土壤侵蚀危险性建模分析

土壤侵蚀危险性建模分析
土壤侵蚀危险性建模分析

实验八、Model Builder 土壤侵蚀危险性建模分析一、实验目的

模型生成器(ModelBuilder) 为设计和实现空间处理模型提供了一个图形化的建模环境。模型是以流程图的形式表示,它通过工具将数据串起来以创建高级的功能和流程。你可以将工具和数据集拖动到一个模型中,然后按照有序的步骤把它们连接起来以实现复杂的GIS 任务。通过对本次练习,我们可以认识如何在ModelBuilder环境下通过绘制数据处理流程图的方式实现空间分析过程的自动化,加深对地理建模过程的认识,对各种GIS分析工具的用途有深入的理解。

二、实验准备

1. 认识ModelBuilder操作界面

1: 添加硬盘上的数据或工具到模型中,数据也可以从ArcMap或ArcCatalog从直接拖到模型中,工具可以直接从Arctoolbox直接拖到模型中

2: 显示全部模型要素,并充满ModelBuilder窗口

3: 自由缩放,点击此按钮后,按住鼠标不放可,向上或向下移动鼠标可以自由缩放ModelBuilder中的流程图

4: 选择,用以选择模型中的数据图框,工具图框

5: 添加连接,将数据和工具连接起来

6: 运行选中的处理过程或整个模型

2. 问题分析,数据说明

目标:获取[土壤侵蚀危险性分布图]

因子确定:坡度、土壤类型、植被覆盖

数据:矢量数据:研究区界线(Study Area)、植被(V egetation),栅格数据:土壤类型栅格(Soilsgrid)

三、实验内容及步骤

1. 加载数据

(1)在ArcMap中新建一个地图文档

(2)添加矢量数据:StudyArea、Vegetation、栅格数据Soilsgrid(同时选中:在

点击的同时按住Shift)

(3)打开Arctoolbox,激活Spatial Analyst空间分析扩和3D分析扩展模块(执

行菜单命令[工具]>>[扩展],在出现的对话框中选中“空间分析模块”和“3D分析”)

(4)根据Vegetaion 中的属性[VegTYPE]设置植被图层的符号为[唯一值渲染],

根据SoilsGrid 图层中属性[S_Value]设置土壤类型栅格的符号为[唯一值渲染],设置图层StudyArea的边界和填充,并调整各图层的顺序得到如下下效果:

(5)保存地图文档为[Ex8.mxd]

2. 创建模型

在上一步操作的基础上进行

(1)在ArcMap中,打开Arctoolbox,执行菜单命令: [工具]>>[选项], 在[选项]

设置对话框中,设置[空间处理]选项页中[我的工具箱位置],将其指定为某个路径,比如

[d:\arcgis],因为以下建立的模型将会被保存到后缀为[ .tbx] 的文件中,而这个文件是保存在以上设定的路径下的.

(2)在Arctoolbox中,右键点击根目标[Arctoolbox],在右键菜单中执行[新的工具箱]命令,将会在[d:\arcgis]创建一个工具箱,将新建工具箱改名,比如[geosptial]

(3)右键点击新建的工具箱[geosptial], 在右键菜单中,执行命令:[新建]>>[模型],将打开[ModelBuilder] 应用程序窗口:

注意:对已存在的模型,右键点击模型后,选择[编辑]也可以打开[ModelBuilder]窗口,对已存在的模型进行编辑。

3. 编辑模型

在上一步基础上进行

(1)在[ModelBuilder]窗口中,执行菜单命令:[模型]>>[模型属性]

在[常规]选项页中,设置模型的名称及标注

在[环境变量]选项页中设置分析范围为研究区范围

通过在[环境设置]中,设定[常规设置]的[输出范围]为[Same As Layer “StudyArea”] (2)在[ModelBuilder]窗口中,执行菜单命令:[模型]>>[图解属性]

(3)从ArcMap中,将图层[Vegetaion]、[Soilsgrid]拖放到[ModelBuilder]窗口中; 从[Arctoolbox]中将工具[DEM到栅格] 拖放到[ModelBuilder]窗口中(此工具在[Conversion Tools]>>[To Raster]下)

(4)在[ModelBuilder]窗口中,双击工具图框[DEM到栅格],在出现的工具设置

对话框中指定输入USGS DEM文件为:[elevation.dem]-通过输入框右边的[浏览打开]按钮在硬盘上找到该文件。

(5)从[Arctoolbox]中将工具[坡度] 拖放到[ModelBuilder]窗口中(此工具在[3D Analyst Tools]>>[ Raster Surface]下),在[ModelBuilder] 窗口中,点击[添加连接]按钮(如下图红色箭头所指)将派生数据图框[DEMToRa_elev1]与工具图框[坡度]连接在一起。完成后效果如下图所示:

右键点击图框[输出栅格]将其改名为: [坡度图]

(6)从[Arctoolbox]中将工具[重分类] 拖放到[ModelBuilder]窗口中(此工具在[Spatial Analyst Tools]>>[ Reclass]下),在[ModelBuilder] 窗口中,点击[添加连接]按钮将派生数据图框[坡度图]与工具图框[重分类]连接在一起。完成后效果如下图所示:

(7)在[ModelBuilder]窗口中,双击工具图框[重分类],在[重分类]工具属性对

话框中将坡度重分类:

在这里我们通过INFO数据表[slopereclass]实现重分类,在上图中,点击[装载]按钮,找到数据表[slopereclass],将根据此数据表中的设定值将坡度分为10类。

[Slopereclas]中有特殊的字段[FROM]、[TO]、[OUT]、[MAPPING],可以用于重分类:

在[ModelBuilder]窗口中,右键点击工具图框[重分类]后面的[输出栅格]将其改名为: [重分类坡度图]

(8)从[Arctoolbox]中将工具[要素到栅格] 拖放到[ModelBuilder]窗口中(此工具

在[Conversion Tools]>>[ TO Raster]下),在[ModelBuilder] 窗口中,点击[添加连接]按钮将数据图框[vegetaion]与工具图框[要素到栅格]连接在一起。完成后效果如下图所示:

将工具图框[要素到栅格]后的[输出栅格]改名为[植被栅格]。

双击与[Vegetaion]相连的工具图框[要素到栅格],在出现的对话框中,设置字段为[VEGTYPE],确定。

在[ModelBuilder]中右键选中图框[要素到栅格],执行[运行]命令。[注:此步骤比较重要]

(9)从[Arctoolbox]中将工具[加权叠加] 拖放到[ModelBuilder]窗口中(此工具在[Spatial Analyst Tools]>>[ Overlay]下),右键点击工具图框[加权叠加]后的结果数据图框改名为[土壤侵蚀栅格],完成后效果如下图所示:

(10)在[ModelBuilder]窗口中,双击工具图框[加权叠加],在出现的[加权叠加]工具设置对话框中点击[Add Raster Row]按钮(下图红色箭头所指)

在[加入加权叠加层]对话框中,按下图所示指定各参数,将因子[SOILSGRID]加入加权叠加分析过程:

在[加权叠加]对话框再次点击[Add Raster Row]按钮,将下图所示设置参数,将因子[植被

栅格]加入到加权叠加分析过程:

在[加权叠加]对话框再次点击[Add Raster Row]按钮,将下图所示设置参数,将因子[重分类坡度图]加入到加权叠加分析过程:

