焊缝、铸件缺陷及伪缺陷在X射线底片上影像特征的分析

焊缝、铸件缺陷及伪缺陷在X射线底片上影像特征的分析
焊缝、铸件缺陷及伪缺陷在X射线底片上影像特征的分析

焊缝、铸件缺陷及伪缺陷在X射线底片上影像特征的分析

樊星明

一.单个气孔(分散气孔)

1.特征和分布状态

单个气孔缺陷在焊接内部多呈单一状态均匀分布,在焊缝上部,气孔体积不大,呈球状或椭圆形,表面光滑。

2. X射线检测

单个气孔与X射线底片上能清晰地显示出气孔的球状,椭圆状轮廓,由于经常采用射线方向与焊缝纵向垂直的透照方法,我们在底片上看到的都是气孔的正投影图象,所以,在X射线底片上都不能反映单个气孔缺陷在焊缝横向所处位置,即不能说明单个气孔是在焊缝的上部、中部或下部。

3.形成原因

A焊接前未将焊缝坡口处金属上的铁锈、油污和油漆等清理干净。

B电焊条潮湿,水分在电弧高温作用下分解成氢气和氧气等气体,溶解于液态金属中,此时若焊缝中液态金属凝固过快,熔解气休不能及时自焊缝中逸出。

C由于电弧加热母材温度不够高,焊接速度又过快等不合理工艺因素影响。

二.链式气孔缺陷

1.特征与分布状态

链式乞孔在焊缝中呈一直线分布,气孔边沿相互衔接,状如链条,链的中心与焊缝轴线平行。在埋弧焊中带出现在母材与焊缝之间。

在单面对接焊缝中常出现在焊接底部,链式乞孔缺陷很容易和未焊透缺陷混淆。为了与未焊透缺陷区别,链状乞孔又称细线气孔。

在焊缝边沿的纵剖面上可以看到链状气孔,在母材与焊缝分界面上呈链环状影像。

在焊缝横剖面上链状气孔是呈单个分布,并有一定距离。

链状气孔之所以有以上所述的分布状态是由于母材与焊缝边界处冷却速度大,液态金属在此处受母材激冷,首先在此处凝固。而氢气泡在固相表面上形成时消耗的功又小,因此氢气在熔池中析出即在此处元集形成气泡,来不及逸出。

2. X射线检测

链式气孔缺陷在X射线底片上能清晰地显示出来,有的链环状分布,连续长度有30mm以上有的则呈断链状。一段一段分布在焊缝与母材边沿部位底片上呈暗色图像,在链的边沿可清楚扯到气孔圆形轮廓。

3.形成原因

主要是由氢引起的,氢来源于潮湿的助熔剂和没有充分干燥的焊条涂料中的水分。

焊条地程中在电弧高温作用下水被分解成氢和氧。氧与合金元素结合形成氧化物,同时降低了氢在金属液中的溶解度,因此在焊接过程中,熔池内的液态金属常有饱和氢气。

当焊接熔池温度降低时,氧立即开始从熔池析出,由于焊缝冷却速度很大,氢气泡来不及逸出成带滞留于焊缝内。

三.密集气孔

1.特征和分布状态

气孔呈群状密集分布在焊缝中心部位,其单个体积大小不一,常发生在焊缝的起点和电弧中断处。

2. X射线检测

由于焊缝内存在密集气孔缺陷部位比没有气孔缺陷的部位透过的X射线剂量大,致使底片呈现不同感光度。因此在X射线底片上能够发现密集型气孔所形成套环状暗斑。

3.形成原因

A.焊接过程中产生电弧的电流电压不稳定

B.电焊条内含碳旱过高

C.焊药熔剂潮湿

D.电弧过长

E.改变焊接方式

F.气体保护焊,气体纯度不够

G.焊接中风速超过,氩焊2m/s,电焊8m/s

H.风带连接处漏

四.柱状和斜状气孔缺陷

1.特征和分布

焊缝内柱状和斜状气孔缺陷具有方向性,常分布在焊缝的中间部位,一般来说它们大都与焊缝的顶面垂直,有的还裸露在焊缝顶面,严重的能贯穿整个焊缝的纵断面。

2. X射线检测

焊缝内部的柱孔斜孔缺陷,能在X射线底片上清晰地显示出来,在垂直焊缝中心透照时,底片上的柱孔,针孔图像呈一多角形的暗色斑点,即图像显示黑色的尖角,而球状气孔在底片上的图像则呈圆形没有尖角,圆心黑度较深,向外逐渐减弱。以此可区别缺陷是球状气孔或是柱状,针状气孔。

3.形成原因

A.采用大电流强度的焊接过程中,由于高温作用大量氮气分子在电弧中分解成氮原子,使得氮原子在熔滴阶段就被液态金属吸收。

B.熔滴与熔池之间因熔渣保护不良,致使熔池液态金属与空气的直接接触,从而使熔池内的金属吸收大量的氮气。当焊缝凝固时由于熔解度降低大量的氮气,又从金属内释放出来,形成内部应力不断增大,氮气泡,气泡在金属不断析出气体的压力作用下强力向焊缝顶部排出,若此时焊缝已开始凝固并生成柱状品,氮气泡被拘束形成。五.冷缩孔缺陷

1.特征及分布

冷缩孔是单向焊双面成形,打底焊常见缺陷之一,常分布在焊缝收弧中间部位。

2. X射线检测

在X射线底片上呈黑度较浅椭圆形状暗色斑痕。

3.形成原因

A.焊接电流过大时,熔池较深,熔池冷却速度慢,介入到熔池内部的气体在排出过程中易产生。

B.收弧时,若突然中断焊接,熔池未被液态金属充分填满,使熔池中心与边缘产生较大的温差,在表面张力和冷却时收缩力的共同作用,在熔池中心出现。

六.深气孔

1.状态及分布

深气孔缺陷黑度较大,气孔直径较小,填充层产生,往往在焊缝中间较多,盖面层产生在焊缝边沿位置上。

2. X射线检测

深气孔缺陷在X射线底片上呈球状形轮廓显清晰可见,其黑度超过母材黑度。

3.形成原因

同单个气孔

七.金属夹杂物缺陷

1.特征及分布

金属夹杂物的形状比较复杂,有多角形,球形,椭圆形和花瓣形。常存在于焊缝的底部和中间部位,有时亦出现在母材与焊缝的结合部位,手工电弧焊的金属杂物的直径一般在1-3mm范围内。

2. X射线检测

由金属飞溅液滴所形成的金属夹杂物表面只有一层薄薄的氧化膜,其内部金属基本上与焊缝金属相同。因此一般X射线底片上不能显示出它的图像。采用大能量高灵敏度X射线机,对其底片细微处理后,在底片上可显示暗环色的球状。或多角形图像,环内亮度与焊缝本体的亮度相似。

3.形成原因

焊接过程中产生的熔融金属飞溅液滴在飞溅中表明被氧化,并迅速冷凝成固体。当它再落入熔池或将要焊接的部位,熔池的温度又不足以将其熔化时形成。

八.非金属夹杂物缺陷

1、特征及分布

焊缝内非金属夹杂物外形无一定规律,表明凸凹不平,常见有三角形、菱形、长条形,焊缝内非金属夹杂物的尺寸大小不一,大者3-5毫米甚至10-20毫米,由于它比较轻因此多在于焊缝的上部和焊接金属与母材之间在多层焊的原因焊缝中也出现在各层焊缝之间,则不规则的团块状。2、X射线检测

X射线检测非金属夹杂物缺陷是有较高的灵敏度,这是由于焊缝内非金属夹杂物缺陷的成分大多是由密度小的焊药碎块及氧化物焊缝组成,而体积相对比较大,它对X射线及吸收量远低于金属本体的吸收量,所以在X射线底片上有

夹杂物的缺陷部位感光程度就比没有缺陷的焊缝其它部位大的多,因此一般X 射线底片上能够清晰显示缺陷的暗色图像。由于种种原因影响,其原质和密度也不可能一致,因此在图像上各处的密度也不一样,一般说来缺陷原意大密度小的部位图像颜色较暗反之图像较亮。

3、形成原因

A焊接前没将焊接边沿的氧化皮及其污垢清理干净。

B点定位焊没有将焊渣及时充分清除

C多层焊时未将上一层焊渣清除干净

D焊接工艺规范不正确

E焊接技术不熟练

致使焊药碎块掉到融池形成不易融化的非金属粘稠物高或破碎的焊药块滞留与焊缝中

九.遗传性夹杂物

1、特征及分布

由于焊缝内出现的遗传性夹杂物是嵌在母材边沿头部暴露或隐藏在边沿内部原始夹杂物当进行焊接时母材边沿融化夹杂物亦被融化变形,低熔点夹杂物和熔池内的液态金属混合一起冷却成团絮分布与焊缝和母材交接处,长条形夹杂物其中一头任嵌在母材中,搞熔点夹杂物常被电弧击成块状和熔池内液态金属混杂在一起。冷却后成弥散状分布与焊缝和母材的边沿部位。

