微积分中Fejer核的性质及应用

微积分中Fejer核的性质及应用
微积分中Fejer核的性质及应用

微积分在生活中的应用

龙源期刊网 https://www.360docs.net/doc/749908950.html, 微积分在生活中的应用 作者:曹红亚 来源:《数学大世界·中旬刊》2020年第01期 【摘要】微积分产生于十七世纪后期,完善于十九世纪。在现代社会中,微积分是高等数学中至关重要的组成部分,在数学领域中扮演着不可替代的角色,与此同时,微积分在现实生活中的应用也越来越广泛。本文将就微积分在生活中的应用进行深入的分析与探究。 【关键词】微积分;现实生活;实际应用 众所周知,微积分建立的基础是实数、函数以及极限。关于微积分的定义,其指的是微分学和积分学二者的总称,其更代表着一种数学思想。微积分的发展与现实生活的发展是密切相关的,现在的微积分已经广泛存在于诸多自然科学当中,如天文学、生物学、工程学以及经济学等等,在现实生活着发挥着越来越重要的作用。以下笔者结合自己多年的相关实践经验,就此议题提出自己的几点看法和建议。 一、微积分在日常工作中的应用 微积分不仅仅应用在科研领域,其更实实在在地存在于我们的生活当中。例如日常生活中,我们需要装修或者从事装修工作,都需要进行工程预算,这时我们便会不自觉地应用微积分原理,首先将整个装修工程科学划分成为多个小单元,然后对应用到的材料和工时进行计算,最终得出总的造价。再比如,现在很多人特别是年轻人都希望创造一份属于自己的事业,那么其在创业时可能会应用到微积分。如对所选地址处的车流量以及人流量进行了解,在一天的几个时间段,做一分钟的调查,测出经过的人数或车数,再通过计算得出每天或每月的人流量或车流量,这将是我们创业的一个重要参考面。 二、微积分在曲线领域中的应用 在微积分的现实应用中,最具代表性的便是求曲线的长度、切线以及不规则图形的面积。 如在当前社会中,相关数字音像制品或者正流行的数字油画,其都需要将图像和声音分解成为一个个像素或者音频,利用数字的方式来进行记录、完成保存。在重放的时候,再由设备用数字方式来解读还原,使我们听到或看到几乎和原作一模一样的音像。再比如,中央电视台新闻频道的时事报道中常看到地球转向某一点,放大,现出地名,播送最新动态的新闻画面。它的整体概貌是拼装的,是由卫星将地球分成一个个小区域进行拍照,最后拼接成地球的形状,才让我们形象地、跨时空地欣赏新闻报道的同步魅力。 三、微积分在买卖中的应用

生活中的微积分

生活中的微积分 姓名:骆雨 学号:2012212476 班级:国贸八班 公元3世纪,著名的数学家刘徽提出“割圆术”:割之弥细,所失越少。割之又割,以至于不可割,则与圆周合体而不可割矣。这就是现在所说的微积分。 微积分的基本原理,或者说是基本思想很简单,可以概括为:微分等于无限细分,积分等于无限求和,两者合并叫微积分。也就是说,对某些不太好测量、计算、把握、分析的东西,先把它拆解成一个个独立的小单元,加以研究计算,得出结论(即微分)。然后再把它们累计相加,得出总结论即积分。有了它,对繁杂、纷乱的世界,我们就有了精确把握的认识,并能对一些难于驾驭的东西进行顺利把握的应用。 微积分的应用范围非常广泛,最典型的应用是求多元曲线的切线和法平面方程,求不规则图形的面积。而且它在天文学、物理学、经济学、工程学、化学、生物学等各个领域都发挥着重要作用。在我们的日常生活中,比如谷歌地球、中央电视台新闻频道的时事报道也都是微积分的应用。常看到地球转向某一点,放大、现出地名,播送最新动态的新闻画面。它的整体概貌是拼装的,是由卫星将地球分成一个个小区域进行拍照,最后拼接成地球的形状,才让我们形象地、跨时空地欣赏新闻报道的同步魅力。 再比如,现在的数字音像制品以及正时兴的数字油画,都是把声音和图像分解成一个个音素或像素,用数字的方式来记录、保存,重放时再由设备用数字方式来解读还原,使我们