三个因子添加完成后,回到[加权叠加]工具设置对话框,分别将因子[Soilsgrid] 、[植被栅格]、[重分类坡度图]的权重设置为:[25%]、[25%]、[50%]

(11)设置因子[Soilsgrid]:根据不同土壤类型对土壤侵蚀危险性的影响力,不同的土壤类型给定不同的的数值,数值1表示改天土壤侵蚀危险度较低,9表示较高

(12)设置因子[植被栅格]:根据不同植被类型对土壤侵蚀危险性的影响力,不同的植被类型给定不同的的数值,数值1表示改天土壤侵蚀危险度较低,9表示较高

(13)设置因子[重分类坡度图]:根据不同坡度低的区域发生土壤侵蚀的危险系统

较小,坡度较大的区域发生土壤侵蚀的危险系数较大,不同坡度对应不同数值,数值1表示改天土壤侵蚀危险度较低,9表示较高

最终完成的模型图如下:

4. 执行模型,查看结果

(1)在[ModelBuilder]窗口中执行菜单命令:[模型]>>[运行整个模型]。请耐心等待计算结果:需要(3-5s)

(2)在[ModelBuilder]窗口中,右键点击图框[土壤侵蚀栅格]在出现的右键菜单中选中[添加到显示窗口]。于是土壤侵蚀危险性分级栅格数据[Hazrad] 被加入到ArcMap中,从[0..9] 表示研究区内土壤侵蚀的危险级别,1表示发生土壤侵蚀的可能性较小,9表示发生土壤侵蚀的可能性极大。

四、实验报告要求

根据以上所学求解以下实际问题,将所做工作按要求提交报告。

问题:入城高速公路配套停车场的选址分析

在这个例子中,将涉及入城高速公路配套停车场的选址问题,这些公路是进入城市的重要通道。为了方便车主使用,停车场应该靠近入城高速公路的出入口位置; 为了减少对社区居民的影响、降低成本,停车场应该建在已经规划好的,且没有被使用的区域内。

理想的选址要符合以下的条件:

●在距公路出口500米的范围内

●有空地可供利用

●处于商业区内

要求:

1.利用已上数据,根据给出的限制条件找到合适的停车场选址分布图

2.提交实验报告,实验报告应包括以下的内容,且组织合理。

a)对问题的阐述及在ArcMap进行空间分析的过程描述。

b)得到的中间结果、停车场选址分布图以屏幕截图的形式在报告中体现。

c)回答问题:满足条件的地块有多少个(可供设立停车场的区域)

d)在ModelBuilder中建立分析模型,将分析过程自动化,模型以模型图的形

式插入报告中,合理布局模型图,使其字迹清晰。

3.此次作业请大家认真完成,打印后,于10日以内提交,不要发EMAIL。

第10章土壤侵蚀调查与评价

第10章土壤侵蚀调查与评价 主要教学目标: 阐述土壤侵蚀调查目的及手段,使学生掌握土壤侵蚀调查步骤、调查内容及调查结果和分析方法。 教学方法: 以课堂讲授为主,学生课堂及课下自学,参阅课外书及野外实习为辅。 主要内容: 第一节土壤侵蚀调查目的、手段及步骤 第二节不同种类侵蚀调查 第三节调查报告与结果分析 主要讲解内容 第一节土壤侵蚀调查目的、手段及步骤 土壤侵蚀调查就是依据一定的方法和规则,将调查范围划分成若干个具有一定面积的调查单元进行土壤侵蚀调查。 一般情况下划分土壤侵蚀调查单元所遵循的原则是土地利用现状和该土地所处的地貌部位相一致。通过调查分析影响土壤侵蚀的因子,制定出土壤侵蚀形式、土壤侵蚀程度的判定指标,并形成判定指标体系。进而根据制定的土壤侵蚀强度判读因子,判定出每种土壤侵蚀形式的潜在危险性(强度)。 根据调查得到的土壤侵蚀类型、土壤侵蚀形式及其分布特点、土壤侵蚀发生程度及其强度,对调查范围内的土壤侵蚀发生发展特点、主要影响因素等作出评价。其成果主要包括两个方面,一是土壤侵蚀调查评价报告;二是与土壤侵蚀相关的图面资料,包括土壤侵蚀形式分布图、土壤侵蚀程度图和土壤侵蚀强度图、土地利用现状图、地面坡度图、沟系分布图等。 一、土壤侵蚀调查目的及手段 1.调查目的 我国山区、丘陵区及风沙区的自然条件复杂,土壤侵蚀类型和形式多样,通过土壤侵蚀调查,可查明调查地区土壤侵蚀特点、发展规律、形成原因,以及调查范围的水土资源

利用现状及土地利用状况对土壤侵蚀的影响等。归结起来,土壤侵蚀调查的目的有以下两个方面。 (1)为防治措施规划设计提供依据 (2)为水土资源综合利用规划提供依据 2. 调查手段 土壤侵蚀调查常用的手段有野外现地实测与访问、遥感资料人工判读解译、计算机判读解译等。无论采用何种方法,到有关部门收集有关资料和查阅档案材料等都是必不可少的基础工作。 二、土壤侵蚀调查步骤 根据土壤侵蚀调查内容,常常将调查工作分为几个步骤,每个步骤的主要侧重点虽然不同,但都是为了调查目的这个总目标服务的。一个完整的土壤侵蚀调查工作可分为准备工作、资料收集与整理、土壤侵蚀调查、土壤侵蚀分析与评价等几个阶段。 1. 资料收集与整理 影响土壤侵蚀的有自然因素和人为不合理的各种活动。因此在进行基本资料的收集时也要包括自然条件和社会经济条件这两个方面,其中包括有关土壤侵蚀的文字及相关的图表。同时对已有土壤侵蚀情况和水土保持措施等也应作为资料收集的对象。在资料收集的过程中要随时进行整理工作,去粗取精、去伪存真以供土壤侵蚀调查分析使用。 (1)自然条件 影响土壤侵蚀的自然条件一般包括气象、地貌、土壤、水文、植被等。另外,该地历史上发生过土壤侵蚀灾害如山洪、泥石流等情况也应作为资料收集的范围之内。 (2)社会经济条件 社会经济方面的资料包括调查区所属行政区划(省、地、县、乡、村),人口、劳力、农村产业结构、农、林、牧、副各业产业情况、土地总面积及其利用现状、劳动技术装备程度、人民生活水平等。土壤侵蚀危害及已有防治措施,土壤侵蚀防治经验和存在的问题等。 (3)土壤侵蚀资料 有些地区可能作过土壤侵蚀调查方面的工作,此时应收集前人的工作成果,包括调查范围(有时可能是调查范围内的一部分)内的土壤侵蚀类型、形式,各土壤侵蚀形式的发生程度及其发展强度,不同土壤侵蚀形式的分布等。 第二节不同种类侵蚀调查

