅拌边缓慢加入20mL 浓硫酸,冷却后移入1000mL 容量瓶中,加水稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。 标定方法如下: 准确吸取10.00mL 重铬酸钾标准溶液于500mL 锥形瓶中,加水稀释至1l0mL 左右,缓慢加入30mL 浓硫酸,混匀。冷却后,加入3滴试亚铁灵指示液(约0.15mL),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。 V C 00.102500.0?= 式中,C 为硫酸亚铁铵标准溶液的浓度,mol/L ; V 为硫酸亚铁铵标准滴定溶液的用量,mL 。 (4) 硫酸-硫酸银溶液。 于2500mL 浓硫酸中加入25g 硫酸银。放置1~2d ,不时摇动使其溶解(如无2500mL 容器,可在500mL 浓硫酸中加入5g 硫酸银)。 (5) 硫酸汞:结晶或粉末。 2. 实验步骤 (1) 取20.00mL 混合均匀的水样(或适量水样稀释至20.00mL)置于250mL 磨口的回流锥形瓶中,准确加入10.00mL 重铬酸钾标准溶液及数粒洗净的玻璃珠或沸石,连接磨口回流冷凝管,从冷凝管上口慢慢地加入30mL 硫酸-硫酸银溶液,轻轻摇动锥形瓶使溶液混匀,加热回流2h(自开始沸腾时计时)。 注:① 对于化学需氧量较高的废水样,可先取上述操作所需体积1/10的废水样和试剂,于15mm×150mm 硬质玻璃试管中,摇匀,加热后观察是否变成绿色。如溶液显绿色,再适当减少废水取样量,直到溶液不变绿色为止,从而确定废水样分析时应取用的体积。稀释时,所取废水样量不得少于5mL ,如果化学需氧量很高,则废水样应多次逐级稀释。

环境化学实验1

活性炭吸附实验 1.实验目的 ①了解活性炭的吸附工艺及性能 ②掌握用实验方法(含间歇法、连续流法)确定活性炭吸附处理污水的设计参数的方法。 2.实验装置及材料 (1)间歇式活性炭吸附装置间歇式吸附用用三角烧杯,在烧杯内放入活性炭和水样进 行振荡。 (2)连续式活性炭吸附装置连续式吸附采用有机玻璃柱D25mm×1000mm,柱内500~750mm高烘干的活性炭,上、下两端均用单孔橡皮塞封牢。各柱下端设取样口。装置具体结构如图4—10所示。 (3)间歇与连续流实验所需的实验器材 ①振荡器(1台)。 ②有机玻璃柱(3根D25mm×1000mm) ③活性炭。 ④三角烧瓶(2个,500mL) ⑤COD测定装置。 ⑥配水及投配系统。 ⑦酸度计(1台)。 ⑧温度计(1只)。 ⑨漏斗(6个)。 ⑩定量滤纸。 3.实验步骤 (1)间歇式吸附实验 ①将活性炭放在蒸馏水中浸泡24h,然后在10 5℃烘箱内烘24h,再将烘干的活性炭研 碎成能通过270目的筛子(0.053mm孔眼)的粉状活性炭。 ②测定预先配制的废水水温、pH值和COD。 ③在5个三角烧瓶中分别加入100mg、200mg、300mg、400mg、500mg粉状活性炭。 ④在每个烧瓶中分别加入同体积的废水进行搅拌。一般规定,烧瓶中废水COD(mg/L) 与活性炭浓度(mg/L)比值为0.5—5.0。 ⑤将上述5个三角烧瓶放在振荡器上振荡,当达到吸附平衡时即可停止。(振荡时间一般为30min以上)。 ⑥过滤各三角烧瓶中废水,并测定COD值, 上述原始资料和测定结果记入表4—11。 (2)连续流吸附实验 ①配制水样或取自实际废水,使原水样中含COD约l00mg/L,测出具体的COD,pH 值、水温等数值。 ②打开进水阀门,使原水进入活性炭柱,并控制为3个不同的流量(建议滤速分别为 5 m/h,l 0 m/h,15 m/h) ③运行稳定5min后测定各活性炭出水COD值。 ④连续运行2—3h,每隔30min取样测定各活性炭柱出水COD值一次。