听到或看到几乎和原作一模一样的音像。诸如此类的应用比比皆是。 21世纪,我们生活在市场经济时代和信息时代,瞬时变化,不断更新的经济与信息和我们的学习、工作息息相关。微积分在经济学中的应用对我们的日常生活也有重大影响。 例如,某一种商品的价格会影响我们对于该商品的需求。对于需求函数Q=f (p),由于价格上涨时,商品的需求函数Q=f (p)为单调减函数, ?p 与?Q 异号,所以特殊定义需求对价格的弹性函数为)()(')(p f p p f p ?-=η。设某商品的需求函数为5 ^p e Q -=,求需求弹性函数;p=7,5,3时的需求弹性。 解: 5)()()(p p f p p f p =?'-=η, 6.0)3(=η<1,说明当p=3时,价格上涨%1,需求减少%0.6,需求变动的幅度小于价格变动的幅度; 1)5(=η=1,说明当5=p 时,价格上涨%1,需求也减少%1,需求变动的幅度与价格变动的幅度是一样的; 14.1)7(>=η,说明当 p=7时,价格上涨%1,需求减少%1.4,需求变动的幅度大 于价格变动的幅度。 当某种商品价格上涨时,我们通常会减少该商品的需求。并且,对于需求弹性不同的商品,比如生活必需品和高档消费品,我们往往在不自觉的情况下已经用导数即微分的知识来决定对它的消费量了。

微积分在现实中的应用

微积分的应用 微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 微积分建立之初的应用:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛

的应用,特别是计算机的出现更有助于这些应用的不断发展。 微积分作为一种实用性很强的数学方法和根据,在数学发展中的地位是十分重要的。例如,微分可以解决近似计算问题。比如:求sin29°的近似值,求不规则图形面积或几何体体积的近似值等。通过微积分求极限、利用微分中值定理,能够及时的放缩多项式,有利于不等式的化简和证明。极限求和、导数求和、积分求和也都是解决求数列前n项和的好方法。其次,数理化不分家。而且微积分在不等式中也有很大的运用,我们可以运用微积分中值定理,泰勒公式,函数的单调性,极值,最值,凸函数法等来证明不等式。在物理问题上,通过解微分方程研究物体运动问题、气体问题、电路问题也是非常普遍的。已知位移——时间函数计算速度,已知速度——时间函数计算加速度(即生活中交通管理方面的应用);运动学中的曲线轨迹求解(即生活中在篮球投篮训练中的应用);求不规则物体的重心;力学工程中计算变力和非恒力做功等等。在化学领域,用气相色谱仪和液相色谱仪做样品化学成分分析时,我们得到的并不是直观的数字结果,而是一张色谱图。色谱图是由一个一个的峰组成的,而我们进行定量计算的根据,就是这些峰的面积。而求这些峰的面积,就需要用到积分。现在的仪器里都集成了自动积分仪,只要选定某一个峰,它就能把积分计算出来。最终得到的成分含量就是基于积分原理计算出来的 微积分的应用不仅仅遍及各个学科,也渗透到了社会的各个行业,甚至深入人们日常生活和工作。利用微积分进行边际分析(经济函数的

定积分的发展史.docx

定积分的发展史 起源 定积分的概念起源于求平面图形的面积和其他一些实际问题。定积分的思想在古代数学家的工作中,就已经有了萌芽。比如古希腊时期阿基米德在公 元前 240 年左右,就曾用求和的方法计算过抛物线弓形及其他图形的面积。 公元 263 年我国刘徽提出的割圆术,也是同一思想。在历史上,积分观念的 形成比微分要早。但是直到牛顿和莱布尼茨的工作出现之前( 17 世纪下半叶),有关定积分的种种结果还是孤立零散的,比较完整的定积分理论还未能形成, 直到牛顿 -- 莱布尼茨公式建立以后,计算问题得以解决,定积分才迅速建立 发展起来。 未来的重大进展,在微积分才开始出现,直到16 世纪。此时的卡瓦列利与 他的indivisibles方法,并通过费尔马工作,开始卡瓦列利计算度N = 9×N的积分奠定现代微积分的基础,卡瓦列利的正交公式。17世纪初巴罗提 供的第一个证明微积分基本定理。 牛顿和莱布尼茨 在一体化的重大进展是在 17 世纪独立发现的牛顿 ?? 和莱布尼茨的微积分 基本定理。定理演示了一个整合和分化之间的连接。这方面,分化比较容易 地结合起来,可以利用来计算积分。特别是微积分基本定理,允许一个要解决 的问题更广泛的类。同等重要的是,牛顿和莱布尼茨开发全面的数学