土壤侵蚀研究进展

基于 USLE、GIS、RS 的流域土壤侵蚀研究进展 摘要:本文系统地介绍了 ULSE 模型中各侵蚀因子及其相应的算法,总结了国内外研究中获取各因子的新方法,并简要介绍了土壤侵蚀分析研究的新模型及其进展。当前 GIS 和 RS 作为新兴技术在土壤侵蚀分析研究中发挥了重要的作用,文章针对当前 GIS、RS 和 ULSE 在土壤侵蚀评价中的应用,指出了目前 GIS 和RS 在侵蚀研究中存在的问题,并提出了自己的观点和建议。 关键词:通用土壤流失方程( USLE);土壤侵蚀; RS; GIS This paper systematically introduces ULSE erosion factors of each model and the corresponding algorithm, summed up the researches of a new method for each factor, and briefly describes the analytical study of soil erosion and its progress in the new model. Current GIS and RS as an emerging technology in the analysis of soil erosion has played an important role, articles for the current GIS, RS and ULSE soil erosion assessment in the application of GIS and RS are pointed out in the erosion problems, and put forward their views and suggestions. Keywords: Universal Soil Loss Equation (USLE); soil erosion; RS;GIS 土壤是地球上生物赖以生存的基本要素之一,土地以及不同质量的土壤生产了超过90%的人类和牲畜所需要的食物。土地退化的日益严重成为制约人类发展的重要因素,土壤侵蚀是其中一个重要原因。土壤侵蚀使土壤肥力下降,理化性质变劣,土壤利用率降低,生态环境恶化。目前全球土地退化日益严重,我国是世界上土壤侵蚀最为严重的国家之一,土壤侵蚀面积占国土面积的比例高达38。2%,研究土壤侵蚀的机理,有效地对其进行监控、治理已经成为全球关注的焦点。传统的土壤侵蚀量调查方法耗时、周期长,而且很难确定中等尺度流域的土壤侵蚀量。随着侵蚀过程和机理研究的不断深入以及土壤侵蚀影响因素和侵蚀空间分布规律探讨的不断加强,土壤侵蚀的研究也逐渐走上了多途径、多学科协同研究的道路。但许多定量研究方法长期以来都在坡面和小流域尺度上进行,很难在区域尺度上推广,而美国农业部颁布的在区域土壤侵蚀调查方面富有特色的通用水土流失方程( USLE) 正好弥补了这一方面的空缺。20 世纪 80 年代 USLE 开始引入中国,而且研究人员在探讨坡面和流域土壤流失量的同时,还开始注重应用

土壤侵蚀的估算方法

土壤侵蚀的估算方法 数 据 处 理 流 程 作者:牛健平 时间:2011年10月11日 北京天合数维科技有限公司

目录 (CONTENT) 一、所需数据与参数 (3) 1、所需数据 (3) 2、所需中间参数 (3) 2.1、水土保持因子P (3) 2.2、地标覆盖因子C (3) 2.3、地形因子LS (4) 2.4、土壤可视性因子K (4) 2.5、降水侵蚀因子R (4) 3、所需参数 (5) 3.1、潜在土壤侵蚀量Ap (5) 3.2、现实土壤侵蚀量Ar (5) 3.3、土壤保持量Ac (5) 4、指标结果参数 (5) 4.1、保护土壤肥力的经济效益Ef (6) 4.2、减少土地废弃的经济效益Es (6) 4.3、减轻泥沙淤积的经济效益En (6) 二、处理流程 (7) 1、DEM数据的处理 (8) 1.1、坡长L (8) 1.2、百分比坡度a (8) 1.3、地形因子LS (9) 2、气象数据 (9) 2.1、月降雨量Pi的计算 (9) 2.2、土壤侵蚀力指标R (10) 3、土壤类型数据 (10) 4、遥感影像数据 (10) 5、土壤理性化数据 (11) 三、所需参数的计算 (11) 四、指标结果参数计算 (11)

一、所需数据与参数 在计算的过程中,总共涉及到的数据有地形数据、遥感影像数据、气象数据、土壤类型数据、土壤理性化数据以及统计数据,涉及到的中间参数有水土保持因子P,地标覆盖因子C,地形因子LS,土壤可视性因子K,降水侵蚀因子R,所需要的参数有潜在土壤侵蚀量Ap,现实土壤侵蚀量Ar,土壤保持量Ac,指标结果参数有保护土壤肥力的经济效益Ef,减少土地废弃的经济效益Es,减轻泥沙淤积的经济效益En。 1、所需数据 在进行土壤侵蚀的估算过程中,需要以下数据: A、地形数据; B、遥感影像数据; C、气象数据,主要是降雨量数据; D、土壤类型数据; E、土壤理性化数据; F、统计数据。 2、所需中间参数 在数据处理的过程中,所涉及到的中间参数与计算公式如下。 2.1、水土保持因子P 按照游松财的方法,水田的P值取0.15,其他土地利用方式基本没有采取水土保持措施,因此取值为1.00。 2.2、地标覆盖因子C 地表覆盖因子是根据地面植被覆盖状况不同而反映植被对土壤侵蚀影响的因素,与土地利用类型、覆盖度密切相关。C值的估算采用如下公式:

全球变化条件下的土壤呼吸效应_彭少麟

第17卷第5期2002年10月 地球科学进展 ADVANCE IN EARTH SCIENCES Vol.17 No.5 Oct.,2002 文章编号:1001-8166(2002)05-0705-09 全球变化条件下的土壤呼吸效应 彭少麟,李跃林,任 海,赵 平 (中国科学院华南植物研究所,广东 广州 510650) 摘 要:土壤呼吸是陆地植物固定CO2尔后又释放CO2返回大气的主要途径,是与全球变化有关的一个重要过程。综述了全球变化下CO2浓度上升、全球增温、耕作方式的改变及氮沉降增加的土壤呼吸效应。大气CO2浓度的上升将增加土壤中CO2的释放通量,同时将促进土壤的碳吸存; 在全球增温的情形下,土壤可能向大气中释放更多的CO2,传统的土地利用方式可能是引发温室气体CO2产生的重要原因,所有这些全球变化对土壤呼吸的作用具有不确定性。认为土壤碳库的碳储量增加并不能减缓21世纪大气CO2浓度的上升。据此讨论了该问题的对策并提出了今后土壤呼吸的一些研究方向。其中强调,尽管森林土壤碳固定能力有限,但植树造林、森林保护是一项缓解大气CO2上升的可行性对策;基于现有田间尺度CO2通量测定在不确定性方面的进展,今后应继续朝大尺度田间和模拟程序方面努力;着重回答全球变化条件下的土壤呼吸过程机理;区分土壤呼吸的不同来源以及弄清土壤呼吸黑箱系统中土壤微生物及土壤动物的功能。当然,土壤呼吸的测定方法尚有待改善。 关 键 词:土壤呼吸;碳循环;全球变化 中图分类号:Q142.3 文献标识码:A 土壤呼吸是植物固定碳后,又以CO2形式返回大气的主要途径。土壤碳库在全球变化研究中的地位已日益突出,而土壤呼吸作为土壤碳库碳平衡的一个重要相关过程不容忽视,研究土壤呼吸有助于揭示土壤碳库动态机理。在大气与土壤界面,土壤CO2释放的驱动因子是多种多样的,在全球变化条件下研究相关因子与土壤呼吸是全球变化研究的一个重要内容。全球变化有不同的定义,1990年美国的《全球变化研究议案》,将全球变化定义为“可能改变地球承载生物能力的全球环境变化(包括气候、土地生产力、海洋和其它水资源、大气化学以及生态系统的改变)”。狭义的全球变化问题主要指大气臭氧层的损耗、大气中氧化作用的减弱和全球气候变暖[1,2]。土壤呼吸研究工作的开展,从研究对象来说,涉及农田、森林、草地等,从研究的地域来说从低纬至高纬均有研究,其中大部分研究集中于中纬度的草地和森林,目前,北极冻原也有研究报道[3]。 本文对在全球CO2浓度升高、气温上升、大气氮沉降等发生变化的背景下,土壤呼吸的响应作一综述,以促进土壤呼吸的研究,加深人们(特别是政策决策层)对土壤呼吸的认识。 1 大气CO2浓度升高的土壤呼吸效应 早期的土壤呼吸的测定基于表土层CO2的释放,开始于80多年前[4]。随着科学研究的发展,时至今日,土壤呼吸因为其全球的CO2总释放量已被  收稿日期:2002-01-04;修回日期:2002-05-31. *基金项目:国家自然科学基金重大项目“中国东部样带主要农业生态系统与全球变化相互作用机理研究”(编号:39899370);中国科学院知识创新工程重要方向项目“南方丘陵坡地农林复合生态系统构建机理与可持续性研究”(编号:KZCX2-407);广东省重大基金项目“广东省主要农业生态系统与全球变化相互作用机理研究”(编号:980952)资助.  作者简介:彭少麟(1957-),男,广东人,研究员,主要从事生态学方面的研究工作.E-mail:slpeng@https://www.360docs.net/doc/742835109.html,