遗传性夹杂物的大小与母材内夹杂物的性质,体积有直接关系一般来说焊缝内遗传性夹杂物缺陷由于复熔膨胀扩散,其体积都大于原来母材内的体积。

2、X射线检测

X射线底片可清晰地显示出遗传性夹杂物深暗色投影图像。当一夹杂物的一端嵌在母材深处一端在熔融后的母材和焊缝之间时,底片上显示出夹杂物嵌在

母材的那一端呈条状或扁体状,传入在焊接内的那一端膨胀或团絮状呈现出黑色的。

3、形成原因

存在于钢板成轧制型材中的原始缺陷一般沿轧制方向延伸,缺陷可能漏在焊缝母材的坡口表面或隐藏在靠近焊接部位的内部当进行焊接时,该缺陷被高温电弧融化外露部份能?改变原来的形态传入焊缝嵌在母材内部的那一部分仍保持其原来的形状,但是该夹杂物不带其形貌改变或是不改变都保持着原始夹杂物的特点。

十.钨夹渣

1.特征及分布

钨极氩弧焊中,由于温度很高有时使钨极温度超出它的熔点,致使钨极熔化成点滴状态留在焊缝中,一般在焊缝中间部位较多。

2. X射线检测

因钨夹渣在X射线底片上呈高于焊缝中亮度,由于它的密度大,超过X射线比无钨夹渣处少,呈白色亮点,其形状有圆形、条形及无规则的多。

3.形成原因

A.焊接电流过大。

B.钨极直径太小,引起钨极强烈发热端部熔化。

C.氩气保护效果不良,引起钨极端部烧损。

D.焊接过程中,钨极触及熔池焊接过程中产生飞溅。

十一.未焊透缺陷

1.特征及分析

①.在X形对接缝中,未焊透缺陷常发生在坡口顶处和焊缝边缘部位,剖开后观察,缺陷一般呈条状或带状分布,表面不规则,坡口顶处未焊透缺陷内部有焊瘤和氧化夹杂物,边缘未焊透缺陷则单一的暗色条状或带状,无明显的焊瘤和氧化夹杂物。

②.在V形对接缝中,未焊透缺陷常发生在坡口边缘部位。缺陷处有一层淡淡的氧化膜。

③.填角接头焊接、搭接焊缝、丁字接头焊缝等未焊透缺陷常发生在焊接部位顶角处,缺陷呈不规则的孔洞,内部有焊瘤和氧化夹杂物。

④.不开坡口的焊缝在单面焊接中未焊透缺陷常发生在焊接工件的底部边缘,缺陷呈槽状,表面凹凸不平。

2.X射线检测

母材与焊缝之间有一个充满金属氧化物和非金属氧化物形状不规则的缝隙或孔洞。X射线在未焊透缺陷部位的通过量将大于焊透部位的通过量,因此在X 射线底片上将出现不同的感光度,感光度大的未焊透缺陷部位在X射线底片上呈暗色图像。应该注意的是:由于未焊透的缝隙中的氧化物密度不同,缺陷图像的暗淡程度也会发生很大变化。若缝隙中充填着密度小的非金属氧化物或者无充填物在底片上则显出颜色较深的缺陷图像。

焊接生产中,未焊透缺陷种类很多,无损检测工艺中常把未焊透缺陷按它在焊缝内的分布状况进行分类,一般可分为:

①.根部未焊透<单面焊根部未熔合>

②.坡口未焊透<坡口未熔合>

③.层间未焊透<层间未熔合>

说明,未焊透与未熔合在焊接工艺中均属一种焊接缺陷,而在无损检测分类为未焊透和未熔合两种评定缺陷标准。

3.形成原因

①.焊接接头的坡口及被焊工件装配不正确。间距过小,钝边过大,二工件接合处坡口的钝边尺寸不一等,或者V形、X形的焊接边缘不齐。

②.焊接电弧的电流和电压不足

③.焊接速度过大

④.母材金属未充分预热,而焊条过早的熔化⑤.焊接部位有铁锈、油污、熔渣、氧化铁皮等脏物,阻碍母材金属边缘很好的熔化

⑥.焊接过程中焊条倾斜角不正确,熔池偏离母材金属一边,致使另一边受热不均。

⑦.磁性偏吹

所谓磁性偏吹是指焊接时产生电弧的电流所形成的磁场,反过来作用于电弧,并使电弧向焊道中磁场强度弱的部位偏离,这样偏离会使道加热不均匀。

十二.裂纹缺陷

A.热裂纹缺陷

1.特征及分布

宏观热裂纹缺陷多呈纵向开裂且分布在焊缝中心部,即在焊缝两边生成的柱状晶体的的对径线上裂纹表面粗糙,没有光泽,有明鲜的氧化现象和粒状突出物存在。2.X射线检测

应用普通X射线仪透照的底片上,只能显示焊缝宏观热裂纹缺陷,而不能显示焊缝内的显微热裂纹缺陷,焊缝宏观热裂纹在一般X射线底片上的图像呈弯曲暗黑色线条状,线条两端黑度由里向外逐渐消失,在高能X射线底片上可以看到在宏观热裂纹主干线附近有细微的横向裂纹,主干线边缘部位有明鲜的粒状凸起物图像和柱状品前端排裂的锯齿状图像。

3.形成原因

①.焊缝中裂纹缺陷是由焊缝中的应力造成的,焊缝中应力起源于焊接时的加热和冷却过程,焊接是由于母材局部急剧加热,在母材和熔池之间以及熔池

和已凝固的焊缝之间都会出现很大的温度差,这个温度差会使焊缝和母材之间焊缝不同部位之间产生巨大的热应力,当热应力超过焊缝在此温度下能较大受的强度时,焊缝就会破裂,与此相仿,焊缝在冷清过程中,由于母材传热速度快,亦会产生很大的温度梯度,从而形成冷却应力促使焊缝产生裂缝缺陷。

②.在焊接时由于熔铸收缩,焊缝金相组织转变对

某些合金来说还会产生相变应力和收缩应力。

B.冷裂纹

1.特征及分布

焊接冷裂纹缺陷开裂状态多为穿晶开裂,只有极少数沿晶界开裂而不像热裂纹那样都是沿晶界开裂,至于冷裂纹缺陷出现那种开裂形成完全由焊接部位当时所处的应力状态和其金相组织决定。

2. X射线检测

焊接厚度在30mm以下其内部宏观冷裂纹大都能被X射线透照出来,在底片上呈平直暗色条状很少分叉,图像边缘清晰,一般宽度在0.5mm以上均能显示,高能量的X射线底片能显示出0.5mm以下冷裂纹图像,这类缺陷呈放射线状,有时亦可显示出主裂纹两边有若干直线状细微裂纹图像。

3.形成原因

焊接冷裂纹和热裂纹不同,冷裂纹是在焊接后较低温度下产生的,一般来说冷裂纹发生在Ms点附近,也就是在钢的马氏体转变温度范围内,但也有一些钢的冷裂纹发生在200℃以下,甚至零度以下。

由于焊接结构的约束力和淬硬组织以及熔解在焊缝金属内的氢气的作用下致使焊接部位产生裂纹均属冷裂纹。

根据焊缝内产生热裂纹缺陷的形态、原理和温度区向,一般把它分为结晶热裂纹、液化热裂纹,多边热裂纹。①.结晶热裂纹缺陷

焊缝在结晶过程中,在固相线附近由于液态金属凝固收缩时,残余液态金属不能满足补缩要求,致使焊缝凝固金属沿晶界开裂,叫做焊缝结晶裂纹。这种缺陷一般肉眼不能发现。在显微镜下观察时,可以发现这具有晶间破坏的特征,多数情况下,在焊缝断面上可以看到有氧化的彩色斑点,这说明此种裂纹是在高温下发生的。

结晶裂纹缺陷主要出现在余亦能含杂质较多的碳钢焊缝中,和单相奥氏体钢、镍合金钢及某些铅及铅合金的焊缝中,个别情况下也出现在焊缝和母材接触部位的热影区附近。

②.液化热裂纹缺陷

焊接过程中,在电弧高温作用下,在母材靠近焊道的区域和多层焊缝的层间金属中含有的低熔点共晶成分被重新熔化时,而这些低熔点共晶成分又恰好存在于金属的奥氏体结晶界上。在凝固收缩应力作用下,沿奥氏体晶间就会发生开裂,这类开裂叫做液化热裂纹。