框架。由于名称的微积分,它允许精确的分析在连续域的功能。这个框架最终成为现代微积分符号积分是直接从莱布尼茨的工作。 正式积分 定积分概念的理论基础是极限。 人类得到比较明晰的极限概念,花了大约 2000 年的时间。在牛顿和莱布尼茨的时代,极限概念仍不明确。因此牛顿和莱布尼茨建立的微积分的理论基础还不十分牢靠,有些概念还比较模糊,由此引起了数学界甚至哲学界长达一个半世纪的争论,并引发了“第二次数学危机”。经过十八、十九世纪 一大批数学家的努力,特别是柯西首先成功地建立了极限理论,魏尔斯特拉斯进一步给出了现在通用的极限的定义,极限概念才完全确立,微积分才有 了坚实的基础,也才有了我们今天在教材中所见到的微积分。现代教科书 中有关定积分的定义是由黎曼给出的。 术语和符号 艾萨克牛顿以上的变量使用一个小竖线表示一体化,或放置在一个盒子里的变量,竖线是很容易混淆。或牛顿用来指示分化和方块符号打印机难以重现,所以这些符号没有被广泛采用。 1675 年戈特弗里德莱布尼茨改编的积分符号,∫,从字母S(“总结”或“总”)。 ∫符号表示的整合 ; A和 B 的下限和上限,分别一体化,定义域的融合 ; f是积,x 在区间 [a ,b] 上的变化进行评估;

微积分在经济生活中的应用

微积分在经济生活中的应用 人们面对着规模越来越大的经济和商业活动,逐渐转向用数学方法来帮助自己进行分析和决策,而且正越来越广泛地应用数学理论进行经济理论研究.在经济生活中经常涉及成本、收入、利润等问题,解决这些问题与微积分有着紧密联系. 1 导数及微分的应用 导数及微分在经济生活中的应用主要有边际分析与弹性分析等. 1.1 边际问题[1](37)P - 1.1.1 边际成本 边际成本是指在一定产量水平下,增加或减少一个单位产量所引起成本总额的变动数. 设成本函数为()C C x =,产量从x 改变到x x +?时,成本相应改变 ()()C C x x C x ?=+?- 成本的平均变化率为 ()() C C x x C x x x ?+?-= ?? 若当0x ?→时,0lim x C x ?→??存在,则这个极限值就可反映出产量有微小变化时,成本的变化情 况.因此,产品在产量x 时的边际成本就是: 00()() ()lim lim x x dC C C x x C x C x dx x x ?→?→?+?-'= ==?? 如果生产某种产品100个单位时,总成本为5000元,单位产品成本为50元.若生产101个时,其总成本5040元,则所增加一个产品的成本为40元,即边际成本为40元. 在经营决策分析中,边际成本可以用来判断产量的增减在经济上是否合算.当企业的生产能力有剩余时,只要增加产量的销售单位高于单位边际成本,也会使得企业利润增加或亏损减少.或者说,只要边际成本低于平均成本,也可降低单位成本.由上面知当产量100x =时,这时候有 (100)40C '= (100) 50100 C = 即边际成本低于平均成本,此时提高产量,有利降低单位成本. 1.1.2 边际收入 边际收入是指在某一水平增加或减少销售一个单位商品的收入增加或减少的量.实际上就是收入函数的瞬时变化率.而从数学的角度来看,它是一个导数问题. 设收入函数为()R R x =,则边际收入函数就是

微积分在实际中的应用

微积分在实际中的应用 一、微积分的发明历程 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。微积分是微分学和积分学的总称。它是一种数学思想,“无限细分”就是微分,“无限求合”就是积分。微分学包括求导的运算,是一套关于变化的理论。它使得函数、速度、加速度和曲线的斜率等均可以用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分的产生一般分为三个阶段:极限概念、求面积的无限小方法、积分与微分的互逆关系。前两阶段的工作,欧洲及中国的大批数学家都做出了各自的贡献。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。 二、微积分的思想 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述, 与此同时,战国时期庄子在《庄子·天下篇》中说“一尺之棰,日取其半,万世不竭”,体现了无限可分性及极限思想。公元3世纪,刘徽在《九章算术》中

对《微积分的概念发展史》见解

对《微积分的概念发展史》见解 微积分和数学分析是人类智力的伟大成就之一,其地位介于自然和人文科学之间,成为高等教育成果硕然的中介。微积分发展史和对微积分的研究就是人类智力的斗争和一步步发展的历史,这种延续了500多xl年的斗争历史,深深扎根于人类奋斗的许多方面,并且,只要人们像了解大自然那样去努力认识自己,它就还会继续发展下去。教师、学生和学者若想真正理解数学的力量和表现,就必须从历史的角度来理解这一领域发展至今的现状,以广阔的视野看待数学。 《微积分的概念发展史》这本书以时间为顺序,通过对古希腊乃至更久远时期、中世纪和17世纪关于微积分学构想的描述,剖析了一些阻碍微积分学发展进程的哲学与宗教观点,叙述了微分和积分两方面的发展,以及牛顿、莱布尼茨的伟大贡献。 数学是从古代巴比伦人及埃及人建立起一套数学知识,并以之作为进一步观察的基础的而开始,出现了泰勒斯(Thales),毕达哥拉斯学派(Pythagoras)以及柏拉图(Plato)等等对数学进行演绎的哲学家和数学家,他们认为数学是对终极永恒的现实以及自然和宇宙固有性质的研究,而不是逻辑的一个分支或者是科学技术的所运用的一种工具。 历史到达中世纪,经院派的观点十分盛行,他们认为宇宙“秩序井然”,易于理解。到了14世纪,世人非常清楚的意识到逍遥学派对运动和变化所持的定性观最好能被定量研究所取代。这种信念在萨库的尼古拉斯、开普勒和伽利略的思想中都有体现,在某种程度上也出现在莱昂纳多·达·芬奇的思想中。微积分起源于古希腊数学家在试图表达其关于直线的比率或是比例的直觉观点所遭遇的逻辑困境,他们认为数是离散的,按照数的观点,迷迷糊糊的认为直线是连续的,这样一来,便涉及到在逻辑上不够满意的无穷小的概念。但是,古希腊科学家的严密的思想却将无穷小的观念排除在几何证明之外,并代以穷竭法,这种方法可以避开无穷小的问题,但十分麻烦。不过,14世纪的经院派哲学家对变量展开的定量研究,这种方法很大程度上是辩证的,但是也借助图示。这些哲学和宗教的概念实际上对以后很多数学家的研究起到或多或少的作用或是影响,又好

