中子辐照生物效应的理论分析

中子辐照生物效应的理论分析
中子辐照生物效应的理论分析

中子辐照生物效应的理论分析

中子作为构成原子核的基础粒子,它不带电,与物质的相互作用通常是与原子核的相互作用。碳氢氧氮等元素在生物体内的含量很多,中子与生物体的相互作用主要就是与这几种元素原子的相互作用,中子与它们相互作用的概率大小同中子能量有很大的关系,在入射中子能量小于30Mev时,中子同这几种元素的作用类型以弹性散射为主,并在2~10Mev能区存在程度不同的共振。中子诱导的生物效应要高于γ射线,并且中子生物效应还同中子能量、剂量、物理生物因素以及生物终点密切相关。

关键词:中子,生物效应,弹性散射,

第一章引言

1.1中子的性质与应用

1.1.1中子的粒子性与波动性

中子存在于除氢以外的所有原子核中,是组成原子核的重要组分之一,中子主要来源于反应堆、加速器、放射性核素等中子源。自从1932年恰徳维克等人发现中子以来,人们对中子的性质进行了广泛的研究。中子会以高度凝聚态的形式构成中子星物质。[1]

中子的粒子性[1] [2]

质量:chadwick发现中子是通过测量α轰击Be核所产生的未知射线与H、Li、Be、B、C、N等轻核碰撞所产生的反冲核能量,根据能量、动量守恒的规律推算该射线粒子质量的实验完成的。通过某些有中子产生或吸收的核反应,根据运动学关系求出中子质量、中子质子质量差值,是确定中子质量的基本方法。

自旋:中子是自旋为?的费米子,遵守费米统计分布,服从泡利不相容原理。

磁矩:氘核的磁矩小于质子的磁矩表明中子和质子具有相反的磁矩,由磁共振谱仪可以推测出中子磁矩为μn=-1.913042μN,负号表示磁矩矢量方向和自旋角动量方向相反。电中性的中子具有磁矩说明中子内部有结构。在夸克模型中,中子由u、d、d三个夸克组成,分别具有电荷e、- e。

中子寿命:Chadwick于1935年指出自由中子不稳定,它会衰变放出一个质子、一个电子、和一个反中微子并放出0.782Mev的能量;半衰期为10.61±0.61min。这表明了中子的静止质量大于质子质量的实验事实。实验观察到中子衰变是通过从反应堆中子束经电偏转引出正离子,并鉴定正离子为质子而确认的。

中子的波动性[1] [2]

同其他粒子一样,中子除具有粒子性之外还具有波动性。自Chadwick发现中子后,很快观察到热能化中子在多晶铁样品上类似于衍射图像的散射角分布。中子波动性对于中子波在物质结构研究中的应用具有重要意义。电子或电磁辐射与

介质通过电磁相互作用而观察介质的电子密度结构及其运动。而中子与介质的作用是与原子核的强相互作用,用中子波观察的是介质中原子的结构及其运动。由量子力学可以知道对于快中子而言其波长较短。但随着中子能量的降低波长会随之增大,当中子为热中子(0.025ev)时,中子波长就和原子线度和晶格间距为同一数量级。此时中子的波动性比较明显,会在原子和晶体上产生明显的衍射;由于中子在轻重元素上有相近的散射振幅,而相邻核素的散射振幅可以相差很大的性质,因此中子衍射常用来测定含轻元素物质的结构。

1.1.2中子的应用

中子作为人类认识自然界的一种工具,在中子核物理研究中,常利用中子及各种粒子作为探针,探究核结构和核反应规律的侧面,并归纳这些知识,以构建我们对原子核的认识;这是我们研究原子核的基本方式。

利用能量、动量可测量的波、粒子在样品上散射可得到有关物质结构及动力学方面的知识。中子在样品上的散射波是中子在原子上散射波相干的结果。热中子散射研究过程分为两大类,一是衍射研究,从中可以得到有关结构的知识;二是谱学研究,从中得到有关动力学知识。中子是电中性,在样品中无直接的电离损耗,不会导致样品的热损伤。由于穿透深度大,不仅可以用大样品,而且测试时还需要包壳样品。x射线的散射(吸收)截面随Z的增大而缓慢线性增大,不能区分相邻元素,也难以做轻元素定位。中子与原子核的作用随不同原子核而异与Z无关,不仅可以区分相邻元素还可以在重元素背景下做轻元素定位。

1.2中子的分类及中子与物质的相互作用

1.2.1中子的能量分类[3]