坡耕地土壤侵蚀研究进展

第15卷第3期2001年9月 水土保持学报 Journal of So il and W ater Conservati on V o l.15N o.3 Sep.,2001  坡耕地土壤侵蚀研究进展① 傅 涛,倪九派,魏朝富,谢德体 (西南农业大学资源与环境学院,重庆400716) 摘要:论述了坡耕地土壤侵蚀的机理、研究方法及防治措施,分析了坡耕地泥沙、径流、养分流失的特征及影响 因素,认为坡耕地是水土流失的主要来源,在整个生态环境建设中具有重要地位。目前国内外研究多偏重于坡面 水土流失特征的描述和控制坡面水土流失、提高土壤肥力的效果等,研究方法以定性和统计分析为主,在坡耕地 水土流失机理、养分流失所造成的面源污染、坡面流失定量预测模型以及控制措施与坡面的相互作用等方面还需 作更深入的研究。 关键词:坡耕地; 土壤侵蚀机理; 防治措施 中图分类号:S157.1;S157.2 文献标识码:A 文章编号:100922242(2001)0320123206 Recen t D evelopm en t of Slop i ng F ield Erosion FU T ao,N I J iu2pai,W E I Chao2fu,X IE D e2ti (Colleg e of R esou rces and E nv ironm ent,S ou thw est A g ricu ltu ral U niversity,Chong qing400716) Abstract:T he p rogresses of slop ing field ero si on,study m ethods and of p reven tive m easu res are summ a2 rized.T he m echan is m and affect facto rs of sedi m en t,runoff and nu trien t lo ss on the slop eland su rface are an2 alyzed resp ectively.T he slop ing fields w ere the m ain sou rce of sedi m en t,runoff and nu trien t lo ss.M o st of the research w o rk s focu sed on the p reven ti on so il and w ater lo ss on the slopeland su rface and i m p rovem en t of so il fertility.M o st of the study m ethods w ere qualitative and statistics analysis.How ever,studies on the m echan is m of so il and w ater lo ss and nu trien t lo ss,the m odel of quan titative analysis w ere scarce yet,the fu rther studies shou ld pay m o re atten ti on to the p rocesses of runoff and sedi m en t yield,so as to study the m echan is m of slop e ero si on and bu ild the p rocess2based m odel of w ater ero si on p redicti on. Key words:slop ing field; m echan is m of so il ero si on; m easu res of p reven ti on and cu re 坡面侵蚀过程包括降雨溅击和径流冲刷引起的土壤分离、泥沙输移和沉积3大过程,研究和分析这些过程发生、发展的水力、土壤、地形条件以及各过程间相互转化、相互影响的机理,是建立土壤侵蚀物理模型的前提。我国在该领域的研究较少,同时我国山丘面积占总面积2 3,坡耕地在我国耕地面积中占有很大比例,陡坡农耕地是重要的农业资源。近年来,坡耕地水土流失受到越来越多学者的关注。大量资料表明,一方面坡耕地是大量江河泥沙的主要来源;另一方面,坡耕地严重的水土流失使山区丘陵土层变薄,养分流失,保水能力变差,使大多数坡耕地生产力低下,严重阻碍山地丘陵区农业可持续发展,使广大山区农民无法脱贫致富,更造成恶性循环,加速坡耕地的水土流失。因此,根据我国实际情况,开展坡耕地土壤侵蚀分离、输移和沉积过程及其关系的研究,对于建立具有我国特色的土壤侵蚀模型,进而指导水土保持生产实践具有十分重要的理论和生产意义。目前对坡耕地土壤侵蚀研究大多集中在3个方面,一是对坡耕地土壤侵蚀的方法研究,包括实验研究方法和土壤侵蚀评估方法,二是对坡耕地土壤侵蚀机理的研究,三是对减轻坡耕地土壤侵蚀措施的研究及评价。 1 研究方法 1.1 试验研究方法 常见的研究方法可分为室外和室内两大类[1],室外方法通常是选择比较规则、具有代表性的坡面,在坡面上根据研究目的需要,建立相应的观测小区。小区的宽度多在1~5m之间,基本要求是小区能够完整地反映地形地貌特征,小区的长度也与试验目的密切相关,有的长3~5m,有的则长达10m以上。试验时多采用模拟降雨结合放水冲刷,或者在自然降雨条件下观测。试验时测定径流量和泥沙量,同时采集径流样和泥沙样,用于 ①收稿日期:2001204209 3重庆市科委资助项目“三峡库区坡耕地水土流失机理及预测评价建模”(编号410586) 作者简介:傅涛,男,生于1972年,博士生。主要从事水土保持与土地资源等方面的研究工作,发表论文11篇。

实验三 基于GIS的土壤侵蚀因子分析与信息提取

实验三基于GIS的土壤侵蚀因子分析与信息提取 一、实验目的 1、要求学生掌握地理信息系统软件(ArcView)的基本原理和操作方法; 2、掌握使用该软件进行土壤侵蚀因子的分析和信息提取的方法。 二、实验原理 Arc/View的空间分析模块是解决地理空间问题的工具。它主要包括距离制图、计算密度、统计分析、邻域分析、数据的重分类、表面生成、等高线生成、坡度提取、坡向提取、光照模型的生成、流域的划分等功能。利用Arc/View的空间分析模块解决空间问题,首先要把问题空间化、模型化,然后利用Arc/View 提供的各种功能的组合来完成。 Arc/View的空间分析模块主要是基于栅格数据模型的。Arc/View的空间分析模块不仅支持矢量数据模型,还支持栅格数据模型。矢量数据是用点、线、面来描述地理特征及其变化的,它主要用于精确地描述地理特征,在Arc/View中,点、线、面数据分别是存放于不同的主题中来管理的。栅格数据是通过将地表分隔成不同的单元来表示地理特征及其变化的,对栅格数据的存储只是通过存储栅格的原点、栅格单元的尺寸、距离原点的单元数和每个栅格单元的值。对栅格数据影响最大的是栅格单元的尺寸。单元尺寸越大,则对地理特征的描述越粗糟,越不精确,但产生的数据量会越小,处理速度会越快。相反,单元尺寸越小,则描述越精确,但数据量会越大,运算速度越慢。 三、操作步骤 地形指标是最基本的自然地理要素,也是对人类的生产和生活影响最大的自然要素。地形特征制约着地表物质和能量的再分配,影响着土壤与植被的形成和发育过程,影响着土地利用的方式和水土流失的强度。地形指标的提取对水土流失、土地利用、土地资源评价等方面的研究起着重要的作用。 1 坡向Aspect 坡向定义为坡面法线在水平面上的投影与正北方向的夹角。在Arcview中Aspect表示每个栅格与它相邻的栅格之间沿坡面向下最陡的方向。在输出的坡向数据中,坡向值有如下规定:正北方向为0度,正东方向为90度,以次类推。 坡向可在数字高程模型Dem或TIN数据的基础上提取。在Dem基础上提取坡向的步骤如下: 在视图目录表中添加dem并激活它。