微积分在生活中的应用论文

课程论文专业酒店管理

微积分在生活中的应用 摘要:我们学习了微积分,然而只学习不行的,学了的目的是为了应用,本篇论文主要讲微积分在生活中的应用,有哪些应用,怎么应用的。主要集中几何,经济以及我们在生活中的应用 关键词:微积分,几何,经济学,物理学,极限,求导

绪论 作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。 我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。 希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。 一、微积分在几何中的应用 微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。顿觉微积分应用真的很广! 1.1求平面图形的面积 (1)求平面图形的面积 由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a ,x=b 和轴所围成的图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。 例如:求曲线2f x 和直线x=l ,x=2及x 轴所围成的图形的面积。 分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。 所以该曲边梯形的面积为

高等数学在实际生活中的应用

高等数学在实际生活中的应用 在学习高数之前,总是听学长、学姐提起,高数十分难学,我对高数的印象一直都是:高数是一门特别难、特别高深的学科。但在学习了高等数学之后,我发现了数学的美,同时我发现在实际生活中也时常可以看高数的身影。 高等数学在实际生活中的应用十分广泛,而且也特别有趣。我就简单的举几个生活中常见的,我所发现的高等数学在生活中的运用的例子分析一下。 首先,我发现在支付宝当中,有一个小功能,叫做蚂蚁森林,这个功能是模拟出了一颗树苗,当人们在生活中做出了一些绿色、低碳的行为时,对用户发放绿色能量进行奖励,当用户的绿色能量积累到一定的值时,支付宝模拟出的小树苗就会长成一颗大树,用户可以通过兑换,将这颗模拟出来的小树(电子数据)兑换成为一颗真实的、种植在沙漠里的树木,现在可以兑换的树木类型越来越丰富了,有梭梭树、沙柳、樟子松、胡杨树等一些树苗。 这个时候我就发现,不同的地区的树苗不尽相同,而且,肯定不同的树木类型各自的水土保持能力也不尽相同,因此,在什么地区选择什么样的树木类型、分别种植在哪里,可以起到最好的水土保持功能以及,每平方米需要种植几颗树苗,我相信,这些问题都离不开高等数学进行周密的计算。 首先,我们需要认真计算防护林需要种植多大面积、到底种植在哪里可以起到最佳的水土保持作用,我们需要了解到风沙的源地与我

们需要保护的地区的距离,同时量化考虑风沙的强度,将不同的树苗类型的水土保持力以及他们的防风沙能力量化考虑。我们所了解到的资料很少,因此只能做一下简单的模型的建立,以及一些较为简单的分析。当然,这只是我的个人想法,很不成熟,也很可能有错误。我是这样考虑的,比如:我们设距离风沙源地越远,风沙程度越弱,当风沙强度吹到我们所居住的地区时即为0,风沙的总强度为F,风沙源地与我们所居住地区的距离为f。因此可以得出结论,距离风沙源地越远,所需要的防护林面积就越小,设防护林种植地与风沙源地之间的距离为x,设所需要的防护林面积为y,同时将不同的树苗类型的水土保持能力量化:当种植了梭梭树之后,其每平米的水土保持力即可以阻挡的风沙的程度为a,沙柳为b,樟子松为c,胡杨树则为d。这时我们可以相应的依据量化关系列出一个方程式来:y=(F - F/f*x)/a(其中的a是指当所种的防护林是梭梭树时的方程式,相应的,当我们分析的是其他的树木,沙柳、樟子松以及胡杨树等,我们则可以将a替换为b、c以及d)。 根据上述所列的方程式,当我们了解了各种类型的树木的水土保持能力以及他们的防风沙的能力时,我们可以代入上述的方程式中进行计算,计算当距离风沙源地的距离不同时,所需要种植的防护林的面积也不尽相同。同时,我们可以分析得出,当x趋于无限小或者无穷大时,即防护林的种植地距离风沙源地极近或者极远时,这个方程式就转换为了一个极限问题的研究。 如果我们可以再多收集一些资料,具体了解到风沙强度与距离远