另一方面,焊接过程中,在不平衡的加热与冷却条件下,由于金属间化合物的分解和元素的扩散不相适应,从而造成了局部地区合金共晶成分偏高而发生液化,同样会产生高温液化裂纹缺陷。

液化裂纹是在高温下发生的,它的特点是沿奥氏体晶界开裂,这种裂缝主要出现在含有铬镍的高强度钢,奥氏体钢以及某些镍基金属母材在靠近焊缝的区域或多层焊接的各层金属中,如果母材及焊缝中的硫、磷、硅、碳含量偏高时产生倾向将显著增加。

③.多边化裂纹缺陷

焊接过程中,焊缝内部或焊缝与母材之间的熔合部位,在固相线温度以下的高温区,由于刚凝固的金属存在着许多位错,空位等晶格缺陷和严重的物理、化学不均匀性,在一定的温度和应力作用下,晶格缺陷会发生移动和聚集,从而形成多边化边界,在这个边界上常常堆集着大量的晶格缺陷,造成它的组织疏松,在高温时它的强度和塑性都很低,此时它只要受到很小的拉伸变形就会沿多边化的边界开裂产生多边化热裂纹缺陷,多边热裂纹缺陷多发生在纯金属和单相奥氏体合钢的焊缝中。

根据焊接构件的材料和结构形式不同焊接冷裂纹缺陷可分为:延迟冷裂纹缺陷、淬硬脆化、低塑性脆化

①.延迟冷裂纹缺陷的形态

所谓延迟冷裂纹缺陷,是在焊缝形成后并不立即开裂而是在焊接后经过相当长一段时间焊缝再行开裂,故叫做延迟裂纹。

焊接过程中,由于被焊材料含氢量和应力状态不同在焊缝内或焊缝热影响区附近都可能产生不同程度的延迟裂纹缺陷。

常见延迟裂纹形态有以下三种:

A.焊趾延迟裂纹缺陷

它起源于焊缝和母材的交界处和焊接部位有应力集中的地方,裂纹走向与焊缝走向垂直,一般由焊趾表面开始,并向母材深处延伸,但亦有焊接部位表面以下3~4mm处开裂,形成隐藏在焊缝内部的纵向延迟裂纹。

B.焊道下延迟裂纹缺陷

它常发生在淬硬倾向较大,含氢量较高的钢的焊接热影响区内,一般情况下裂纹的取向与熔合线平行,但也有时垂直于熔合线,这类缺陷常隐藏在焊缝内部,是一种十分危险的裂纹缺陷。

C.焊缝根部延迟裂纹缺陷

它是延迟裂纹缺陷中比较常见的一种开裂形态,主要发生在使用含氢量较高的焊条的母材预热温度不足的焊缝中,它起源于根部应力集中最大的区域,具体来说这种根部延迟裂纹缺陷常发生在焊接部位的热影响区的粗晶区或焊缝金属内部,至于每种焊缝中这类缺陷发生在哪个部位则取决于母材和焊缝的温度、塑性以及具体焊缝根部的形态。

②.淬硬脆化冷裂纹缺陷

淬硬脆化冷裂纹双称淬火裂纹缺陷,有些钢种由于淬硬倾向比较大,即是在没有氢的作用重要条件下,仅又由于拘束应力的作用,也会导致焊缝开裂。它的特点即开裂没有延迟现象。

③.低塑性脆化冷裂纹缺陷

某些材料焊接时,在比较低温度下,由于收缩奕变超过了材料本身的塑性储备而产生裂纹,叫做低塑脆化冷裂纹缺陷。

这类缺陷多产生在热影响区内部,在焊接过程中边焊边裂,没有延迟现象。

它的形貌与延迟裂纹和淬硬脆化裂纹不同,它前端没有尖锐的楔形延伸,这种裂缝前端圆钝,本身是有一定宽度,走向平直。

这种缺陷依据焊接材料不同可分为宏观和微观两种形式。宏观裂纹多出现在铸铁和某些脆性材料焊接结构中。

而微观裂纹多出现在硬质合金堆焊部位的某些淬硬性极高的高温钢的焊缝中。

焊缝层状撕裂缺陷

大型焊接结构复杂的焊接部位,在母材热影响区及其邻接处和在平行于母材的轧制表面产生的台阶式的裂纹叫焊缝层状撕裂缺陷。

1.特征及分布

该缺陷常发生在装配焊接过程中或整个焊接结构完工之后,大多出现在焊接热影响区附近或离热影响区远的母材内部,呈台阶形层状层开裂具有穿晶发展的特征。

2.X射线检测

厚度在30~60mm的范围内用一般X射线机进行透照,在底片上可显示出裂纹的暗色条状图像。若透照角度选择适当,即射线恰与撕裂层垂直在底片上还右以显示出台阶式缺陷特征。

超过60mm以上,一般X射线仪就难以穿透检测,因此不能显示。

3.形成原因

①.一般来说是由于母材内微小的层状偏析受到钢板垂直的拉伸应力作用,致使焊接母材的热影响区沿母材原轧制方向开裂形成。

②.在没有缺陷的情况下,是由于轧制钢板或型材的强度方向性所施加拉力发生。

③.

④.

⑤.焊接结构的拘束应力与变形影响

母材含氢量结层状撕裂的影响

母材性质

十三.咬边缺陷

焊接过程中,沿焊缝熔化金属边缘在母材金属上形成的一种宏观沟槽缺陷,可分为宏观咬边缺陷和单面焊根部咬边缺陷

1.特征及分布

焊缝咬边常发生在焊缝的两侧,沿焊缝熔化金属边缘和母材金属边缘呈沟槽状,主要发生在立、横、仰焊接中,单面焊根部咬边出现在内焊缝坡口边缘。

2.X射线检测

在底片上呈无规则的连续或断续条状、块状、点状黑色图像,其黑度与形成咬边原因不同而变化。

3.形成原因

①.手弧电弧焊过程中由于焊接时电流和电弧电压过大所引起的

②.焊缝单侧咬边缺陷则是由于焊接边缘一侧过分集中加热引起的

③.埋弧焊由于焊条装置不正确或装置出故障

④.埋弧焊焊速过快,溶宽下降形成

⑤.手弧焊这弧时电弧在焊缝两侧停留时间短,向回摆动速度太快,将液态金属拉回去熔池中心,致使产生凹沟。

⑥.横焊时,电弧在坡口上侧停留时间过长,使液态金属下坠,地背面焊缝或下面焊缝边缘产生凹槽。

十四.烧穿缺陷

在焊接过程中,溶化金属自坡口背面流出形成穿孔缺陷,即是烧穿。

1.特征分布

烧穿缺陷一般情况是在填充层或盖面层产生,其形状是手工焊条圆形的放大,大部分在焊缝中间位置存在。

2.X射线检测

烧穿缺陷在底片上多呈圆形、椭圆形状。

X射线透过量比无烧穿焊缝位置多,因此黑度较大。

3.形成原因

①焊件组对间隙过大。

②焊接电流过大。

③焊接速度过慢。

④焊接角度不正确。

十五根部内凹

焊缝高度低于母材内表面的现象与焊缝根部内凹。

1.特征及分布

根部内凹是打底层焊接出现缺陷,一般情况产生在焊缝中间位置。

对焊缝中有超标准缺陷进行返修过程中容易产生根部凹陷随返修处位置变化而变化。

2.X射线检测

根部内凹缺陷在底片上呈现有规则较宽深度不同的黑色图像。

对返修后的内凹其形状有宽条状、片状、云状等深度不同的黑色图像。

3.形成原因

A.横位和立位打底焊时,若采用断弧焊法,当断弧时间较长或给送液态金属量过小时液态金属和溶渣向坡口内侧收缩。

B.仰焊位打底时,若熔池尺寸增大,液态金属温度升高,表面张力减少,液态金属下坠倾向就会增大。

C.第二道施焊时,线能量很大会使前一道焊缝形成内凹,尤其是前一道(打底)焊缝很簿时导致产生。

十六焊瘤缺陷

在焊接过程中,溶化金属流淌到焊缝以外未溶化的母材及焊缝上所形成的金属瘤称为焊瘤。

1.特征及分布

焊瘤是发生在横位、立位、仰位焊缝的表面及平焊打底层背面焊缝上,常见焊缝中间位置较多呈圆形椭圆形等。

2.X射线检测

焊瘤在底片上呈圆形或椭圆形等白色亮度较大的形象,焊瘤内常伴有气孔、夹渣和未焊透等缺陷。

3.形成原因

①.焊接电流过大,焊接速度过慢,液态金属来不及凝

固。

②.焊件钝边过小,组对间隙过大,相应操作方法不当,易在背面焊缝处形成。③.焊接过程中操作方法不当,将液态金属拨出熔池十七.铸件气孔缺陷

1.析出性气孔

壁厚<60mm的钢铁铸件,普通X射线可以发现直径0.8mm以上气孔,气孔在底片上的形状为真实形状的正投影图像,由于析出气孔产生位置不同,因此有条状、圆形状、椭圆形状。