大学化学实验报告.doc

大学化学实验报告 大学化学实验报告的格式是怎样的?那么,下面就随我一起来看看吧。 大学化学实验报告格式 1):实验目的,专门写实验达到的要求和任务来实现。(例如,为了研究添加硫酸铜条件的溶液中的氢氧化钠溶液反应) 2):实验原理,该实验是对写的操作是什么通常是实验室书世外桃源基础上做在那里,你总结就行了。(您可以使用上述反应式) 3):实验用品,包括在实验中,液体和固体药品使用的设备。(如酒精灯,滤纸,以及玻璃棒,后两者用于过滤,这应该是在右侧。) 4):实验步骤:实验书籍有(即上面的话,氢氧化钠硫酸铜溶液加到生成蓝色沉淀,再加热蓝色沉淀,观察的现象 5)的反应):实验数据记录和处理。 6):分析与讨论 大学化学实验报告范文 实验题目:溴乙烷的合成 实验目的:1. 学习从醇制备溴乙烷的原理和方法 2. 巩固蒸馏的操作技术和学习分液漏斗的使用。 实验原理:

主要的副反应: 反应装置示意图: (注:在此画上合成的装置图) 实验步骤及现象记录: 实验步骤现象记录 1. 加料: 将9.0ml水加入100ml圆底烧瓶,在冷却和不断振荡下,慢慢地加入19.0ml浓硫酸。冷至室温后,再加入10ml95%乙醇,然后在搅拌下加入13.0g研细的溴化钠,再投入2-3粒沸石。 放热,烧瓶烫手。 2. 装配装置,反应: 装配好蒸馏装置。为防止产品挥发损失,在接受器中加入5ml 40%nahso3溶液,放在冰水浴中冷却,并使接受管(具小咀)的末端刚好浸没在接受器的水溶液中。用小火加热石棉网上的烧瓶,瓶中物质开始冒泡,控制火焰大小,使油状物质逐渐蒸馏出去,约30分钟后慢慢加大火焰,直到无油滴蒸出为止。 加热开始,瓶中出现白雾状hbr。稍后,瓶中白雾状hbr 增多。瓶中原来不溶的固体逐渐溶解,因溴的生成,溶液呈橙黄色。 3. 产物粗分: 将接受器中的液体倒入分液漏斗中。静置分层后,将下层的粗制溴乙烷放入干燥的小锥形瓶中。将锥形瓶浸于冰水浴中冷

环境化学实验讲义

环境化学实验讲义 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

前言环境化学实验是为进一步深化《环境化学》课程讲授的基本知识,掌握研究环境化学问题的基本方法和手段,提高实验数据科学分析能力和实验技能,使学生具备初步的独立科研能力。?依据新的环境化学实验教学大纲,本环境化学实验课程共包括4个实验,内容涵盖了大气环境化学、水环境化学和土壤环境化学等。 实验一为天然水中油类的紫外分光光度法测定;主要是让学生加深对环境中油类污染的认识,了解石油类类污染物含有共轭体系的物质在紫外光区有特征吸收峰,掌握油类的分析方法和技术。 实验二为有机物的正辛醇—水分配系数;这是典型的验证性实验,使学生了解平衡状态下有机化合物在正辛醇和水相中的分配状况,使学生深层次了解有机化合物在水相和有机相之间的迁移能力以及脂溶性有机化合物在环境中的吸收行为。 实验三为苯酚的光降解速率常数实验;使学生了解有机污染物在水体中的光化学降解性能以及它们在水中的归宿。 实验四为土壤对铜的吸附实验;土壤重金属污染已经被广泛关注,也是目前食品安全的主要内容之一,同时重金属不能被土壤中的微生物所降解,因此可在土壤中不断地积累,也可为植物所富集,并通过食物链危害人体健康。因此让学生了解土壤的吸附性能对今后开展该方面的研究具有重要意义。 编者张凤君 目录 实验一天然水中油类的紫外分光光度法测定 (1)