微积分发展史

微积分发展史 摘要:本文将介绍微积分的由来以及发展过程以及他对于人类发展的重大意义。并且在文章中也会对微积分的一些基本内容和理论等进行说明和归纳 关键词:微积分,微分,积分,建立 一、微积分学的建立 微积分在如今的数学领域中占到了非常重要的地位,并且作为 一门学科,微积分是研究函数的微分、积分以及有关概念和应 用的数学分支。它的起源可以追溯到其诞生的2000多年前, 比如,古代的人用方砌圆,我国庄子的“一尺之棰,日取其半,万世不竭”,魏晋时刘徽的“割圆术”等等,都涉及到了以“直”代“曲” 的极限观念,属于微积分的朴素思想,阿基米德更可称为时微 积分学的先驱,他不仅成功地将“穷竭法”应用于求像抛物线弓 形那样复杂地曲边形地面积中,而且在求积时应用了各种微积 分学地思想。但微积分思想真正形成是在十七世纪,由牛顿总 结和发展了前人的工作,几乎同时建立了微积分的方法和理论 微积分的起源。牛顿是从物理角度建立了微积分的思想,而德 国数学家莱布尼兹从几何角度出发,独立地创立了微积分 (1675-1676)。这两位数学家总结出处理各种有关问题地一般 方法,并揭示出微分学和积分学之间的本质联系。两人各自建

立了微积分学基本定理,并给出微积分的概念、法则、公式及 其符号。这位日后的微积分学的进一步发展奠定了坚实而重要 的基础。微积分的创立,极大地推动了数学地发展,过去很多 初等数学束手无策地问题,通过运用微积分,往往引刃而解。 使得微积分学地创立成为数学发展地一个里程碑式的事件。二、微积分建立的重要意义 恩格斯曾经说过:“在一切理论成就中,未必再有什么像十七世 纪下半叶微积分的发现那样被看作人类精神的最高胜利了。如 果在某个地方我们看到人类精神的纯粹的和惟一的功绩,那就 正是在这里。”在微积分建立之前,人类基本还处于农耕文明时 期。但在微积分建立之后它为创立许多新的学科提供了源泉。 可以说微积分的建立是人类头脑最伟大的创造之一,是人类智 慧的结晶,它极大地推动了科学地进步,并且对社会也有深远 的影响。有了微积分,就有了工业革命,它是世界近代科学的 开端,同时也摧毁了笼罩在天体上的神秘主义、迷信和神学, 对社会产生了极大的影响,使人们进入了现代化的社会。这一 切都表面了微积分学的产生是人类历史上的一次空前飞跃。三、微积分理论的基本介绍和归纳 微积分学是微分学和积分学的总称。微积分学基本定理指出, 求不定积分与求导函数是互为逆运算的过程,而把上下限代入 不定积分即得到积分值,微分则是倒数值与自变量增量的乘积。 作为一种数学的思想微分就是“无限细分”,而积分就是“无限求

定积分在生活中的应用

PINGDINGSHAN UNIVERSITY 院系 : 经济与管理学院 题目 : 定积分在生活中的应用 年级专业: 11级市场营销班 学生姓名 : 孙天鹏

定积分在生活中的应用 定积分作为大学里很重要的一部分,在生活有广泛的应用。微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。 一、定积分的概述 1、定积分的定义: 设函数()f x 在区间[],a b 上有界. ①在[],a b 中任意插入若干个分点011n n a x x x x b -=<< <<=,把区间[],a b 分成 n 个小区间[][][]01121,,,, ,,,n n x x x x x x -且各个小区间的长度依次为110x x x ?=-, 221x x x ?=-,…,1n n n x x x -?=-。 ②在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ?的乘积 ()i i f x ξ?(1,2, ,i n =) , ③作出和 ()1 n i i i S f x ξ==?∑。记{}12max ,,,n P x x x =???作极限()0 1 lim n i i P i f x ξ→=?∑ 如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当 0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在 区间[],a b 上的定积分(简称积分),记作()b a f x dx ?,即 ()b a f x dx ?=I =()0 1 lim n i i P i f x ξ→=?∑, 其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ??叫做积分区间。

微积分的起源与发展.