中子的能量不同,其与物质相互作用的主要方式也不同;根据中子的能量的大小可以对中子进行分类。

(1)慢中子:包括热中子、冷中子、超热中子和共振中子。热中子是指能量为0.005ev~0.5ev的中子,其与周围介质原子(或分子)处于平衡状态,中子速度分布接近麦克斯韦分布,其平均能量为KT(K为玻尔兹曼常数,T为绝对温度)。通常把能量低于0.005ev的中子成为冷中子。略高于热中子能量的中子称为超热中子。把能量在1ev~1Kev之间的中子称为共振中子,其与原子核相互作用时会发生强烈的共振吸收。

(2)中能中子:指平均能量在热中子和快中子之间即能量在1Kev~100Kev

的中子,其与原子核相互作用的主要方式为弹性散射。

(3)快中子:能量在100Kev~10Mev的中子,其与原子核的主要作用方式为弹性和非弹性散射。

(4)高能中子:能量高于10Mev的中子,其与原子核的相互作用除弹性和非弹性散射外,还可以发生放出两个或两个以上粒子的核反应。

1.2.2中子与物质的相互作用

带电粒子与物质相互作用时主要通过电磁相互作用而损失能量,而中子呈电中性,其与原子中电子的相互作用很小,不会使原子电离、激发而损失能量,因此它和电子的相互作用可以忽略不计。因此,研究中子与物质的相互作用时,主要是研究中子与靶原子核的相互作用。根据入射中子能量的不同,中子与原子核的相互作用有多种形式,主要包括弹性散射、非弹性散射、核反应、裂变等。若中子撞击靶原子核后,核的组成以及能量和作用前相比均未发生变化,则称之为弹性散射;此过程中释放出的中子称为弹性散射中子。如果中子与靶原子核碰撞后,核的组成未发生变化,而能量改变了,则将这一过程称之为非弹性散射;相应的出射中子叫非弹性散射中子。核反应是指中子被原子核吸收而释放出其他带电粒子或γ射线的过程,如(n,γ)、(n,α)、(n,p)等。核裂变是指中子与235U等重核作用时,235U等重核会裂变为两个中等质量的核,同时释放出2~3个中子和大量能量的过程。

(1)对于轻核,当入射中子的能量不高时,弹性散射是中子与原子核相互作用的主要方式,其他反应截面很小可以忽略不计,全截面与弹性散射截面相等。在低能部分弹性散射截面近似为常量,并且会随着入射中子能量的增加而减小。

(2)非弹性散射具有阈能的特点,阈能大小和原子核质量数有关,质量数愈大的核阈能愈低。当中子能量小于阈能时,非弹性散射截面为零,而当中子能量大于阈能时,非弹性散射截面随中子能量的增加而增大。

(3)在吸收截面中最重要的是辐射俘获的贡献,辐射俘获多发生在重核上,在轻核上发生的概率较小;它可以在中子的所有能区发生。重核在低能时的辐射俘获是主要的,全截面几乎与辐射俘获截面相等,在低能呈现1/v律。而中重核在低能的情形介于重核和轻核之间,全截面为弹性散射截面和辐射俘获截面之和。

(4)在一般情况下,中子引起带电粒子飞出的反应也是阈反应,相应的截面值也较小,除10B、3He、6Li等少数核外,在吸收截面中通常不予以考虑。某些轻核的(n,α)及某些裂变核的裂变截面等正比于E1/2即正比于1/v律。

1.2.3中子核反应机制的描述[2]

中子主要通过和物质中原子核的相互作用而损失能量。中子与原子核的作用过程可分为三个阶段。第一阶段,当中子入射进入靶核的核力作用范围时,有两种结果产生:一种情况是中子被靶核吸收发生核反应,另一种是中子被弹性散射;这种情况和一束光入射到半透明玻璃球上的情况是相同的,因此这一作用阶段常用光学模型来描述。第二阶段,中子被靶核吸收,认为中子和靶核形成一个复合核体系,在这一阶段,能量交换方式有多种,一是包括表面和体内直接相互作用、多次碰撞、集体激发等在内的直接相互作用;二是中子在靶核内经过多次碰撞而不断损失能量,最后留在核内,与靶核融为一体形成复合核。第三阶段,复合核衰变为出射粒子和剩余核。从反应时间来看直接相互作用的时间较短,介于这两者之间的粒子发射过程称为预平衡发射。对于某一种特定的反应,可能这几种反应机制同时存在,也可能以某一种反应机制为主,这主要取决于入射中子的能量和靶核的性质。