实验二有机物的正辛醇—水分配系数 (3) 实验三苯酚的光降解速率常数 (6) 实验四土壤对铜的吸附 (10)

实验一天然水中油类的紫外分光光度法测定 一、实验目的 加深对环境中油类污染的认识,掌握油类的分析方法和技术,学会使用紫外分光光度计。 二、实验原理 紫外分光光度法比重量法简单。石油类含有的具有共轭体系的物质在紫外光区有特征吸收峰。带有苯环的芳香族化合物主要吸收波长为250~260 nm,带有共轭双键的化合物主要吸收波长为215~230 nm。一般原油的两个吸收峰波长为225及256 nm,其他油品如燃料油、润滑油等的吸收峰也与原油相近。本方法测定波长选为256 nm,最低检出浓度为 mg/L,测定上限为10 mg/L。 三、仪器与试剂 1.紫外分光光度计(具有1 cm石英比色皿) 2.石油醚(60~90℃)提纯:透光率应大于80% 纯化:将石油醚通过变色硅胶柱后收集于试剂瓶中。以水为参比,在256 nm处透光率应大于80%。 四、实验步骤 1.标准曲线绘制:把油标准储备液用石油醚稀释为每毫升含 mg油的标准液。向7个10 mL比色管中依次加入油标准液0, mL, mL, mL, mL, mL, mL,用石油醚稀释至刻线。最后在波长256 nm处,用1 cm石英比色皿,以石油醚为参比液测定标准系列的吸光度,并绘制标准曲线。

大学有机化学实验全12个有机实验完整版

大学有机化学实验(全12个有机实验完整版) 试验一蒸馏与沸点的测定 一、试验目的 1、熟悉蒸馏法分离混合物方法 2、掌握测定化合物沸点的方法 二、试验原理 1、微量法测定物质沸点原理。 2、蒸馏原理。 三、试验仪器及药品 圆底烧瓶、温度计、蒸馏头、冷凝器、尾接管、锥形瓶、电炉、加热套、量筒、烧杯、毛细管、橡皮圈、铁架台、沸石、氯仿、工业酒精 四.试验步骤 1、酒精的蒸馏 (1)加料取一干燥圆底烧瓶加入约50ml的工业酒精,并提前加入几颗沸石。 (2)加热加热前,先向冷却管中缓缓通入冷水,在打开电热套进行加热,慢慢增大火力使之 沸腾,再调节火力,使温度恒定,收集馏分,量出乙醇的体积。 蒸馏装置图微量法测沸点 2、微量法测沸点 在一小试管中加入8-10滴氯仿,将毛细管开口端朝下,将试管贴于温度计的水银球旁,用橡皮圈束紧并浸入水中,缓缓加热,当温度达到沸点时,毛细管口处连续出泡,此时停止加热,注意观察温度,至最后一个气泡欲从开口处冒出而退回内管时即为沸点。 五、试验数据处理 六、思考题 1、蒸馏时,放入沸石为什么能防止暴沸?若加热后才发觉未加沸石,应怎样处理? 沸石表面不平整,可以产生气化中心,使溶液气化,沸腾时产生的气体比较均匀不易发生暴沸,如果忘记加入沸石,应该先停止加热,没有气泡产生时再补加沸石。 2、向冷凝管通水就是由下而上,反过来效果会怎样?把橡皮管套进冷凝管侧管时,怎样才能防止折断其侧管? 冷凝管通水就是由下而上,反过来不行。因为这样冷凝管不能充满水,由此可能带来两个后果:其一,气体的冷凝效果不好。 其二,冷凝管的内管可能炸裂。橡皮管套进冷凝管侧管时,可以先用水润滑,防止侧管被折断。