微积分的起源与发展 主要内容: 一、微积分为什么会产生 二、中国古代数学对微积分创立的贡献 三、对微积分理论有重要影响的重要科学家 四、微积分的现代发展 一、微积分为什么会产生 微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,这些问题也就成了促使微积分产生的因素,微积分在这样的条件下诞生是必然的。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。 已知物体移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。 困难在于:十七世纪所涉及的速度和加速度每时每刻都在变化。例如,计算瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬刻,移动的距离和所用的时间都是0,而0 / 0 是无意义的。但根据物理学,每个运动的物体在它运动的每一时刻必有速度,是不容怀疑的。 第二类问题是求曲线的切线的问题。 这个问题的重要性来源于好几个方面:纯几何问题、光学中研究光线通过透镜的通道问题、运动物体在它的轨迹上任意一点处的运动方向问题等。 困难在于:曲线的“切线”的定义本身就是一个没有解决的问题。 古希腊人把圆锥曲线的切线定义为“与曲线只接触于一点而且位于曲线的一边的直线”。这个定义对于十七世纪所用的较复杂的曲线已经不适应了。

高等数学在生活中的应用

高等数学在生活中的应 用 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

对高等数学的认识及它在生活中的应用当今世界,国际竞争日趋激烈,而竞争的焦点又是人才的。竞争21世纪哪个国家具有人才优势,哪个国家将占据竞争的制高点。而现在的社会需要的人才已经不是从前那种简单的一个文凭就可以了,而是需要全面的人才,全方位的人才,一种高素质高能力的人才! 与此同时,高等数学恰恰在这方面发挥着巨大的作用!数学培养的就是你的思维能力,是分析问题、解决问题的思维方式。许多实际问题都需要建立数学模型来解决,而你建立模型地基础就是你怎样把实际问题转化为数学问题。再把复杂的问题简单化!这样就更容易的去解决问题、处理问题! 在现代大学课程设置中,大部分学生要学习高等数学这门课程,只是很多学生不知道学这门课程有什么用途,缺乏学习的动力和兴趣,最后逐渐认为数学是一门非常枯燥的学科。这样不能够激发学生学习数学的兴趣。使学生们慢慢的不重视数学的重要性! 高等数学在当今社会有着广泛的应用。如:计算机方面、电子应用方面、航天技术方面、医学方面等等众多领域都起着巨大的作用! 在计算机领域,计算机中许多地方要用到数学模型,特别是算法复杂度,人工智能、业务领域的数学建模等等,都需要有一定的数学功底。 随着现代科学技术的发展和电子计算机的应用与普及,数学方法在医药学中的应用日益广泛和深入。医药学科逐步由传统的定性描述阶段向定

性、定量分析相结合的新阶段发展。数学方法为医药科学研究的深入发展提供了强有力的工具。高等数学是医学院校开设的重要基础课程,用高等数学基础知识解决医学中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。使我国的医术在前有的基础上再创辉煌! “神舟”六号载人飞船成功升空,是我国航天事业科学求实精神的结晶,是坚定不移走自主创新之路的结果。载人航天是当今世界最复杂、最庞大、最具风险的工程,是技术密集度高、尖端科技聚集的高科技系统工程。而这些庞大的工程都离不开数学,复杂的数字计算、精确的时间等等这些都在数学范围内! 其次,数学建模是一种培养学生综合素质的有效手段,在教学实践中给学生树立建模的思想对学生的综合素质发展有很大的帮助,也有助于提高我们的学习积极性。把数学建模的思想方法融入数学分析课程教学是培养学生创新能力和实践能力的一条有效途径,是当前大学数学课程改革的一个重要方向. 我们大学生的思维处于由形式逻辑思维向辨证逻辑思维过渡的阶段,数学建模不仅要求学生在实验、观察和分析的基础上,对实际问题的主要方面做出合理的简化与假设,并且要求他们应用数学的语言和方法将实际问题形成一个明确的数学问题。因此,在高等数学中渗透建模思想,运用运动的、变化的、全面的、发展的观点去观察、分析和解决问题,不仅发展了我们大学生的一般思维能力,还发展了我们的辨证逻辑思维能

高等数学的矩阵在实际生活中的应用

矩阵在实际生活中的应用 一.【摘要】 随着科学技术的发展,数学的应用越来越广泛,可以说和我们的生活息息相关。而高等数学中的线性代数,也同样有着广泛的应用。本篇论文中,我们就对线性代数中的矩阵在生产成本、人口流动、加密解密、计算机图形变换等方面的应用进行研究。 【关键词】 高等数学矩阵实际应用 二.应用举例 1.生产成本计算:在社会生产管理中经常要对生产过程中产生的很多数据进行统计、处理、分析,以此来对生产过程进行了解和监控,进而对生产进行管理和调控,保证正常平稳的生产以达到最好的经济收益。但是得到的原始数据往往纷繁复杂,这就需要用一些方法对数据进行处理,生成直接明了的结果。在计算中引入矩阵可以对数据进行大量的处理,这种方法比较简单快捷。 例1.某工厂生产三种产品A、B、C。每种产品的原料费、支付员工工资、管理费和其他费用等见表1,每季度生产每种产品的数量见表2。财务人员需要用表格形势直观地向部门经理展示以下数据:每一季度中每一类成本的数量、每一季度三类成本的总数量、四个季度每类成本的总数量。 表1.生产单位产品的成本(元)表2.每种产品各季度产量(件)