土壤水分对农业生产的影响讨论

土壤水分对农业生产的影响讨论 土壤水分是影响农业生产的重要因子之一,掌握土壤水分资料对农业生产实践有重要意义。土壤中水分的变化不仅与水分消耗有关,而且也与水分收入诸如降水、融雪和地下水流以及其它因素有关。在作物地,还与地面特性、作物种类及其发育期、作物地上部和根系状况有关。因此,土壤水分在时间和空间上的变化是很大的。 为了确切地取得土壤水分的可靠数据,近年来研究出不少测定和计算方法,本文不讨论这些具体测定和计算方法,主要目的是讨论有关土壤水分测定中几个共同性问题。 1 试验资料 本文所用数据取自北京农业大学曲周实验站土壤水分试验场,该地属半湿润季风气候区,对黄淮海平原有一定的代表性,测定地段为裸地和冬小麦地,土壤水分用土壤水分仪测定一次,取4次重复,每10cm为一土层,测至1.5m或2.om深度。土壤为盐化潮土,地下水埋深3.5~4.om,测定时间为1981年~1987年。 2 讨论和分析 浏定深度根据河北曲周1982年(属典型年份)裸地各季土壤水分垂直变化资料分析〔功,按土壤垂直剖面的水分变化状况,作出了土壤水分垂直分层,所划分的三个层次为

土壤水分极活跃层,土壤水分活跃层和土壤水分稳定层。各层的特点见表1.另据1986~1987年冬小麦地(施氮肥15kg/亩)于麦收后选100x100cm2五行麦茬地挖土壤剖面,修平剖面后,用水冲去土粒露出根系,统计smm长的根数,其根量随剖面深度的分布“幻如表2所示。 分析表1,2,3中的数据,可以看出:在上述条件下,为了掌握土壤水分不同时间的垂直变化特点,通常在裸地测定深度达lm即可,因为在lm深以下的土层中,土壤水分垂直分布的季节变化和各季水分的垂直梯度均不大。在作物地,从冬小麦根系随深度的分布和不同作物利用水分的有效土层来看,测至lm深度也够了。在一些作物的生育初期和浅根作物的一些生育期,利用水分的有效土层较浅,一般在sm 左右,这主要是由于根系分布状况所决定的。在冬小麦生育后期,0~50cm土层的根系数量占。~100”m土层根般的90%以上,因此侧定深度不能浅于50cm.0~20cm土层内冬小麦根量占。~100cm土层的2邝左右,且该土层土壤水分变化激烈,故。~20cm土层是土壤水分测定的重要土层。 2.2N.J定层次按A.A.罗杰的说法,测定层次的确定要考虑土壤发生层,即一个测定层次不要包括两个上壤发生层,也就是在同一土壤发生层内考虑选取测定层次,因为在不同土壤发生层内土壤水分的差异可能较大,如此才能清晰地看出土壤水分的垂直变化川。通常,在土壤水分垂直梯度大的

(完整版)土壤侵蚀强度分级标准表.doc

土壤侵蚀强度分级标准表(SL190-96) 级别平均侵蚀模数 [t/(km 2· a)] 平均流失厚度(mm/a) 西北黄土东北黑土区 / 南方红壤丘 西北黄土 南方红壤丘陵区 /西南 东北黑土区 / 高原区北方土石山区高原区北方土石山区陵区 /西南土 土石山区石山区微度< 1000 < 200 < 500 < 0.74 < 0.15 < 0.37 轻度1000-2500 200-2500 500-2500 0.74-1.9 0.15-1.9 0.37-1.9 中度2500-5000 1.9-3.7 强度5000-8000 3.7-5.9 极强度8000-15000 5.9-11.1 剧烈> 15000 >11.1 注:本表流失厚度系按土壤容重 1.35g/cm3折算,各地可按当地土壤容重计算之。 土壤侵蚀程度分级指标* 劣地或石现代沟谷(细植被 程度质坡地占沟,切沟,冲覆盖度地表景观综合特征 该地面积 % 沟)占该面积 % ( %) 斑点状分布的劣地或石质坡地。沟 轻度<10 <10 70-50 谷切割深度在 1m 以下,片蚀及细 沟发育。零星分布的裸露沙石地表 有较大面积分布的劣地或石质坡 中度10-30 10-30 50-30 地。沟谷切割深度在 1-3m 。较广泛 分布的裸露沙石地表 强度≥30 ≥30 ≤ 30 密集分布的劣地或石质坡地。沟谷 切割深度 3m 以上。地表切割破碎 土地生物生 产量较侵蚀 前下降 % 10-30 30-50 ≥50 * 注:在判别侵蚀程度时,根据风险最小原则,应将该评价单元判别为较高级别的侵蚀程度。 风蚀强度分级表 * 级别床面形态(地表形态) 植被覆盖度( %)风蚀厚度侵蚀模数 (非流沙面积)( mm/a)[t/(km 2· a)] 微度固定沙丘,沙地和滩地> 70 < 2 < 200 轻度固定沙丘,半固定沙丘,沙地70-50 2-10 200-2500 中度半固定沙丘,沙地50-30 10-25 2500-5000 强度半固定沙丘,流动沙丘,沙地30-10 25-50 5000-8000 极强度流动沙丘,沙地< 10 20-100 8000-15000 剧烈大片流动沙丘< 10 > 100 > 15000 1

基于RUSLE的土壤侵蚀建模分析

空间信息应用实践(中级)实验指导书 空间建模——基于RUSLE的土壤侵蚀建模分析 一.实验背景 Soil erosion and gullying in the upper Panuco basin, Sierra Madre Oriental, eastern Mexico 土壤侵蚀是地球表面物质运动的一种自然现象,全球除永冻地区外,均发生不同程度的土壤侵蚀。人类社会出现后,土壤侵蚀成为自然和人为活动共同作用下的一种动态过程,构成了特殊的侵蚀环境背景,并伴随着人类对自然改造能力的增强,逐渐成为当今世界资源和环境可持续发展所面临的重要问题之一。 土壤侵蚀被称为“蠕动的灾难”,每年因土壤侵蚀造成的经济损失较诸如滑坡、泥石流和地震等地质灾害更大, 土壤侵蚀已成为我国乃至全球的重大环境问题之一。