2.反应性气孔

在透照角度适当的情况下,针状反应性气孔在X射线底片上呈暗灰色,长条状,长条边缘大致平整,两端呈秃圆锥形。球状或梨状反应性气孔,体积较大,在X射线底片上呈圆形或椭圆形暗斑,有些暗斑内出现灰白色的点状物,此即渗入气孔内的金属或非金属瘤,蜂窝状侵入性气孔,由于它单个体积小,群集密度大,在X射线底片上很难分辨出气孔的单个图像。底扯上常显示出成片的暗斑,在暗斑边缘部分有的可隐约看到半圆形气孔图像,由此可以判断出此种气孔缺陷属于蜂窝状气孔。

3.卷入性气孔

在X射线底片上能清晰地看到卷入性气孔呈黑色的圆球形轮廓。

4.缩孔

铸件宏观缩孔体积比较大,在X射线底片上缩孔都能显示出清晰的轮廓。

5.缩松

由于铸件缩松缺陷分布的位置比较固定而且集中故用X射线进行透照检测时,缩松缺陷在底片上呈现像晴朗天空中出现几块去朵那样的暗色斑痕。这是因为铸件有缩松的部位致密度低,对X射线的吸收衰减少于致密高的部位,因

此缩松部位透过量大,该部位透光度高,所以铸件有缺陷的部位呈现暗色图像,无缺陷部位则呈亮色图像。

6.热裂纹

X射线底片上热裂纹缺陷呈暗色网状图形

7.冷裂纹

X射线底片上冷裂纹缺陷呈连续直线状的亦呈圆滑曲线,没有分叉而且是穿过晶粒开裂,在底片上呈黑色图像。

8.金属夹杂物

由于飞溅而形成金属夹杂物,形状不规则,体积大小不等,内渗豆形金属夹杂物呈圆形和梨形金属化合物呈弥散质点状。

如夹杂物的性质与铸件材料密度相近,X射线底片就不能显示存在,若密度大于或小于材料的密度,则X射线底片能显示出来图像。

9.非金属夹杂物

在X射线底片上可以显示出暗色斑点状或团聚状的非金属夹杂物的图像,结于点状、线状夹杂物很难辨认

10.夹砂

在底片上均能显示出夹砂缺陷的影象。冲砂和掉砂形成的夹砂在底片上呈密密麻麻的暗色斑痕,冲砂有时成网状而落砂型呈点状和夹渣缺陷相似。

射线底片评定(行业一类)

射线照相底片的评定 《射线检测》补充教材 编写:王学冠 中国锅炉压力容器检验协会教育工作委员会 二○○四年六月 网络借鉴

第六章射线照相底片的评定 6.1评定的基本要求 -底片质量要求 -评定环境、设备的要求 -评定人员条件要求. 6.1.1底片质量要求 ⑴灵敏度:从定量方面而言,是指在射线底片可以观察到的最小缺陷尺寸或最小细节尺寸;从定性方面而言,是指发现和识别细小影像的难易程度。在射线底片上所能发现的沿射线穿透方向上的最小尺寸,称为绝对灵敏度,此最小缺陷尺寸与透照厚度的百分比称为相对灵敏度。用人工孔槽,金属丝尺寸(像质计)作为底片影像质量的监测工具而得到的灵敏度又称为像质计灵敏度。 要求:底片上可识别的像质计影像、型号、规格、摆放位置,可观察的像质指数(Z)是否达到标准规定要求等,满足标准规定为合格。 ⑵黑度:为保证底片具有足够的对比度,黑度不能太小,但因受到观片灯亮度的限制,底片黑度不 能过大。根据JB4730标准规定,国内观片灯亮度必须满足观察底片黑度Dmin≥2.0。底片黑度测定要求:按标准规定,其下限黑度是指底片两端焊缝余高中心位置的黑度,其上限黑度是指底片中部焊缝两侧热影响区(母材)位置的黑度。只有当有效评定区内各点的黑度均在规定的范围内方为合格。底片评定范围内的黑度应符合下列规定:A级:≥1.5;AB级:≥2.0;B级:≥2.3;经合同各方同意,AB级最低黑度可降低至1.7,B级最低黑度可降低至2.0。透照小径管或其它截面厚度变化大的工件时,AB级最低黑度允许降低至1.5。采用多胶片技术时,单片观察时单片的黑度应符合以上要求,多片迭加观察时单片黑度应不低于1.3。 ⑶标记:底片上标记的种类和数量应符合有关标准和工艺规定,标记影像应显示完整、位置正确。 常用标记分为识别标记:如工件编号、焊缝编号、及部位片号、透照日期;定位标记:如中心定位标记、搭接标记和标距带等;返修标记:如R1…N。上述标记应放置距焊趾不少于5mm。 ⑷伪缺陷:因透照操作或暗室操作不当,或由于胶片,增感屏质量不好,在底片上留下的缺陷影像, 如划痕、折痕、水迹、斑纹、静电感光、指纹、霉点、药膜脱落、污染等。上述伪缺陷均会影响评片的正确性,造成漏判和误判,所以底片上有效评定区域内不许有伪缺陷影像。 ⑸散射:照相时,暗袋背面应贴附一个“B”铅字标记,评片时若发现在较黑背景上出现“B”字较 淡影像(浅白色),则说明背散射较严重,应采用防护措施重新拍照,若未见“B”字,或在较淡背景出现较黑的“B”字,则表示合格。 6.1.2评片环境、设备等要求: ⑴环境:要求评片室应独立、通风和卫生,室温不易过高(应备有空调),室内光线应柔和偏暗, 室内亮度应在30cd/m2为宜。室内噪音应控制在<40dB为佳。在评片前,从阳光下进入评片室应适应评片室内亮度至少为5~10min;从暗室进入评片室应适应评片室内亮度至少为30s。 ⑵设备 ①.观片灯:应有足够的光强度,确保透过黑度为≤2.5的底片后可见光度应为30cd/m2,即透照前照度 至少应≥3,000 cd/m2;透过黑度为>2.5的底片后可见光度应为10cd/m2,即透照前照度至少应≥网络借鉴

常见的焊接缺陷及缺陷图片

常见的焊接缺陷(1) 常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。

某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣

焊缝X射线探伤施工工艺

焊缝X射线探伤 1、一般要求 (1)射线检测人员 1)从事射线检测人员上岗前应进行辐射安全知识的培训,并取得放射工作人员证。 2)射线检测人员未经矫正或经矫正的近(距)视力和远(距)视力应不低于5.0(小数记录值为1.0),测试方法应符合GB 11533的规定。从事评片的人员应每年检查一次视力。 (2)观片灯 1)观片灯的最大亮度应能满足评片的要求。 2)观片灯的主要性能指标除了亮度以外还包括:亮度的均匀性、外壳温度、噪声、绝缘程度等应满足标准要求。底片评定范围内的黑度≤2.5时,观片灯的亮度不应低于9400 cd/m2 、当底片评定范围内的黑度2.5<D≤4.0时观片灯的亮度不应低于100000 cd/m2 。 (3)黑度计 1)黑度计可测的最大黑度应不小于4.5,测量值的误差应不超过±0.05。 2)黑度计至少每6个月校验一次。校准黑度计用的标准黑度片必须在有效期内,并通过计量部门的鉴定(2年)新购置的标准黑度片只要在有效期内也允许。 (4)增感屏 1)X射线照相和Ir-192射线源时选用铅屏增感屏。 2)Ir-192射线源时铅屏增感屏的前屏和后屏的厚度均不能小于0.1mm。