环境化学答案解析

《大气环境化学》第二章重点习题及参考答案 1.大气的主要层次是如何划分的?每个层次具有哪些特点? (1)主要层次划分:根据温度随海拔高度的变化情况将大气分为四层。 (2)各层次特点: ①对流层:0~18km;气温随高度升高而降低;有强烈的空气垂直对流;空气密度大(占大气总质量的3/4和几乎全部的水汽和固体杂质);天气现象复杂多变。 ②平流层:18~50km;平流层下部30~35km以下气温变化不大(同温层),30~35km以上随高度升高温度增大(逆温层);有一20km厚的臭氧层,可吸收太阳的紫外辐射,并且臭氧分解是放热过程,可导致平流层的温度升高;空气稀薄,水气、尘埃的含量极少、透明度好,很少出现天气现象,飞机在平流层低部飞行既平稳又安全;空气的垂直对流运动很小,只随地球自转产生平流运动,污染物进入平流层可遍布全球。 ③中间层: 50~80km;空气较稀薄;臭氧层消失;温度随海拔高度的增加而迅速降低;大气的垂直对流强烈。 ④热层:80~500km;在太阳紫外线照射下空气处于高度电离状态(电离层),能反射无线电波,人类可利用它进行远距离无线电通讯;大气温度随高度增加而升高;空气更加稀薄,大气质量仅占大气总质量的0.5%。 热层以上的大气层称为逃逸层。这层空气在太阳紫外线和宇宙射线的作用与大气温度不同,大气的压力总是随着海拔高度的增加而减小。 2. 逆温现象对大气中污染物的迁移有什么影响? 一般情况下,大气温度随着高度增加而下降,每上升100m,温度降低0.6℃左右。即是说在数千米以下,总是低层大气温度高、密度小,高层大气温度低、密度大,显得“头重脚轻”。这种大气层结容易发生上下翻滚即“对流运动”,可将近地面层的污染物向高空乃至远方疏散,从而使城市上空污染程度减轻。因而在通常情况下,城市上空为轻度污染,对人体健康影响不大。可是在某些天气条

环境化学复习资料

《环境化学》综合复习资料 一、填空题 1.污染物在环境中的迁移主要有、和 三种方式。 2. 、、以及,是目前世界上公认的主要环境问题。 3.大气的温度随地面的高度而变化,这构成了大气分层的基础。大气圈按高度自下而上分成、、和。 4.大气颗粒物有三种重要的表面性质:、和。 大气颗粒物在雨滴形成的过程就属。 5.研究酸雨必须进行雨水样品的化学分析,通常分析的主要阳离子有;阴离子有 。 6.用一个强碱标准溶液滴水样,以酚酞作为指示剂,此时所得的结果称为,其化学反应计量式为。 7.水中颗粒物的吸附作用可分为、和;其中属于物理吸附的是。 8.当向天然水体中加入有机物后可得到一氧下垂曲线。碳元素在清洁区和腐败区内的分解产物分别是和。 9.当向天然水体中加入有机物后可得到一氧下垂曲线,它把河流分为相应的几个区段,在清洁区内决定电位物质是;在腐败区内决定电位物质是。 10.腐殖质的组成非常复杂,根据它在溶液中的溶解度不同划分为、 和三类。 11.天然水P E越小,提供电子倾向,水中污染物还原态相对浓度。 12.有机污染物一般通过、、、和 等过程进行迁移转化。 13.典型土壤随深度呈现不同的层次,是生物最活跃的一层,有机质大部分在这一层,金属离子和粘土颗粒在此层中被淋溶得最显著。 14.岩石的化学风化分为三个历程,即、和。