土壤侵蚀及其产生的泥沙使土壤养分流失、土地生产力下降、湖泊淤积、江河堵塞,并造成诸如洪水等自然灾害,泥沙携带的大量营养物和污染物质加剧了水体富营养化,水质恶化,不断严重威胁到人类的生存。 据估计全球每年因土壤侵蚀损失300万公顷土地的生产力,造成的损失以百亿美元计。我国人口众多、农耕历史悠久,加之历史上战乱频仍,以黄土高原为代表的华夏文明发源地是世界上土壤侵蚀最严重的区域之一,1990年遥感普查结果,全国水土流失面积达367万km2,占国土总面积的38.2%,其中50%为水蚀地区,土壤侵蚀以黄土高原、四川紫色土地区和华南红壤地区尤为突出,仅黄土高原地区一处,平均每年流失泥沙就达到16.3 亿t。水土流失已成为中国重要的环境问题,土壤侵蚀研究已成为目前环境保护中的一个重要课题。 土壤侵蚀预报是有效监测水土流失和评价水保措施效益的手段,侵蚀模型则是进行土壤流失监测和预报的重要工具。然而传统预测方法需要在量经费、时间和人力的投入,因此,在一定精度范围内通过有限的数据输入,得到满足要求的土壤侵蚀预测结果成为趋势。80年代以来,随着地理信息系统(Geographical Information System, GIS)的成熟,它开始与土壤侵蚀模型—通用土壤流失方程(Universal Soil Loss Equation, USLE) 相结合进行流域土壤侵蚀量的预测和估算,业已成为土壤侵蚀动态研究的有力工具。GIS与USLE 相结合的分布式方法运用GIS的栅格数据分析功能,可预测出每个栅格的土壤侵蚀量,便于管理者识别关键源区,并通过确定引起水土流失的关键因子,针对性地提出最佳管理措施(Best Management Practices,BMPs),为流域内土地资源的质量评价、利用规划和经营管理等提供科学依据与决策手段。 二、实验目的 模型生成器(ModelBuilder) 为设计和实现空间处理模型提供了一个图形化的建模环境。模型是以流程图的形式表示,它通过工具将数据串起来以创建高级的功能和流程。你可以将工具和数据集拖动到一个模型中,然后按照有序的步骤把它们连接起来以实现复杂的GIS 任务。通过对本次练习达到以下目的: ?掌握如何在ModelBuilder环境下通过绘制数据处理流程图的方式实现空间分析过程的自动化; ?掌握土壤侵蚀理论的基本知识;

土壤侵蚀模数

2.1.2 土壤侵蚀强度分级 (1)土壤侵蚀容许量标准 土壤侵蚀容许量是指在长时期内能保持土壤肥力和维持土地生产力基本稳定的最大土壤流失量。 因为我国地域辽阔,自然条件千差万别,各地区的成土速度也不相同,该标准规定了我国主要侵蚀类型区的土壤容许流失量: 侵蚀类型区土壤容许流失量 Et/(km ·a)] 西北黄土高原区1 ooo 东北黑土区200 北方土石山区200 南方红壤丘陵区500 西南土石山区500 (2)水力侵蚀强度分级 强度分级平均侵蚀模数[t/(km ·a)] 微度侵蚀<2O0,500,1 000 轻度侵蚀200,500,1 000~2 500 中度侵蚀2 500~5 000 强度侵蚀5 000~8 000 极强度侵蚀8 000~1 5 000 剧烈侵蚀>1 5 000 (3)风蚀强度分级 风蚀强度分级按地表植被覆盖度、年肼蚀厚度和侵蚀模数三项指标划分。 强度分级植被覆盖度年风蚀厚度侵蚀模数 ( ) (ram) [t/(km。·a)] 微度>70 <2 <200 轻度70~50 2~1O 200~2 500 中度5O~30 1O~25 2 5OO~5 000 强度3O~10 25~50 5 000~8 000 极强度<10 50~100 8 000~15000 剧烈<1O >100 >1 5 000 除此外,还有面蚀、沟蚀、重力侵蚀等分级标 准,此处不一一赘述。 土壤侵蚀强度划分标准: “水”和“土”是水土流失的两个漉失主体,水土流失归根结底是土地表屡的侵蚀和水的流失。而评价水土流失程度的量化指标,即水土流失强度分级标准应同时包括两个流失主体的强度指标。我国目前采用的土壤侵蚀强度分级标准做为水土流失强度分级标准,不仅混淆丁水土

土壤侵蚀调查与评价

龙源期刊网 https://www.360docs.net/doc/742835109.html, 土壤侵蚀调查与评价 作者: 来源:《出版参考》2016年第01期 出版单位 ;中国水利水电出版社 书 ; ;名 ;土壤侵蚀调查与评价 责编姓名 ;李忠良 责编证号 ;201100173277 耐心,再耐心些 一部书,是某个领域填补空白的项目,选题往往激动人心,然而,因为是新项目,万事开头难,于是,责任编辑的耐心就要受到考验。 《土壤侵蚀调查与评价》就是国内第一部系统论述土壤侵蚀调查与评价的专著。责任编辑遇上这样的独家选题,是幸运的,然而,不幸的是,这又是多人职务作品,稿件质量参差不齐、体例杂乱是常有的事情。果然,《土壤侵蚀调查与评价》一书,从选题立项到最后付梓出版前后历时两年多。个中甘苦,个中折腾,我们在编辑工作记录中可以体会得到。初稿于2013年7月初提交,经过初审,除基础细节性问题外,责任编辑发现著作权与署名、未定 稿、内容结构、插图(尤其是地图)等比较大的问题,即写下初审意见反馈给作者,请修改后再提交。当年11月,作者将修改完的稿子再次提交,编辑经过检查,发现初审所提大部分问题已经解决,正准备进入编辑加工流程,又被中断。这次是作者提出要修改稿子。到了次年2月初,作者修改稿发来。2月下旬,经历几次修改的稿子经过初审编辑后,终于提交复终审。未曾想,复终审刚回来,初审编辑正要逐个解决审稿细节问题,作者却再次提出要修改第7章内容,且认为属于必须修改。编辑这时能说什么呢?什么也不能说,因为作者的认真态度只可以嘉许不可以打消。到4月份设计版式,书稿与初稿相比,已经被缩减了1/5。 当然,最后编辑和作者一起都收获了成功,这部专门性著作,首印3000册,竟然不到一年售罄。从这个案例,我们可以总结出各种经验,譬如多人职务性作品如何统一规范体例以及署名,又如,研究报告如何打磨使之成为一部完整的专著,等等。但是,给我们一个较深的启示和感动的,却是:做编辑,要耐心,再耐心些! 获奖感言 对于编辑职业,前辈有多种比喻,审判官和做嫁衣的便是其中的两种。虽然是两个不同的比喻,审判官和嫁衣娘在角色特点上也有所不同,但实际上它们都是编辑职业内涵的组成部分。审判官,即是审核判断书稿的内容和文字质量,从出版价值的角度对书稿作社会效益和经