3)前屏和后屏的厚度可以相同也可以不同。 (5)像质计 1)底片影像质量采用线型像质计测定。线型像质计的型号和规格应符合JB/T 7902的规定,JB/T 7902中未包含的丝径、线号等内容,应符合HB 7684的有关规定。 2)像质计的材料可选择碳钢或奥氏体不锈钢。 (6)表面要求和射线检测时机 1)在射线检测之前,对接焊接接头的表面应经外观检测并合格。表面的不规则状态在底片上的影像不得掩盖或干扰缺陷影像,否则应对表面作适当修整。 2)为防止延迟裂纹倾向射线检测应在焊接完成24h后进行射线检测。 (7)辐射防护 1)现场进行X射线检测时,应按GB16357的规定划定控制区和管理区、设置警告标志。检测工作人员应佩带个人剂量计,并携带剂量报警仪。 2)现场进行γ射线检测时,应按GB18465的规定划定控制区和监督区、设置警告标志,检测作业时,应围绕控制区边界测定辐射水平。检测工作人员应佩带个人剂量计,并携带剂量报警仪。 2、透照布置 (1)透照方式选择中心法和双壁单影法。 (2)透照时射线束中心一般应垂直指向透照区中心,需要时也可选用有利于发现缺陷的方向透照。 (3)一次透照长度应以透照厚度比K进行控制。焊接接头所需的透照次数可按照透照方式计算确定。

射线照相底片的评定

《射线检测》补充教材页脚

第六章射线照相底片的评定 6.1评定的基本要求 -底片质量要求 -评定环境、设备的要求 -评定人员条件要求. 6.1.1底片质量要求 ⑴灵敏度:从定量方面而言,是指在射线底片可以观察到的最小缺陷 尺寸或最小细节尺寸;从定性方面而言,是指发现和识别细小影像的难易程度。在射线底片上所能发现的沿射线穿透方向上的最小尺寸,称为绝对灵敏度,此最小缺陷尺寸与透照厚度的百分比称为相对灵敏度。用人工孔槽,金属丝尺寸(像质计)作为底片影像质量的监测工具而得到的灵敏度又称为像质计灵敏度。 要求:底片上可识别的像质计影像、型号、规格、摆放位置,可观察的像质指数(Z)是否达到标准规定要求等,满足标准规定为合格。 ⑵黑度:为保证底片具有足够的对比度,黑度不能太小,但因受到观 片灯亮度的限制,底片黑度不能过大。根据JB4730标准规定,国观片灯亮度必须满足观察底片黑度Dmin≥2.0。底片黑度测定要求:按标准规定,其下限黑度是指底片两端焊缝余高中心位置的黑度,其上限黑度是指底片中部焊缝两侧热影响区(母材)位置的黑度。只有当有效评定区各点的黑度均在规定的围方为合格。底片评定围的黑度应符合下列规定:A级:≥1.5;AB级:≥2.0;B级:≥2.3;经合同各方同意,AB级最低黑度可降低至1.7,B级最低黑度可降低至2.0。透照小径管或其它截面厚度变化大的工件时,AB级最低黑度允许降低至1.5。 采用多胶片技术时,单片观察时单片的黑度应符合以上要求,多片迭加观察时单片黑度应不低于1.3。 ⑶标记:底片上标记的种类和数量应符合有关标准和工艺规定,标记 影像应显示完整、位置正确。常用标记分为识别标记:如工件编号、焊缝编号、及部位片号、透照日期;定位标记:如中心定位标记、搭接标记和标距带等;返修标记:如R1…N。上述标记应放置距焊趾不少于5mm。 ⑷伪缺陷:因透照操作或暗室操作不当,或由于胶片,增感屏质量不 好,在底片上留下的缺陷影像,如划痕、折痕、水迹、斑纹、静电感光、指纹、霉点、药膜脱落、污染等。上述伪缺陷均会影响评片的正确性,造成漏判和误判,所以底片上有效评定区域不许有伪缺陷影像。 页脚

射线底片评定操作培训

射线底片评定操作培训 1评定的基本要求 -底片质量要求 -评定环境、设备的要求 -评定人员条件要求. 1.1底片质量要求 ?灵敏度:从定量方面而言,是指在射线底片可以观察到的最小缺陷尺寸或最小细节尺寸;从定性方面而言,是指发现和识别细小影像的难易程度。在射线底片上所能发现的沿射线穿透方向上的最小尺寸,称为绝对灵敏度,此最小缺陷尺寸与透照厚度的百分比称为相对灵敏度。用人工孔槽,金属丝尺寸(像质计)作为底片影像质量的监测工具而得到的灵敏度又称为像质计灵敏度。 要求:底片上可识别的像质计影像、型号、规格、摆放位置,可观察的像质指数(Z)是否达到标准规定要求等,满足标准规定为合格。 ?黑度:为保证底片具有足够的对比度,黑度不能太小,但因受到观片灯亮度的限制,底片黑度不能过大。根据JB/T4730标准规定,国内观片灯亮度必须满足观察底片黑度Dmin≥2.0。底片黑度测定要求:按标准规定,其下限黑度是指底片两端焊缝余高中心位置的黑度,其上限黑度是指底片中部焊缝两侧热影响区(母材)位置的黑度。只有当有效评定区内各点的黑度均在规定的范围内方为合格。底片评定范围内的黑度应符合下列规定:A级:≥1.5;AB级:≥2.0;B级:≥2.3;经合同各方同意,AB级最低黑度可降低至1.7,B级最低黑度可降低至2.0。透照小径管或其它截面厚度变化大的工件时,AB级最低黑度允许降低至1.5。 采用多胶片技术时,单片观察时单片的黑度应符合以上要求,多片迭加观察时单片黑度应不低于1.3。 ?标记:底片上标记的种类和数量应符合有关标准和工艺规定,标记影像应显示完整、位置正确。常用标记分为识别标记:如工件编号、焊缝编号、及部位片号、透照日期; 定位标记:如中心定位标记、搭接标记和标距带等;返修标记:如R1…N。上述标记应放置距焊趾不少于5mm。 ?伪缺陷:因透照操作或暗室操作不当,或由于胶片,增感屏质量不好,在底片上留下的缺陷影像,如划痕、折痕、水迹、斑纹、静电感光、指纹、霉点、药膜脱落、污染等。上述伪缺陷均会影响评片的正确性,造成漏判和误判,所以底片上有效评定区域内不许有伪缺陷影像。 ?散射:照相时,暗袋背面应贴附一个“B”铅字标记,评片时若发现在较黑背景上出现“B”字较淡影像(浅白色),则说明背散射较严重,应采用防护措施重新拍照,若未见“B”字,或在较淡背景出现较黑的“B”字,则表示合格。 1.2评片环境、设备等要求: ?环境:要求评片室应独立、通风和卫生,室温不易过高(应备有空调),室内光线应柔和偏暗,室内亮度应在30cd/m2为宜。室内噪音应控制在<40dB为佳。在评片前,从

射线检测底片评定表

焊接接头射线检测底片评定记录 NO.05-06 报告编号:12212BGRT01 共11页第1页 产品名称2#粗甲醇水冷器产品编号12212 检测标准JB/T4730.2-2005 序号焊接 接头 编号 底 片 编 号 底片 黑度 透照 厚度 mm 象 质 计 灵 敏 度 缺陷性质、数 量及位置 评 定 级 别 评 定 结 果 一次 透照 长度 mm 备 注 1 A1 1- 2 2.3-3.0 70 7 / I 合格280 2 2- 3 2.4-3.0 70 7 / I 合格280 3 3- 4 2.6-3.1 70 7 / I 合格280 4 4- 5 3.0-3.2 70 7 / I 合格280 5 5- 6 3.0-3.3 70 7 / I 合格280 6 6- 7 2.9-3.1 70 7 / I 合格280 7 7-8 2.8-3.2 70 7 / I 合格280 8 8-9 2.8-2.9 70 7 / I 合格280 9 9-10 3.1-3.3 70 7 / I 合格280 10 10-11 2.9-3.4 70 7 / I 合格280T 11 11-12 2.9-3.3 70 7 / I 合格280 12 12-13 2.8-3.0 70 7 / I 合格280 13 13-14 2.8-3.0 70 7 / I 合格280 14 14-15 2.7-3.0 70 7 / I 合格280 15 15-16 2.8-3.1 70 7 / I 合格280 16 16-17 2.7-3.0 70 7 / I 合格280 17 17-18 2.5-2.8 70 7 / I 合格280 18 18-19 2.8-3.0 70 7 / I 合格280T 19 19-20 2.8-3.0 70 7 / I 合格280 20 20-21 2.8-3.0 70 7 / I 合格280 初评人(资格): 2013年6月16日复评人(资格): 2013年6月16日