15.汞及其化合物的挥发程度与化合物的形态及、、 等因素密切相关。无机汞化合物挥发度最大的是,最小的是。 16.砷的甲基化在厌氧菌作用下主要产生,在水溶液中继续氧化成为;而汞的甲基化在厌氧菌作用下主要产生;与无机砷相比,有机砷的毒性。 17. 是金属甲基化过程中甲基基团的重要生物来源。砷的甲基化在厌氧菌作用下主要产生,在水溶液中继续氧化成为;而好氧的甲基化反应则产生,在水溶液中继续氧化成为,它可与巯基发生的应。 18.日本西部地区发生的米糠油中毒事件是由引起的,而该物质目前唯一的处理方法是。痛痛病是由于长期食用含量高的稻米引起的中毒。 19.多环芳烃在大气中经紫外光照射很容易发生,而在水体沉积物中的消除途径主要靠。 20.表面活性剂的生物降解机理主要是烷基链上的、、 和过程。 21.在烷基汞中,只有、和三种烷基汞为水俣病的致病性物质。 22.根据土壤中H+离子的存在方式,土壤酸度可分为和潜在酸度,根据提取液的不同,潜在酸度分为和。代换性是矿物质土壤潜在酸度的主要来源。 23.痛痛病是由于长期食用含量高的稻米引起的中毒。引起日本米糠油中毒事件的物质目前唯一的处理方法是。无机砷可抑制酶的活性,还可与蛋白质的发生反应。与无机砷相比,有机砷的毒性。 二、名词解释 1、环境化学 2、温室效应 3、光化学反应 4、光化学烟雾 5、总悬浮颗粒物 6、环境效应 7、环境污染物

大学有机化学实验(全12个有机实验完整新版)

大学有机化学实验(全12个有机实验完整版) 试验一蒸馏与沸点得测定 一、试验目得 1、熟悉蒸馏法分离混合物方法 2、掌握测定化合物沸点得方法 二、试验原理 1、微量法测定物质沸点原理。 2、蒸馏原理。 三、试验仪器及药品 圆底烧瓶、温度计、蒸馏头、冷凝器、尾接管、锥形瓶、电炉、加热套、量筒、烧杯、毛细管、橡皮圈、铁架台、沸石、氯仿、工业酒精 四。试验步骤 1、酒精得蒸馏 (1)加料取一干燥圆底烧瓶加入约50ml得工业酒精,并提前加入几颗沸石。 (2)加热加热前,先向冷却管中缓缓通入冷水,在打开电热套进行加热,慢慢增大火力使之沸腾,再调节火力,使温度恒定,收集馏分,量出乙醇得体积。 蒸馏装置图微量法测沸点 2、微量法测沸点 在一小试管中加入8—10滴氯仿,将毛细管开口端朝下,将试管贴于温度计得水银球旁,用橡皮圈束紧并浸入水中,缓缓加热,当温度达到沸点时,毛细管口处连续出泡,此时停止加热,注意观察温度,至最后一个气泡欲从开口处冒出而退回内管时即为沸点. 五、试验数据处理 六、思考题 1、蒸馏时,放入沸石为什么能防止暴沸?若加热后才发觉未加沸石,应怎样处理? 沸石表面不平整,可以产生气化中心,使溶液气化,沸腾时产生得气体比较均匀不易发生暴沸,如果忘记加入沸石,应该先停止加热,没有气泡产生时再补加沸石。 2、向冷凝管通水就是由下而上,反过来效果会怎样?把橡皮管套进冷凝管侧管时,怎样才能防止折断其侧管? 冷凝管通水就是由下而上,反过来不行。因为这样冷凝管不能充满水,由此可能带来两个后果:其一,气体得冷凝效果不好。 其二,冷凝管得内管可能炸裂。橡皮管套进冷凝管侧管时,可以先用水润滑,防止侧管被折断。3、用微量法测定沸点,把最后一个气泡刚欲缩回管内得瞬间温度作为该化合物得沸点,