这几种反应机制特点:

(1)在截面的低能部分复合核机制是主要的,随着入射中子能量的增加直接反应的贡献将增加以致成为主要部分,而复合核反应的贡献将随能量的增加而减小,最后可以忽略。

(2)出射粒子能谱的低能部分主要是复合核的贡献,并且呈麦克斯韦分布,称为蒸发谱。高能量的出射粒子主要来自直接反应机制且剩余核处在较低激发能级。在这两部分的连续区,预平衡发射起了很好的补充作用。

(3)来自复合核反应机制的出射粒子的角分布各向同性或90°对称,而直接反应的贡献则是前冲的,即在小角度有更高的概率。

不同的反应机制用不同的理论和模型来描述。直接反应中,弹性散射是主要反应道,吸收作用可以忽略,常用的工具是平面波玻恩近似PWBA和扭曲波玻恩近似DWBA。在有些情况下,如靶核的低激发能级有强的集体运动性质,这时非弹性散射比较强,道-道之间有耦合,用耦合道理论描述比较成功。少核子情况下则用少体积分方程方法。共振理论、H-F理论、蒸发模型描述复合核反应是成功的。激子模型用来描述预平衡发射。

1.3中子生物效应的研究现状

各种类型的反应堆、加速器和放射性核素是研究中子生物效应的重要中子

源。加速器能产生能量单一的中子,可以避免复合场带来的生物效应的复杂性。例如,法国Samic公司的KR-400T型中子加速器,氘粒子在200kv的高压磁场内被加速冲击氚核将产生14Mev快中子流。反应堆中子源的特点是中子注量率大,例如专供大动物中子照射的BEPO堆,其平均能量0.7Mev,剂量率可达2500rad/h。[8]但是反应堆产生的中子能谱形状复杂,中子束流中通常都伴有很强的γ辐射,这就使得中子生物效应的研究变得复杂化。放射性核素中子源通常体积小,携带方便,不需要复杂的控制系统。如252Cf裂变中子源半衰期2.6年,其97%的衰变方式是发射α粒子,3%是自发裂变,在自发裂变过程中会产生大量中子和γ射线,裂变中子的平均能量2.1Mev[2]。中子诱导的生物效应主要包括中子诱导的DNA损伤及修复、中子诱导的基因组不稳定性、中子诱导染色体畸变、中子诱导细胞周期阻滞、中子诱导细胞凋亡和相对生物效应RBE等。[5]中子的生物效应首先取决于其所具有的能量,杜杰等[4]以微核率为观察生物终点,18Mev中子对60Coγ射线的RBE为1.24~2.91。白玉书等[6]用2.14MeV 中子和60Coγ射线分别照射离体人血, 建立微核的剂量效应曲线,中子剂量在0.1~3.0Gy之间, RBE从11.4到1.69。即对于同一生物终点,入射中子的能量不同,它引起的生物效应值也不相同。

中子辐射所产生的DNA损伤多为双键断裂,正常情况下,细胞可在数小时内不同程度的修复DNA损伤,以维持细胞正常的生命活动。DNA修复不是随机的,而是有一定规律。活性基因损伤的DNA常被优先修复;转录链上的DNA 修复率远远高于非转录链;有转录活性的原癌基因的损伤修复比无转录活性的快。[5]

使细胞获得高于正常情况下累积的任何突变状态均称为基因组不稳定性。[5] Watson等[9]研究中子诱导小鼠造血细胞染色体畸变结果发现,发生基因组不稳定性的细胞占细胞总数的3%~6%表明中子可诱发基因组不稳定性,且这种不稳定性通过移植术在活体内可进行传递。

Tanaka等[10],研究单能中子诱发染色体畸变的生物效应。结果表明,相对于高能量(如2.3MeV)的单能中子,低能量的单能中子(如0.79、0.57和0.37MeV)照射后,染色体畸变的产量随着单能中子能量的降低而增加。而在较低能量(如0.186MeV)的中子照射后,其畸变量降低,可能是由于慢中子的能量较低,对组织的穿透能力相对较弱。

中子诱导的细胞凋亡是中子诱发细胞损伤的主要形式之一,是中子辐射生物效应的一个敏感指标[5]。Lee等[11]研究快中子诱导小鼠毛囊细胞凋亡效应,结果发现,细胞凋亡率与剂量呈线性平方关系,照射后12h凋亡率最高[5]。Ishida等