解 我们用矩阵的方法考虑这个问题。两张表格的数据都可以表示成一个矩阵。如下所示: 通过矩阵的乘法运算得到 MN 的第一行元素表示了四个季 度中每个季度的原料总成本; MN 的第二行元素表示了四个季度中每个季度的支付工资总成本; MN 的第三行元素表示了四个季度中每个季度的管理及其他总成本。 MN 的第一列表示了春季生产三种产品的总成本; MN 的第二列表示了夏季生产三种产品的总成本; MN 的第三列表示了秋季生产三种产品的总成本; MN 的第四列表示了冬季生产三种产品的总成本。 对总成本进行汇总,每一类成本的年度总成本由矩阵的每一行元素相加得到,每一季度的总成本可由每一列相加得到。如下表: 表3. 总成本汇总表 ????? ??=200040003500250030003700480028002000250030002000N

高等数学在实际生活中的应用72690

高等数学知识在实际生活中的应用 (4)对模型进行分析、检验和修改。建立模型后,要对模型进行分析,即用解方程、推理、图解、计算机模拟、定理证明、稳定性讨论等数学的运算和证明得到数量结果,将此结果与实际问题进行比较,以验证模型的合理性。一般地,一个模型要经过反复地修改才能成功。 (5)模型的应用。用已建立的模型分析、解释已有的现象,并预测未来的发展趋势,以便给人们的决策提供参考。 归纳起来,数学建模的主要步骤可以用下面的框图来说明: 图1 (二)数学建模的范例 例教室的墙壁上挂着一块黑板,学生距离墙壁多远,能够看得最清楚? 这个问题学生在实际中经常遇到,凭我们的实际经验,看黑板上、下边缘的视角越大,看得就会越清楚,当我们坐得离黑板越远,看黑板上、下边缘的视角就会越小,自然就看不清楚了,那么是不是坐得 越近越好呢? 先建立一个非常简单的模型: 模型1: A 黑 板 a B b D C 图2.3-1

先对问题进行如下假设: 1.假设这是一个普通的教室(不是阶梯教室),黑板的上、下边缘在学生水平视线的上方a 米和b 处。 2.看黑板的清楚程度只与视角的大小有关。 设学生D 距黑板x 米,视黑板上、下边缘的的仰角分别为βα,。 由假设知: ab b a x a b x b a ab x x b a tna x b x a 2)(tan 1tan tan )tan(,tan ,tan 2-≤ + -=+-=+-=-∴= βαβαβαβα 所以,当且仅当ab x = 时,)tan(βα-最大,从而视角βα-最大。 从结果我们可以看出,最佳的座位既不在最前面,也不在最后面。坐得太远或太近,都会影响我们的视觉,这符合我们的实际情况。 下面我们在原有模型的基础上,将问题复杂一些。 模型2:设教室是一间阶梯教室,如图2.3-2所示。为了简化计算我们将阶梯面看成一个斜面,与水平面成γ角,以黑板所在直线为y 轴,以水平线为x 轴,建立坐标系(见图2.3-2)。则直线O E 的方程(除原点)为: γtan x y = )0(>x 若学生D 距黑板的水平距离为x ,则D 在坐标系中的坐标为 )tan ,(γx x , 图2.3-2

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史 摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。这些特殊的方法和问题,将有助于我们解决很多问题。 引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征。比如,我们可以 试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。最后再通过微分方程求出未知函数。 关键字:微分方程起源发展史 一、微分方程的思想萌芽 微分方程就是联系着自变量,未知函数以及其导数的关系式。微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。 1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布 尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。 1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根 据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。只有一个自变量的微分方程称为常微分方程,简称微分方程。 例1 传染病模型 传染病(瘟疫)经常在全世界各地流行,假设传染病传播期间其他地区的总 x,在t时的健康人数为)(t y,染病人数不变,为常数n,最开始的染病人数为 人数为)(t x。 因为总人数为常数n