环境分析化学总结

名词解释 1.仪器检出限:是指分析仪器能检出与噪音相区别的小信号的能力。 2.定量限:定量限为信号空白测量值标准偏差的10倍所对应的浓度(或质量)。(痕量分 析检与定越小越好;待测物含量>=LQD,准测) 3.检出限:指产生一个能可靠地被检出的分析信号所需要的某元素的最小浓度或含量。 4.准确度:表示测量值接近真实值的程度. 5.空白加标回收率:在没有被测物质的空白样品基质中加入定量的标准物质,按样品的 处理步骤分析,得到的结果与理论值的比值即为空白加标回收率。 P=测定值/理论值 * 100% 6.样品加标回收:相同的样品取两分,其中一份加入定量的待测成分标准物质;两份同 时按相同的分析步骤分析,加标的一份所得的结果减去未加标一份所得的结果,其差值同加入标准的理论值之比即为样品加标回收率。 P=(加标后测定值-试样测定值)/加入标准的值*100% 回收率结果越接近100%表明分析方法准确度越高。 7.空白:是指化学组分与分析试样接近,但不含或含有极低浓度被测元素的试样。 8.空白试验:是指以水代替样品,其它分析步骤及试验与样品测定完全相同的操作过程。 9.空白值:空白试验所得到的响应值称为空白试验值,简称空白值。 10.标准物质:是已准确地确定了一个或多个特性量值很均匀、稳定的物质。 11.特性量值:指物质的物化性质、化学成分(主体和痕量物质的量)、工程参数等。该 物质有最接近于真值的保证值,用来作为统一量值 12.基体:在环境中,各种污染物的含量一般在痕量或超痕量的范围,而大量存在的 其他物质称为基体。 13.基体效应:由于基体组成不同,因物理、化学性质差异而给实际测定中带来的误 差,称作基体效应。 14.放射性示踪技术:是在进行富集之前,将待测痕量元素的放射性同位素作为示踪剂 加到样品里,随后进行放射性示踪测量,这样对预分离组分在分离富集过程中的行为进行跟踪。 最大优点是所测得的回收值和损失量与污染无关。 15.共沉淀法:当沉淀从溶液中析出时,某些本来不应沉淀的组分同时也被沉淀下来

环境化学实验讲义

前言 环境化学实验是为进一步深化《环境化学》课程讲授的基本知识,掌握研究环境化学问题的基本方法和手段,提高实验数据科学分析能力和实验技能,使学生具备初步的独立科研能力。依据新的环境化学实验教学大纲,本环境化学实验课程共包括4个实验,内容涵盖了大气环境化学、水环境化学和土壤环境化 编者张凤君

目录

实验一天然水中油类的紫外分光光度法测定 一、实验目的 加深对环境中油类污染的认识,掌握油类的分析方法和技术,学会使用紫外分光光度计。 二、实验原理 mL,7.0 mL,10.0 mL,用石油醚稀释至刻线。最后在波长256 nm处,用1 cm石英比色皿,以石油醚为参比液测定标准系列的吸光度,并绘制标准曲线。 2.将水样500 mL全部倾入1000 mL分液漏斗中,加入5 mL(1+1)硫酸(若水样取样时已酸化,可不加)及20 g氯化钠,加塞摇匀,用15 mL石油醚洗采样瓶,并把此洗液移入分液漏斗中,充分振荡2 min(注意放气),静置分层。把下层水样放入原采样瓶中,上层石油醚放入25 mL容量瓶中,再加入10 mL石油醚,重复抽提水样一次,合并提取液于容量瓶中。加入石油醚至刻线,摇匀。

若容量瓶里有水珠或浑浊,可加少量无水硫酸钠脱水。 3.在波长256 nm处,用1 cm石英比色皿,以脱芳烃的石油醚为参比,测定其吸光度,并在标准曲线上查出相应浓度值。 五、结果与讨论 1.C油(mg/L)= 12 V V C )