土壤侵蚀量计算模型

. 精品 土壤侵蚀量计算模型 关于土壤侵蚀量的计算,目前国内外主要采用的是美国的通用土壤流失方程USLE(Universal Soil- Loss Equation),作为一个经验统计模型,它是土壤侵蚀研究过程中的一个伟大的里程碑,在土壤侵蚀研究领域一度占据主导地位,并深刻地影响了世界各地土壤侵蚀模型研究的方向和思路。由于USLE 模型形式简单、所用资料广泛、考虑因素全面、因子具有物理意义,因此不仅在美国而且在全世界得到了广泛应用。“通用土壤流失方程式”的形式如下: P C S L K R A ?????= 1-1 式中:A ——土壤流失量(吨∕公顷·年) R ——降雨侵蚀力指标; K ——土壤可蚀性因子。它是反映土壤吝易遭受侵蚀程度的一个数字。其单位是, 在标准条件下,单位侵蚀力所产生的土壤流失量; L ——坡长因子。当其它条件相同时,实际坡长与标准小区坡长(22.1米)土壤 流失量的比值; S ——坡度因子。当其它条件相同时,实际坡度与标准小区坡度(9%)上土壤流 失量的比值; C ——作物经营因子。为土壤流失量与标准处理地块(经过犁翻而没有遮蔽的休 闲地)上土壤流失量之比值; P ——土壤保持措施因子,有土壤保持措施地块上的土壤流失量与没有土壤保持 措施小区(顺坡梨耕最陡的坡地)上土壤流失量之比值。 通用土壤流失方程的计算结果只适用于多年平均土壤流失量,而不能够代表当地某一年或某一次降雨所产生的土壤流失量。当方程式右边每个因子值都是已知数时,即地块内的土壤种类、坡长、坡度、作物管理情况、地块内的土壤保持措施以及降雨侵蚀力都已知,且都被分别赋于一个适当的数值时,它们相乘后,就得出在此特定条件下所预报的年平均土壤流失量。 如有侵权请联系告知删除,感谢你们的配合!

土壤侵蚀评价遥感研究进展

收稿日期:2008-12-30;修订日期: 2009-04-12基金项目:中国科学院知识创新工程重大项目 (KZCX1-YW-08-03)和水利部,官厅密云水库上游水土保持遥感监测二期工程(HW-STB2004-03)资助 作者简介:张喜旺(1979),男,河南辉县人,博士生,主要从事遥感与地理信息系统在水土保持方面的应用研究。E-mail:zxiwang@https://www.360docs.net/doc/742835109.html, * 通讯作者: E-mail:wubf@https://www.360docs.net/doc/742835109.html, 土壤侵蚀评价遥感研究进展 张喜旺,周月敏,李晓松,袁超,闫娜娜,吴炳方* (中国科学院遥感应用研究所,北京100101) 摘要:土壤侵蚀是世界范围内最重要的土地退化问题,对全世界范围内的农作物产量,土壤结构和水质产生负面影响,因此,对侵蚀进行适当评估,了解其空间分布以及侵蚀程度,对政策的制定、治理措施的实施都具有非常重要的指导作用。以遥感在土壤侵蚀中的应用为主线,介绍国内外多种土壤侵蚀评价方法,包括定性的判断和定量的计算。认为虽然遥感因其具有大面积重复观测能力,已经渗透到各种研究方法中,但无论是定性的方法还是定量的方法,遥感往往仅作为数据进行输入,而遥感的潜力并没有得到充分的发挥,遥感多源多时相的能力并没有得到充分的应用。目的是使今后的研究更加重视遥感的空间分析和动态监测能力,以及多源多时相的特性,使遥感真正在方法论上发挥其在土壤侵蚀监测中的重要作用。 关键词:土壤侵蚀;遥感;DEM ;GIS 中图分类号:TP 79:S157 文献标识码:A 文章编号:0564-3945(2010)04-1010-08 Vol.41,No.4Aug.,2010 土壤通报 Chinese Journal of Soil Science 第41卷第4期2010年8月土壤侵蚀是发生在特定时空条件下的土体迁移过程,受到多种自然要素和人类活动的综合影响。水 蚀是世界范围内最重要的土地退化问题,已经成为全球性的公害,通过减少表土层的有机质和养分含量而降低土壤生产力[1],它通过对农作物产量、土壤结构以及水质[2,3]剧烈地影响着环境,并产生大量的经济损失,直接影响着人们的生活,通过沉积作用淤积江河、湖泊,损害基础设施,威胁人类安全。此外,侵蚀导致土壤以CO 2,CH 4的形式向大气中散射有机碳,从而影响全球变暖[4]。而全球变暖又反过来增强土壤侵蚀率[5]。因此,对侵蚀进行适当评估,了解其空间分布以及侵蚀程度,对政策的制定、治理措施的实施都具有非常重要的指导作用。自从研究土壤侵蚀一个多世纪以来[6],国内外学者进行了大量的研究,提出了各种各样不同的侵蚀评价方法,包括定性的判断[7,8]以及定量的计算[9,10]。区域尺度的土壤侵蚀评价主要的困难在于数据的可获得性以及数据的质量[11]。遥感具有规则重复观测能力,可以提供了大区域的同质数据[12,13],是进行环境和灾害动态监测的先进有效的技术手段,可以深刻地了解地表的特征及其变化。而侵蚀退化标志如地表裸露程度、地形地貌、植被覆盖度和土地利用方式的改变等是能够被遥感技术所记录和获取的,因此自20世纪70年代以来,遥感技术就被应用于土壤侵蚀调查。许多研究已经全面或部分地利用卫星遥感数据以许多不同的方式进行侵蚀评估,为方法的完善提供支 持,如光学影像对侵蚀特征[14]、植被[15]的研究,SAR 对地形[16]、 地表粗糙度[17]以及光学影像与SAR 结合对耕作方式的探测[18]等。而传统的土壤侵蚀遥感研究中主要是为了探测侵蚀特征和获取模型输入数据,遥感多源多时相的能力并没有得到发挥,空间分析和动态监测的能力并没有得到很好的应用。本文的目的是对土壤侵蚀评价中遥感的应用方法进行综述,并展望遥感在土壤侵蚀评价中发展趋势。 1 定性方法 1.1 目视判读 目视判读法(目视解译)主要是通过对遥感影像的判读,对一些主要的侵蚀控制因素进行目视解译后,根据经验对其进行综合,进而在叠加的遥感图像上直 接勾绘图斑(侵蚀范围), 标识图斑相对应的属性(侵蚀等级和类型)来实现的。目视解译是土壤侵蚀调查中基 于专家的方法中最典型的应用。这一方法利用对区域情况了解和对水土流失规律有深刻认识的专家,使用遥感影像资料,结合其它专题信息,对区域土壤侵蚀状况进行判定或判别,从而制作相应的土壤侵蚀类型图或强度等级图,其实质是对计算机储存的遥感信息和人所掌握的关于土壤侵蚀的其它知识、经验,通过人脑和电脑的结合进行推理、判断的过程[19]。我国水土保持部门于1985年使用该方法,采用M SS 影像在全国范围内进行第一次土壤侵蚀遥感调

土壤呼吸的影响因素及全球尺度下温度的影响

土壤呼吸的影响因素及全球尺度下温度的影响 土壤呼吸是指土壤释放CO 2的过程, 主要是由微生物氧化有机物和根系呼吸产生, 另有极少的部分来 自于土壤动物的呼吸和化学氧化 土壤生物 活性和土壤肥力乃至透气性的指标受到重视[ 通量(flux)是物理学的用语,是指单位时间内通过一定面积输送的能量和物质等物理量的数量。 二氧化碳通量就是一定时间通过一定面积的二氧化碳的量。 土壤作为 一个巨大的碳库(11394×1018gC[12]), 是大气CO 2的重要的源或汇, 其通量(约68±4×1015gC?a[13])如此巨 大(燃料燃烧每年释放约512×1015gC[14]), 使得即使轻微的变化也会引起大气中CO 2浓度的明显改变。因 此, 在土壤呼吸的研究中, CO 2通量的精确测定已成为十分迫切的问题。 土壤呼吸影响因素:土壤温度,湿度,透气性,有机质含量,生物,植被及地表覆盖,土地利用,施肥,PH,风速,其他因素。诸如单宁酸 [25]、可溶性有机物(DOM)中的 低分子化合物(LMW )[62]等都对土壤CO2释放速率有显著 的影响.,,,采伐,火烧, 有关生物过程的影响 绝大部 分的CO 2是由于土壤中的生物过程产生的。土壤呼吸的实质是土壤微生物、土壤无脊椎动物和植物根系呼 吸的总和 地表凋落物作为土壤有 机质的主要来源以及作为影响地表环境条件——如温度、湿度等因子对土壤呼吸也产生显著作用