微积分在实际中的应用

微积分的综合应用 微积分的综合应用表现在: 1)微分在近似计算中可以较快的求得近似值,一般误差不大,可以节省时间和精力; 2)定积分在物理学中的应用:变力做功问题经常是用微积分来求功; 3)设计桥拱也是微积分利用的一个例子,利用微积分知识可以计算桥墩的受压情况以及整座桥的抗压抗风能力,从而设计出既轻又牢固的桥身; 4)天气预报也经常用到微积分例子,将众多的外界因素当做多元函数,进行归纳分析;城市规划、建筑设计等用到了空间解析几何; 5)设计元件、容器等节省材料又保证质量的问题,需要运用微积分计算不规则物体的表面积、体积、质量等相关数据; 6)微积分可以用于在天文学中计算引力做功,轨道及运动情况; 另外,微积分在经济学还有非常广泛的作用,在计算盈利情况,投资风险,期望值,回报率,保险行业等都要用到微积分知识。 综上,无论是在科学研究还是实际生活中,微积分作为一种数学工具的作用是非比寻常的。站在我们学生的角度,能够掌握微积分的基础知识并在现实中灵活运用,才算是真正地理解了这门课程的精髓。下面用以具体模型来说明方法及过程。 关于火箭升空原理的探讨 火箭是一种靠发动机喷射物质产生的反作用力、向前推进的飞行器,是实现卫星上天和航天飞行的运载工具,故称运载火箭。火箭技术就是要解决火箭的制造和发射等问题。没有火箭技术的发展,就没有空间科学蓬勃发展的今天——火箭技术为人类打开了探索宇宙的大门。本文主要讨论微积分在发射过程中的应用。 一、火箭升空过程中的主要原理 设t时刻主体的质量为m,速度为v。dt时间内有质量为dm、速率为u的流动物加到主体上。t+dt时刻主体的质量变为m+dm、速度变为v+dv,t时刻质点系的动量为mv+udm,t+dt时刻质点系的动量为(m+dm)(v+dv)。下图为质量流动的质点系。

关于高等数学在实际生活中的应用

高等数学知识在实际生活中的应用 一、数学建模的应用 数学建模的一般方法是理论分析的方法,即根据客观事物本身的性质,分析因果关系,在适当的假设下用数学工具去描述其数量特征。 (一)数学建模的一般方法和步骤 (1)了解问题,明确目的。在建模前要对实际问题的背景有深刻的了解,进行全面的、深入细致的观察。明确所要解决问题的目的和要求,并按要求收集必要的数据。 (2)对问题进行简化和假设。一般地,一个问题是复杂的,涉及的方面较多,不可能考虑到所有的因素,这就要求我们在明确目的、掌握资料的基础上抓住主要矛盾,舍去一些次要因素,对问题进行适当的简化,提出几条合理的假设。不同的简化和假设,有可能得出不同的模型和结果。 (3)建立模型。在所作简化和假设的基础上,选择适当的数学理论和方法建立数学模型。在保证精度的前提下应尽量用简单的数学方法,以便推广使用。 (4)对模型进行分析、检验和修改。建立模型后,要对模型进行分析,即用解方程、推理、图解、计算机模拟、定理证明、稳定性讨论等数学的运算和证明得到数量结果,将此结果与实际问题进行比较,以验证模型的合理性。一般地,一个模型要经过反复地修改才能成功。 (5)模型的应用。用已建立的模型分析、解释已有的现象,并预测未来的发展趋势,以便给人们的决策提供参考。 归纳起来,数学建模的主要步骤可以用下面的框图来说明: 问题假设建模分析应用 检验、修改 图1 (二)数学建模的范例

例 教室的墙壁上挂着一块黑板,学生距离墙壁多远,能够看得最清楚 这个问题学生在实际中经常遇到,凭我们的实际经验,看黑板上、下边缘的视角越大,看得就会越清楚,当我们坐得离黑板越远,看黑板上、下边缘的视角就会越小,自然就看不清楚了,那么是不是坐得越近越好呢 先建立一个非常简单的模型: 模型1: 先对问题进行如下假设: 1.假设这是一个普通的教室(不是阶梯教室),黑板的上、下边缘在学生水平视线的上方a 米和b 处。 2.看黑板的清楚程度只与视角的大小有关。 设学生D 距黑板x 米,视黑板上、下边缘的的仰角分别为βα,。 由假设知: 所以,当且仅当ab x = 时,)tan(βα-最大,从而视角βα-最大。从结果我们可以 看出,最佳的座位既不在最前面,也不在最后面。坐得太远或太近,都会影响我们的视觉,这符合我们的实际情况。 下面我们在原有模型的基础上,将问题复杂一 些。 模型2:设教室是一间阶梯教室,如图所示。为了简化计算我们将阶梯面看成一个斜面,与水平线为 x 面成γ角,以黑板所在直线为y 轴,以水平轴,建立坐标系(见图)。则直线O E 的方程(除原 点)为: 若学生D 距黑板的水平距离为x ,则D 在坐标系中的坐标为)tan ,(γx x ,

相关文档
最新文档