实验二 有机物的正辛醇—水分配系数 有机化合物的正辛醇—水分配系数(K OW )是指平衡状态下化合物在正辛醇和水相中浓度的比值。它反映了化合物在水相和有机相之间的迁移能力,是描述有机化合物在环境中行为的重要物理化学参数,它与化合物的水溶性、土壤吸附 c w ——平衡时有机化合物在水相中的浓度。 本实验采用振荡法使对二甲苯在正辛醇相和水相中达平衡后,进行离心,测定水相中对二甲苯的浓度,由此求得分配系数。 W W W W O O V c V V c K OW c -=

环境化学实验讲义

实验一 有机物的正辛醇-水分配系数 有机化合物的正辛醇-水分配系数(K ow )是指平衡状态下化合物在正辛醇和水相中浓度的比值。它反映了化合物在水相和有机相之间的迁移能力,是描述有机化合物在环境中行为的重要物理化学参数,它与化合物的水溶性、土壤吸附常数和生物浓缩因子密切相关。通过对某一化合物分配系数的测定,可提供该化合物在环境行为方面许多重要的信息,特别是对于评价有机物在环境中的危险性起着重要作用。测定分配系数的方法有振荡法、产生柱法和高效液相色谱法。 一、实验目的 1. 掌握有机物正辛醇-水分配系数的测定方法。 2. 学习使用紫外分光光度计。 二、实验原理 正辛醇-水分配系数是平衡状态下有机化合物在正辛醇相和水相中浓度的比值。即: w o ow c c K 式中:K ow —— 分配系数; c o —— 平衡时有机化合物在正辛醇相中的浓度; c w —— 平衡时有机化合物在水相中的浓度。 本实验采用振荡法进行有机化合物的正辛醇-水分配系数的测定。由于正辛醇中有机化合物的浓度难以确定,本实验中通过测定平衡时水相中有机物浓度,然后根据体系中有机物的初始加入量以及两相的体积来确定平衡时正辛醇中有机物的浓度。首先,取一定体积含已知浓度待测有机化合物的正辛醇,加入一定体积的水,震荡,平衡后分离正辛醇相和水相,测定水相中有机物浓度,根据下式计算分配系数: 式中: c o0 ——起始时有机化合物在正辛醇相中的浓度μL/L ; c w —— 平衡时有机化合物在水相中的浓度μL/L ; V 0、V w —— 分别为正辛醇相和水相中的体积,L 。

三、仪器和试剂 1. 仪器 (1) 紫外分光光度计。(2) 恒温振荡器。(3) 离心机。(4) 具塞比色管:1OmL。 (5) 微量注射器:5mL。(6) 容量瓶:1OmL、25mL、250mL。 2. 试剂 (1) 正辛醇:分析纯。(2) 乙醇:95%,分析纯。(3) 对二甲苯:分析纯。 (4) 苯胺:分析纯。 四、实验步骤 1. 标准曲线的绘制 (1) 对二甲苯的标准曲线 移取1.00mL对二甲苯于10mL容量瓶中,用乙醇稀释至刻度,摇匀。取该溶液0.10mL于25mL容量瓶中,再用乙醇稀释至刻度,摇匀,此时浓度为400μL/L。在5只25 mL容量瓶中各加入该溶液1.00、2.00、3.00、4.00和5.00mL,用水稀释至刻度,摇匀。在紫外分光光度计上于波长227nm处,以水为参比,测定吸光度值。利用所测得的标准系列的吸光度值对浓度作图,绘制标准曲线。 (2) 苯胺的标准曲线 标准溶液配制方法同上,测定波长为279 nm。 2. 溶剂的预饱和 将20mL正辛醇与200mL二次蒸馏水在振荡器上振荡24 h,使二者相互饱和,静止分层后,两相分离,分别保存备用。 3. 平衡时间的确定及分配系数的测定 (1) 移取0.40mL对二甲苯于10mL容量瓶中,用上述处理过的被水饱和的正辛醇稀释至刻度,该溶液浓度为4×104μL/L。 (2) 分别移取1.00mL上述溶液于6个10mL具塞比色管中,用上述处理过的被正辛醇饱和的二次水稀释至刻度。盖紧塞子,置于恒温振荡器上,分别振荡0.5、1.0、1.5、2.0、2.5和3.Oh,离心分离,用紫外分光光度计测定水相吸光度。取水样时,为避免正辛醇的污染,可利用带针头的玻璃注射器移取水样。首先在玻璃注射器内吸人部分空气,当注射器通过正辛醇相时,轻轻排出空气,在水相中已吸取足够的溶液时,迅速抽出注射器,卸下针头后,即可获得无正辛醇