土壤呼吸与土壤温度、水分含量之间的关系 在土壤水分含量充 足、不成为限制因素的条件下土壤呼吸与土壤温度 呈正相关(表1)[4, 15, 19, 21, 25~32]。而在水分含量成为限 制因子的干旱、半干旱地区, 水分含量和温度共同 起作用[18, 3 抑制作用的影响 目前已有文献表明对根系和微生物呼吸的抑制作用在土壤空气CO 2浓度较高时会发生 这也就意味着在大气CO 2浓度升高 时, 土壤呼吸也会受到抑制。 土壤呼吸随纬度的变化 从图3可知, 土壤呼吸量随着纬度的增加而逐渐降低, 可得到一拟合方程: y = 1586e- 010237x(R2= 0147) (1) 其中, y 为土壤呼吸量, x 为纬度 温度与土壤呼吸的关系 最终得到全球尺度下温度对土壤呼吸的影响大小的尺度——Q 10值。Q10值表示温度每升高10度,土壤呼吸速率增加的 倍数 [45 - 46 ] 得到了全球森林植被的土壤呼吸速率与年均温的关系, 即: y = 349166e010449x(R3= 0147) (3) 其中, y 为呼吸速率, x 为年均温。 得到了全球范围的Q 10值= 1157。与已报道的各样点的Q 10值相比全球尺度下的Q 10 值较低, 也就是就, 随温度的上升, 呼吸速率的增加较慢一些 土壤呼吸的测量方法问题及其影响 。测量方法可以分为直接测量和间接测量法[51]。直接测量法中又包括静态法和动态法[52]。其中, 由于实 际工作中具体条件的限制, 目前采用较为广泛的是静态法。CO 2的具体测量技术又有碱吸收法和红外吸收

土壤侵蚀强度划分标准:

(1)土壤侵蚀容许量标准 土壤侵蚀容许量是指在长时期内能保持土壤肥力和维持土地生产力基本稳定的最大土壤流失量。 因为我国地域辽阔,自然条件千差万别,各地区的成土速度也不相同,该标准规定了我国主要侵蚀类型区的土壤容许流失量: 侵蚀类型区土壤容许流失量 Et/(km ·a)] 西北黄土高原区 1 ooo 东北黑土区200 北方土石山区200 南方红壤丘陵区500 西南土石山区500 (2)水力侵蚀强度分级 强度分级平均侵蚀模数[t/(km ·a)] 微度侵蚀<2O0,500,1 000 轻度侵蚀200,500,1 000~2 500 中度侵蚀2 500~5 000 强度侵蚀5 000~8 000 极强度侵蚀8 000~1 5 000 剧烈侵蚀>1 5 000 (3)风蚀强度分级 风蚀强度分级按地表植被覆盖度、年肼蚀厚度和侵蚀模数三项指标划分。 强度分级植被覆盖度年风蚀厚度侵蚀模数 ( ) (ram) [t/(km。·a)] 微度>70 <2 <200 轻度70~50 2~1O 200~2 500 中度5O~30 1O~25 2 5OO~5 000 强度3O~10 25~50 5 000~8 000 极强度<10 50~100 8 000~15000 剧烈<1O >100 >1 5 000 除此外,还有面蚀、沟蚀、重力侵蚀等分级标 准,此处不一一赘述。

“水”和“土”是水土流失的两个漉失主体,水土流失归根结底是土地表屡的侵蚀和水的流失。而评价水土流失程度的量化指标,即水土流失强度分级标准应同时包括两个流失主体的强度指标。我国目前采用的土壤侵蚀强度分级标准做为水土流失强度分级标准,不仅混淆丁水土流失与土壤侵蚀这两个不同的概念,而且也是片面的、不准确的和不严肃的,有必要进行修改和完善笔者认为:水土流失强度分级标准应该体现同时含有两个流失主体的强度分级标准,缺一不可。 我国一些人习惯上将水土流失称为土壤侵蚀,把二者等同起来,混淆了这两个截然不同的概念,为准确理解和认识水土流失的含义造成了混乱。因此,有必要弄清它们的区别和联系。水土流失的定义笔者在前面已阐述过了,那么什么是土壤侵蚀呢?土壤侵蚀是指在水力、风力、冻融、重力以及其它外营力作用下土壤、土壤母质及其它地面组成物质如岩屑、松散岩层等,被破坏、剥蚀、运转、沉积的过程。很显然,水土流失和土壤侵蚀是完垒不同的两个概念,它们的区别不仅表现在字面含义上的不同,更重要的区别在于侵蚀或流失的主体不。水土流失的流失主体包括“水”和“土”两个主体,而 土壤侵蚀仅指“土” 一个主体。同样水土流失同土壤侵蚀之闻也存在着不可分割的联系,土壤侵蚀是一种特定的水土流失形式,土壤侵蚀包括在其内。也可以说土壤侵蚀是狭义的水土流失。水土流失和土壤侵蚀可以做为相对独立的概念来使用,但决不可以将水土流失称为土壤侵蚀。 许多词汇和术语,随着时时的推移,人类文明程度、文化和科学技术的不断发展进步,人类的认识不断深化,其内涵在不断地外延、扩大、深化和演变,即广义化。广义化的词汇和术语与最初的本意已有了较大变化,甚至大相径庭。水土流失这个应用非常广泛的专业术语,随着水土保持事业的迅猛发展也广义化。因此,们应从广义的角度来认识理解它的内涵,如果仅从字面上咬文嚼字,或狭隘地理解它的含义,就会使人们误人死胡同而不能自拔,使本来非常明晰的概念变得复杂化。比如,对土壤侵蚀中“侵蚀” 的理解,不能仅从字面上理解为侵蚀破坏、侵蚀腐蚀,而应广义地理解为侵蚀破坏、剥离、转移、流失等,也就是说土壤侵蚀就是土壤流失。比如,对水土流失一词中的土”不能仅仅指生长植物的土壤,还应包括土壤母质、岩屑等地面其它组成物质和各种养分物质。再比如,对于引起水土流失的外力除了水力、风力、重力、温度等自然力外.人类的不台理的生产活动如开、修路、毁林开荒等行为,改变原地形地貌,损坏了地表植被,造成了新的水土流失或加剧了水土流失,那么人类不台理的生产活动也应该称为是引起水土流失的外力。还有许多用广义论来认识水土流失内涵的例子,在这里就不一一列举了。 我国水土流失强度分类分级标准,实际上是用土壤侵蚀强度分类分级标准来代替的,即依照中华人民共和国行业标准《土壤侵蚀分类分级标准》(SL土壤侵蚀的因素: 190—96),对我国土壤侵蚀类型区划、土壤侵蚀强 度、侵蚀土壤程度分级等做了规定。 2.1.1 全国土壤侵蚀类型区划 按土壤侵蚀的外营力不同种类将全国土壤侵蚀

相关文档
最新文档