焊缝X射线检测及其结果的评判方法综述

焊缝X射线检测及其结果的评判方法综述 周正干, 滕升华, 江 巍, 李和平 (北京航空航天大学机械工程及自动化学院,100083 北京) 摘 要:分析了焊缝X射线检测方法的现状,指出了目前存在的主要问题;介绍了焊缝X射线检测结果的人工评定和计算机辅助评定方法,论述了国内外焊缝X 射线检测结果计算机辅助识别的研究现状。研究结果表明,X射线数字实时成像技术是焊缝射线 检测的发展方向,焊缝射线数字图像的计算机自动分析与识别技术是射线实时成像技 术成功应用的基础。 关键词:无损检测;图像处理;模式识别;焊接 中图分类号:TP391.6 文献标识码:A 文章编号:0253-360X(20002)03-85-04周正干0 序 言 目前,焊接已作为一种基本工艺方法,应用于航 空、航天、舰船、桥梁、车辆、锅炉、电机、电子、冶金、 能源、石油化工、矿山机械、起重机械、建筑及国防等 各个工业部门[1]。由于焊接过程中各种参数的影 响,焊缝有时不可避免地会出现熔合不良、裂纹、气 孔、夹渣、夹钨、未熔合和未焊透等缺陷。为了保证 焊接构件的产品质量,必须对其中的焊缝进行有效 的无损检测和评价。射线检测是常规无损检测的重要方法之一,是保证焊接质量的重要技术,其检测结果将作为焊缝缺陷分析和质量评定的重要判定依据[2]。对X射线检测结果的评定方法有两种:人工评定和计算机辅助评定。当人工评定检测结果时,评定人员的工作量大,眼睛易受强光损伤,效率较低,而且缺陷分析受评定人员的技术素质、经验以及外界条件的影响,结果往往会因人而异 。采用计算机对X射线检测结果进行分析和识别,可以大大提高工作效率,有效地克服人工评定中由于评判人员技术素质和经验差异以及外界条件的不同而引起的误判或漏判,使评判过程客观化、科学化和规范化。 1 焊缝X射线的检测方法 目前,焊缝X射线检测最常用的方法是胶片照相法。X射线胶片照相的成像质量较高,能正确提供焊缝缺陷真实情况的可靠信息,但是,它具有操作过程复杂、运行成本高、结果不易保存且查询携带不便等缺点。随着电子技术及计算机技术的发展,一 收稿日期:2001-11-01种新兴的X射线检测技术———基于X射线图像增强器(X ray image intensifier)的实时成像技术(Ra2 dioscopy)应运而生,其工作原理如图1所示,图2是一种典型的图像增强器。X射线图像增强实时成像检测技术的出现使焊缝X射线检测的效率大大提高。但是,与胶片照相法相比,由于图像增强实时成像法成像环节较多,信噪比低,图像容易产生畸变,故成像质量相对较低,检测结果的图像对比度和空间分辨率均不是很高。 图1 图像增强实时成像检测系统原理图 Fig.1 Sketch of im age2intensifier2b ased radioscopy system 为了解决上述问题,20世纪90年代末出现了X 射线数字实时成像检测技术(Digital radioscopy,DR),亦称为X射线数字照相(Digital radiography,DR),其工作原理如图3所示。X射线数字实时成像系统中使用的平板探测器(Flat panel detector)如图4所示,其像元尺寸最小可达0.127mm,因而成像质量及分辨率明显优于X射线图像增强器系统,几乎可与胶片照相媲美,同时还克服了胶片照相中 第23卷 第3期2002年6月 焊接学报 TRANS ACTI ONS OF THE CHI NA WE LDI NG I NSTIT UTI ON Vol.23 No.3 June 2002

射线照相底片评定

第六章射线照相底片的评定 大连开发区质量技术监督稽查队陈伟 6.1 评片工作的基本要求通过射线照相,使缺陷在底片留下足以识别的影像。评片时,要考虑三要素: 第一要考虑的是底片质量必须符合标准要求; 第二应考虑与观片有关的设备和环境条件; 第三为评片人员对观察到的影像应能作出正确的分析与判断,这些都取决于评片人员的知识、经验、技术水平以及责任心。 6.1.1 底片质量要求 大家都知道,不同的检测标准对底片质量的要求有所不同,本部分按特种设备使用的《承压设备无损检测》JB∕T 4730·2—2005射线检测来评述底片质量。 1. 底片灵敏度 底片灵敏度又称像质计灵敏度,它是底片质量的最重要的指标,也是影像射线照相质量诸多因素的综合结果。底片灵敏度通常是用丝型像质计测定的,评片底片灵敏度的指标是像质计上应识别丝号,它等于底片上能识别的最细金属丝的编号。显然,给定透照厚度的底片上显示的金属丝直径越小,识别丝号越大,底片灵敏度就越高。对底片的灵敏度检

查内容包括:底片上是否有像质计影像,像质计型号、像质计规格、摆放位臵是否正确,能够观察到的金属丝识别丝号是否到达到相应技术等级规定等要求。 *有关像质计灵敏度的识别,请见JB∕T 4730·2—2005标准中的有关章节和附录A中的表A.1、表A.2和表A.3的要求和规定。 但应注意以下三点: ⑴、标准是用透照厚度W来确定应识别丝号的,即单壁透照W=T,双壁透照W=2T。 ⑵、既不是焊缝或热影响区上的丝号,也不是加垫板单面焊焊缝相邻的母材和垫板上金属区的丝号,而应识别的是焊缝相邻的母材金属区的丝号,且能够清晰地看到长度不少于10mm的连续金属丝,专用像质计至少应能识别两根金属丝。 ⑶、单壁透照,像质计若放于胶片侧时,应做对比试验,使灵敏度满足标准要求,并在像质计适当位臵加F标记。 ⑷、像质计的摆放应符合要求。 2、底片的黑度 底片的黑度是射线照相底片质量的又一重要指标,为保证底片具有足够的对比度,黑度不能太小。受观片灯亮度的限制,底片黑度又不能过大。标准规定,不同检测技术等级的底片评定范围内黑度D应符合下列规定:

常用焊缝检测方法

常用焊缝检测方法 常用焊缝检测方法 常用焊缝无损检测方法: 1.射线探伤方法(RT) 目前应用较广泛的射线探伤方法是利用(X、γ)射线源发出的贯穿辐射线穿透焊缝后使胶片感光,焊缝中的缺陷影像便显示在经过处理后的射线照相底片上。主要用于发现焊缝内部气孔、夹渣、裂纹及未焊透等缺陷。焊缝检测方法 2.超声探伤(UT) 利用压电换能器件,通过瞬间电激发产生脉冲振动,借助于声耦合介质传人金属中形成超声波,超声波在传播时遇到缺陷就会反射并返回到换能器,再把声脉冲转换成电脉冲,测量该信号的幅度及传播时间就可评定工件中缺陷的位置及严重程度。超声波比射线探伤灵敏度高,灵活方便,周期短、成本低、效率高、对人体无害,但显示缺陷不直观,对缺陷判断不精确,受探伤人员经验和技术熟练程度影响较大。例如:HF300,HF800焊缝检测仪等 3.渗透探伤(PT) 当含有颜料或荧光粉剂的渗透液喷洒或涂敷在被检焊缝表面上时,利用液体的毛细作用,使其渗入表面开口的缺陷中,然后清洗去除表面上多余的渗透液,干燥后施加显像剂,将缺陷中的渗透液吸附到焊缝表面上来,从而观察到缺陷的显示痕迹。液体渗透探伤主要用于:检查坡口表面、碳弧气刨清根后或焊缝缺陷清除后的刨槽表面、工卡具铲除的表面以及不便磁粉探伤部位的表面开口缺陷。焊缝检测方法

4.磁性探伤(MT) 利用铁磁性材料表面与近表面缺陷会引起磁率发生变化,磁化时在表面上产生漏磁场,并采用磁粉、磁带或其他磁场测量方法来记录与显示缺陷的一种方法。磁性探伤主要用于:检查表面及近表面缺陷。该方法与渗透探伤方法比较,不但探伤灵敏度高、速度快,而且能探查表面一定深度下缺陷。例如:DA310磁粉探伤等焊缝检测方法 其他检测方法包括:大型工件金相分析;铁素体含量检验;光谱分析;手提硬度试验;声发射试验等。

焊缝中常见的焊接缺陷

焊缝中常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。(2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔

(4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊 缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工 具钢)-45钢棒 对接电阻焊缝中 的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部 夹渣和两侧线状夹渣 钢板对接焊缝X射线照相底片 V型坡口,钨极氩弧焊打底+ 手工电弧焊,夹钨 (5)裂纹:焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。 焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性变形,超过材料的强度极限则导致开裂。裂纹的存在大大降低了焊接接头的强度,并且焊缝裂纹的尖端也成为承载后的应力集中点,成为结构断裂的起源。 裂纹可能发生在焊缝金属内部或外部,或者在焊缝附近的母材热影响区内,或者位于母材与焊缝交界处等等。根据焊接裂纹产生的时间和温度的不同,可以把裂纹分为以下几类:

焊缝探伤超声波探头的选择方案参考

编号被测工件厚度选择探头和斜率14 —5mm6< 6 K3 不锈钢: 1.25MHz 铸铁: 0.5— 2.5 MHz 普通钢:5MHz 26—8mm8< 8 K3 39—10mm9< 9 K3 411 —12mm9< 9 K 2.5 513—16 mm9< 9 K2 617—25 mm13< 13 K2 726—30 mm13< 13 K 2.5 831 —46 mm13< 13 K 1.5 947—120 mm13< 13( K—2K1) 10121—400 mm18< 18 ( K—2K1) 20 X 20 ( K—K1)

超声波探伤在无损检测焊接质量中的作用 焊缝检验方法: 1, 外观检查. 2, 致密性试验和水压强度试验. 3, 焊缝射线照相. 4, 超声波探伤. 5, 磁力探伤. 6, 渗透探伤.关于返修规定: 具体情况具体对待,总之要力争减少返修次数在厂房建设及设备安装中大量使用钢结构,钢结构的焊接质量十分重要,无损检测是保证钢结构焊接质量的重要方法。 无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤等仪器检测。肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。 至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。 那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20 千赫兹高的声波叫超声波。用于探伤的超声波,频率为 0.4-25兆赫兹,其中用得最多的是1 -5兆赫兹。利用声音来检测物体的好坏,这种方法早已被人们所采用。例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。但这些依靠人的听觉来判断声响的检测法,比声响法要客观和准确,而且也比较容易作出定量的表示。由于超声波探伤具有探测距离大,探伤装置体积小,重量轻,便于携带到现场探伤,检测速度快,而且探伤中只消耗耦合剂和磨损探头,总的检测费用较低等特点,目前建筑业市场主要采用此种方法进行检测。下面介绍一下超声波探伤在实际工作中的应用。 接到探伤任务后,首先要了解图纸对焊接质量的技术要求。目前钢结构的

典型的焊接缺陷

典型的焊接缺陷: 未焊透 表面凹陷 根部咬边 错边 错边,单边根部未焊透 焊瘤 表面咬边 横向裂缝 根部未焊透 根部凹陷 烧穿 单个夹渣 线状夹渣 内部未熔合 内侧未熔合 气孔 链状气孔

夹珠 横向裂纹 中心线裂纹 根部裂纹 夹钨 一.??底片上常见的焊接缺陷的分类 1.按缺陷的形态分 (1)???体积状缺陷(三维):A,B,D,F (2)???平面状缺陷(二维):E,C,白点等 2.按缺陷内的成分密度分 (1)???Fu>金属密度,如夹钨,夹铜,夹珠等,呈白色影象. (2)???Fu<金属密度,如气孔,夹渣等,呈黑色影象 二.??缺陷在底片中成象的基本特征 1.气孔(A) 常见:球孔(Aa),条状气孔(Ab),缩孔(Ab)倾斜,(Aa)垂直 (1)???球孔(Aa),均布气孔,密集气孔,链状气孔,表面气孔. 在底片上多呈现黑色的小园形斑点,外形规则,黑度是中心大,沿边缘渐淡,,规律性强,轮廓清晰,若单个分散出现,且黑度淡,轮廓欠清晰的多为表面气孔,密集成群(5个以上/cm2)叫密集气孔,大多在焊缝近表面,是由于空气中N2进入熔池形成,平行于焊缝轴线成链状分布(通常在1cm长线上有4个以上,其间距均小于最小的孔径)称链孔.它常和未焊透同生,一群均匀分布在焊缝中的气孔,称均布气孔. (2)条状气孔(Ab),斜针状气孔(蛇孔,虫孔,螺孔等) a.条状气孔:大底片上,其影象多平行于焊缝轴线,黑度均匀较淡,轮廓清晰,起点多呈园形(胎生园),并沿焊 接方向逐渐变细,终端呈尖细状,这种气孔多因焊剂或药皮烘烤不够造成,沿焊条运行方向发展,内含CO,少量CO2.如图示 b.斜针状气孔:在底片上多呈现为各种条虫的影象,一端保持着气孔的胎生园(或半园形),一端呈尖细状,黑 度淡而均匀,轮廓清晰,这种气孔多沿结晶方向成长条状,其外貌取决于焊缝金属的凝固方式和气体的来源而定,一般多成人字形分布(CO),少量呈蝌蚪状(H2) (3)缩孔:晶间缩孔,弧坑缩孔 a.晶间缩孔(针孔或柱孔),又称枝晶间缩孔,主要是因焊缝金属冷却过程中,残留气体在枝晶间形成的长条 形缩孔,多垂直于焊缝表面,在底片上多呈现为黑度较大,轮廓清晰,外形规则的园形影象,常出现在焊缝轴线上或附近区域. b.弧坑缩孔,又称火口缩孔,主要是因为焊缝的末端未填满,而在后面的焊接焊道又未消除而形成的缩孔, 在底片上的凹坑(弧坑),黑度较淡,影象中有一黑度明显大于周围的黑色块状影像,黑度均匀,轮廓欠清晰,外形不规则,但有收缩的线纹. 2.夹渣(B),点(块)状,条状,非金属,金属. (1)点(块)状(Ba) a.??非金属Ba:在底片上呈现为外形不规则,轮廓清晰,且有棱角,黑度淡而均匀细点(块)状影象,分布有密 集(群密),链状,,也有单个分散出现,主要是焊剂或药皮成渣残留在焊缝与母材或焊道之间,形状大多为鱼鳞状和瓦块状. b.??金属点(块)状:如夹钨,夹铜,夹珠等,在底片上多呈现为淡白色的点(块)状亮点,轮廓清晰,多为群密成块, 在5倍放大镜观察下有棱角的均为钨夹渣;铜夹渣底片上多呈现为灰白色,不规则的影像,轮廓清晰,无棱角,多为单个出现;夹珠,在底片上多为园形的灰白色影像,在白色的影像周围有黑度偏大于焊缝金属的黑度园圏,如同句号影像,这主要是大的飞溅或熄弧后焊条(丝)头剪断后埋在焊缝金属之中,周围一圏,黑色影像为未熔合. (2)条状夹渣(Bb)

焊缝质量检测方法

一外观检验 用肉眼或放大镜观察是否有缺陷,如咬边、烧穿、未焊透及裂纹等,并检查焊缝外形尺寸是否符合要求。 二密封性检验 容器或压力容器如锅炉、管道等要进行焊缝的密封性试验。密封性试验有水压试验、气压试验和煤油试验几种。 1水压试验水压试验用来检查焊缝的密封性,是焊接容器中用得最多的一种密封性检验方法。 2气压试验气压试验比水压试验更灵敏迅速,多用于检查低压容器及管道的密封性。将压缩空气通入容器内,焊缝表面涂抹肥皂水,如果肥皂泡显现,即为缺陷所在。 3煤油试验在焊缝的一面涂抹白色涂料,待干燥后再在另一面涂煤油,若焊缝中有细微裂纹或穿透性气孔等缺陷,煤油会渗透过去,在涂料一面呈现明显油斑,显现出缺陷位置。 三焊缝内部缺陷的无损检测 1渗透检验渗透检验是利用带有荧光染料或红色染料的渗透剂的渗透作用,显示缺陷痕迹的无损检验法,常用的有荧光探伤和着色探伤。将擦洗干净的焊件表面喷涂渗透性良好的红色着色剂,待渗透到焊缝表面的缺陷内,将焊件表面擦净。再涂上一层白色显示液,待干燥后,渗入到焊件缺陷中的着色剂由于毛细作用被白色显示剂所吸附,在表面呈现出缺陷的红色痕迹。渗透检验可用于任何表面光洁的材料。 2磁粉检验磁粉检验是将焊件在强磁场中磁化,使磁力线通过焊缝,遇到焊缝表面或接近表面处的缺陷时,产生漏磁而吸引撒在焊缝表面的磁性氧化铁粉。根据铁粉被吸附的痕迹就能判断缺陷的位置和大小。磁粉检验仅适用于检验铁磁性材料表面或近表面处的缺陷。 3射线检验射线检验有X射线和丫射线检验两种。当射线透过被检验的焊缝时,如有缺陷,则通过缺陷处的射线衰减程度较小,因此在焊缝背面的底片上感光较强,底片冲洗后,会在缺陷部位显示出黑色斑点或条纹。X射线照射时间短、速度快,但设备复杂、费用大,穿透能力较丫射线小,被检测焊件厚度应小于30mm。而丫射线检验设备轻便、操作简单,穿透能力强,能照投300mm的钢板。透照时不需要电源,野外作业方便。但检测小于50mm以下焊缝时,灵敏度不咼。 4超声波检查超声波检验是利用超声波能在金属内部传播,并在遇到两种介质的界面时会发生反射和折射的原理来检验焊缝内部缺陷的。当超声波通过探头从焊件表面进入内