环境分析化学实验指导书

实验一、酸碱标准容液的配制及标定 废水酸度的测定 一、目的 1. 掌握酸、碱标准溶液的配制与标定方法。 2. 掌握滴定操作. 3. 了解酸度的基本概念;掌握水样酸度的测定方法 二、原理 用直接法配标准溶液的物质,需符合①纯度达到一定要求;②组成与化学式符合;③稳定等三个条件。市售的盐酸,氢氧化钠不能满足上述要求,因此采用间接法配制盐酸,氢氧化钠标准溶液,然后用基准物进行标定。NaOH溶液可用邻苯二甲酸氢钾标定,由于邻苯二甲酸的Ka=2.9x 10-6,化学计量点附近的pH突跃与酚酞的变色范围重合,故可用酚酞为指示剂,HCl溶液可用碳酸钠标定,用甲基橙做指示剂. 标定了碱或酸的浓度后,另一溶液的浓度也可根据酸与碱溶液滴定的体积比计算得出。 在水中,由于溶质的解离或水解(无机酸类,硫酸亚铁和硫酸铝等)而产生的氢离子,与碱标准溶液作用至一定pH值所消耗的量,定为酸度。酸度数值的大小,随所用指示剂指示终点pH值的不同而异。滴定终点的pH值有两种规定,即8.3和3.7。用氢氧化钠溶液滴定到pH8.3(以酚酞作指示剂)的酸度,称为“酚酞酸度。又称总酸度,它包括强酸和弱酸。用氢氧化钠溶液滴定到pH3.7(以甲基橙为指示剂)的酸度,称为“甲基橙酸度”,代表一些较强的酸。 三、仪器 1. 称量瓶

2. 250 ml锥形瓶 3. 50ml滴定管 四、试剂 1. 无二氧化碳水:pH不低于6.0的蒸馏水,如蒸馏水的pH较低,应蒸沸15 分钟,加盖后冷却至室温。 2. 酚酞指示剂:称取0.5克酚酞,溶于50毫升95%乙醇中,再加入50毫升 水。 3. 甲基橙指示剂:称取0.05克甲基橙,溶于100毫升水中。 4. 无水碳酸钠:优级纯 5. 邻苯二甲酸氢钾:优级纯。 五、步骤 1.0.1mol/L盐酸及0.1mol/L氢氧化钠溶液的配制 0.1mol/L盐酸溶液的配制:用清洁量筒量取纯浓盐酸(比重1.19)4.3毫升,倒入清洁的试剂瓶中,用蒸馏水稀释至500毫升,以玻塞塞住瓶口,充分摇匀,贴上标签。 0.1mol/L氢氧化钠溶液的配制:用小烧杯在粗天平上称取固体纯氢氧化钠2克,加无二氧化碳水约100毫升,使氢氧化钠全部溶解,将溶液倾入另一清洁塑料试剂瓶中,用无二氧化碳蒸馏水稀释至500毫升,充分摇匀,贴上标签。2.酸碱标准溶液浓度的标定‘ 碱溶液的标定步骤: (1)减量法称量 1.准备二只洁净,并编有号码的250毫升锥形瓶和一只洁净,干燥的称量瓶,称量瓶内装入试样若干克。 2.在天平上准确称得称量瓶与试样重量m l克,左手用小纸条套住称量瓶,从天平盘上取出,右手用一小块纸捏住瓶整尖,再在锥形瓶上方打开瓶盖,用

相关文档
最新文档