工业X射线底片评定方法

《射线检测》补充教材 编写:王学冠

第六章射线照相底片的评定 6.1评定的基本要求 -底片质量要求 -评定环境、设备的要求 -评定人员条件要求. 6.1.1底片质量要求 ?灵敏度:从定量方面而言,是指在射线底片可以观察到的最小缺陷尺寸或最小细节尺寸;从定性方面而言,是指发现和识别细小影像的难易程度。在射线底片上所能发现的沿射线穿透方向上的最小尺寸,称为绝对灵敏度,此最小缺陷尺寸与透照厚度的百分比称为相对灵敏度。用人工孔槽,金属丝尺寸(像质计)作为底片影像质量的监测工具而得到的灵敏度又称为像质计灵敏度。 要求:底片上可识别的像质计影像、型号、规格、摆放位置,可观察的像质指数(Z)是否达到标准规定要求等,满足标准规定为合格。 ?黑度:为保证底片具有足够的对比度,黑度不能太小,但因受到观片灯亮度的限制,底片黑度不能过大。根据JB4730标准规定,国内观片灯亮度必须满足观察底片黑度Dmin≥2.0。底片黑度测定要求:按标准规定,其下限黑度是指底片两端焊缝余高中心位置的黑度,其上限黑度是指底片中部焊缝两侧热影响区(母材)位置的黑度。只有当有效评定区内各点的黑度均在规定的范围内方为合格。底片评定范围内的黑度应符合下列规定:A级:≥1.5;AB级:≥2.0;B级:≥2.3;经合同各方同意,AB级最低黑度可降低至1.7,B级最低黑度可降低至2.0。透照小径管或其它截面厚度变化大的工件时,AB级最低黑度允许降低至1.5。 采用多胶片技术时,单片观察时单片的黑度应符合以上要求,多片迭加观察时单片黑度应不低于1.3。 ?标记:底片上标记的种类和数量应符合有关标准和工艺规定,标记影像应显示完整、位置正确。常用标记分为识别标记:如工件编号、焊缝编号、及部位片号、透照日期;定位标记:如中心定位标记、搭接标记和标距带等;返修标记:如R1…N。上述标记应放置距焊趾不少于5mm。 ?伪缺陷:因透照操作或暗室操作不当,或由于胶片,增感屏质量不好,在底片上留下的缺陷影像,如划痕、折痕、水迹、斑纹、静电感光、指纹、霉点、药膜脱落、污染等。上述伪缺陷均会影响评片的正确性,造成漏判和误判,所以底片上有效评定区域内不许有伪缺陷影像。 1

常见的焊接缺陷及缺陷图片

常见的焊接缺陷 (1) 常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U 坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 AHA12GAGGAGAGGAFFFFAFAF

或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而 残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。 AHA12GAGGAGAGGAFFFFAFAF

某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或 AHA12GAGGAGAGGAFFFFAFAF

射线无损检测底片评定制度

射线无损检测底片评定制度 1.射线无损检测评片按JB4730-94《压力容器无损检测》标准,焊缝射线透照检测中相关要求执行。 2.射线无损检测底片评定、审核工作必须由射线Ⅱ级资格人员担任。3.评片人员必须了解被检工件的焊接种类、焊接方法、坡口型式以及材料种类等,以提供评片时参考。 4.评片应在专用评片室内进行。评片室内的光线应暗淡,但不全暗,室内照明用光不得在底片表面产生反射。 5.评片时,底片应在干燥后观察,观察应在光线暗淡的评片室内进行,观片灯应有观察片最大黑度为3.5的最大亮度。 6.评片的底片质量应符合下列要求: 6.1底片上必须显示出与透明厚度相对应的要求达到的最小像质指数; 6.2底片有效评定区域内的黑度应满足1.2~3.5的要求。 6.3底片上象质计影象位置应正确,定位标记和识别标记齐全,且不掩盖被检焊缝影象。在焊缝影象上,能清晰地看到长度小于10mm的象质计金属丝影象; 6.4在底片评定区域内不应有以下妨碍底片评定的假缺陷;6.4.1灰雾 6.4.2处理时产生的条纹、水迹或化学污斑等缺陷; 6.4.3划痕、指纹、脏物、静电痕迹、黑点或撕裂等; 6.4.4由于增感屏不好造成的缺陷。

6.5对上述不符和底片质量要求的底片应拒绝评定,并要求重拍。6.6评片人员根据底片上全影象,按JB4730-94《压力容器无损检测》标准中,焊缝射线透照缺陷等级评定的规定进行评定,缺陷评定应坚持:定性(定缺陷特性);定量(定缺陷的大小尺寸和数量);定位(定缺陷所处位置);定级(按JB4730标准评定质量等级)的四定原则。 6.7焊缝无损检测底片评定合格,开出无损检测合格通知单,出具射线无损检测报告,不合格焊缝开出焊缝返修通知单,按相关规定要求返修后复拍再重新评定。 6.8报告及验收标记 6.8.1报告至少应包括以下内容: 6.8.1.1委托部门、被检工件名称、编号、被检工件材质、母材厚度; 6.8.1.2检测装置的名称、型号、透照方法及透照规范,透照部位及无损检测。 6.8.1.3检测结果、缺陷等级评定及检测标准名称;6.8.1.4返修情况; 6.8.1.5检验人员和责任人员签字及其技术资格、检测日期。6.8.2验收标记 6.8.2.1如果检测内容作为压力容器产品验收的项目,则检测合格的所有工件上都应作永久性或半永久性的标记,标记应醒目。产品上不适合打印标记时,应采取详细的检测示意图或其它有效方式标

常见的焊接缺陷及缺陷图片

常见得焊接缺陷(1) 常见得焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)得钝边未完全熔合在一起而留下得局部未熔合。未焊透降低了焊接接头得机械强度,在未焊透得缺口与端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时得焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内得气体 或外界侵入得气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成得空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别就是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生得气体、液态金属吸收得气体,或者焊条得焊剂受潮而在高温下分解产生气体,甚至就是焊接环境中得湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它得缺陷其应力集中趋势没有那么大,但就是它破坏了焊缝金属得致密性,减少了焊缝金属得有效截面积,从而导致焊缝得强度降低。

某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时得冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状与条状,其外形通常就是不规则得,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落得碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中得夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣

射线底片评定技术(评片基本要求部分)

主讲人:夏福勇 主讲人简介 夏福勇,教授级高级工程师。原杭州市特种设备检测研究院副总工程师,现任杭州市锅炉压力容器技术协会秘书长,全国特种设备无损检测人员资格考核委员会考评人员,中国无损检测学会教育培训和科普工作委员会委员。持具有特种设备行业RTIII、UTIII、MTIII、PTIII级资质以及锅炉、压力容器、压力管道检验师(原高级检验师)资质;完成省部级涉及无损检测、特种设备检验科研项目七项,参加起草国家总局安全技术规范四部,出版著作三部,获得实用新型专利四项,在国内外发表专业论文二十余篇。获得过国家质检总局科技兴检奖等。 主要内容 一、底片评定的基本要求 1.底片质量要求 2.评片环境、设备等要求: 3.评片人员要求 4.相关知识要求 一、底片评定的基本要求 评片工作一般包括下面的内容: 1)评定底片本身质量的合格性; 2)正确识别底片上的影像; 3)依据从已知的被检工件信息和底片上得到的影像信息,按照验收标准或技术条件对工件质量作出评定; 4)记录和资料。 1.底片质量要求 (1)灵敏度:从定量方面而言,是指在射线底片可以观察到的最小缺陷尺寸或最小细节尺寸;从定性方面而言,是指发现和识别细小影像的难易程度。在射线底片上所能发现的沿射线穿透方向上的最小尺寸,称为绝对灵敏度,此最小缺陷尺寸与透照厚度的百分比称为相对灵敏度。用人工孔槽,金属丝尺寸(像质计)作为底片影像质量的监测工具而得到的灵敏度又称为像质计灵敏度。 要求:底片上可识别的像质计影像、型号、规格、摆放位置,可观察的像质丝号是否达到标准规定要求等,满足标准规定为合格。 (2)黑度: 为保证底片具有足够的对比度,黑度不能太小,但因受到观片灯亮度的限制,底片黑度不能过大。 底片黑度测定要求:按标准规定,其下限黑度是指底片两端搭接标记处的焊缝余高中心位置的黑度,其上限黑度是指底片中部焊缝两侧热影响区(母材)位

相关文档
最新文档