研究中子诱导胎鼠脑细胞的凋亡效应结果发现,胎鼠脑细胞凋亡与中子辐射剂量之间呈良好线性平方关系,低剂量中子照射也会导致细胞凋亡效应和急性组织损伤[5]。

辐射所引起的生物效能同射线类型相关,不同辐射在同一剂量水平所引起的生物效能可能明显不同。相同剂量水平时,中子诱发的双加环畸变效能大于60Co γ射线,小剂量更为明显。这是因为快中子诱发染色体畸变可以在一个细胞内见到多个畸变。多畸变细胞在中子剂量2Gy以上就可以见到,而对60Coγ射线在4Gy时才可能见到[4] [6]。中子的相对生物效应并不是恒定不变的,白玉书等[6] 快中子对X和γ射线诱发淋巴细胞微核效应的比较研究指出2.14Mev快中子对180kev x、60Coγ射线诱发微核的RBE随剂量增加而减小,平均为3.88和4.50。

中子生物效应不仅和物理因素、生物因素、辐射剂量等有关;还同生物学判定标准有关。敏感效应终点所得RBE比其他效应终点所得RBE大。在杜杰等[4]快中子与60Coγ射线诱发人淋巴细胞生物效应研究中,以染色体畸变率确定的RBE大于以微核率确定的RBE。即染色体畸变对中子比微核更敏感。微核产生于染色体畸变,微核率在一定程度上反应了染色体畸变率。

第二章试验方法

2.1试验田种植

将室内培养至出苗的豌豆幼苗移栽至试验田中,试验田的整体布局如图2.1所示,图中每个方框代表试验田的一个小区,字母代表该小区的编号。试验田分为7╳8共56个小区,每个小区的长宽分别为120cm和80cm,相邻小区东西方向、南北方向间的间隔均为80cm。每个小区的种植布局如图2.2所示,其中每个小黑点代表一株植株,图中字母数字为植株编号;相邻两株植株的东西间隔为20cm,南北间隔为30cm。

图 2.1 试验田整体布局

图 2.2 试验田单个小区布局

2.2处理方法

用二帧、三帧、四帧的遮阳网分别对试验田的光强进行处理,待豌豆植株的长出一对、三对、五对托叶后,分别对相应小区的豌豆植株进行去尖。具体处理情况见表2.1。

2.3实验测量

2.3.1豌豆叶片组织结构的观察

选取长势良好的豌豆植株,摘取它的一片托叶,制成临时切片在显微镜下观察它的叶片组织结构。

2.3.2SOD活性的测量

(1)试剂和材料[12]

(2)邻苯三酚自氧化速率的测定

根据表2.2,在试管中加入缓冲液和双蒸水。25℃条件下恒温放置20min后,加入25℃预热过的邻苯三酚;对照管中加入10mmol/L盐酸。迅速摇匀并倒入比

色皿中在波长325nm处每间隔30s测一次吸光值A

根据表2.3进行SOD活性测量,具体操作与上述邻苯三酚自氧化速率测定基本相同,在波长325nm处测得吸光值为A SOD。抑制率=(△A0-△A SOD) /△A0×100%。

2.3.3MDA含量测量

(1)MDA的提取

称取剪碎的豌豆植株1g,加入2mll0%TCA和少量石英砂,研磨至匀浆,再加8mlTCA研磨,匀浆在4000r/min离心10min,上清液为样品提取液。

(2)显色反应和测定

吸取离心的上清液2ml(对照加2ml蒸馏水),加入2ml0.6%TBA溶液,混匀物于沸水浴上反应15min,迅速冷却后再离心。取上清液测定532、600和450nm 波长下的消光度。

第三章实验结果

3.1叶片组织结构观察

图3.1是经过去顶处理的G1组豌豆植株和未做任何处理的对照组CK6中选取的植株叶片所做的叶片组织结构切片。通过对豌豆叶片的徒手切片进行观察,发现去顶对植物的组织结构并没有明显的影响。也就是说去顶植株和对照组植株叶片中的栅栏组织和海绵组织并没有什么明显不同。

G1植株组织结构切片(去顶组)

CK6植株组织结构切片(对照组)

图3.1部分豌豆的组织结构切片

3.2SOD活性、MDA含量测量结果

豌豆丙二醛含量(nmol ·g-1)=·g -1

O D 325n m 时间/min

图3.1 邻苯三酚自氧化曲线

第四章 讨论分析

通过不同光照条件下、分别在豌豆长出一对、三对、五对托叶后,对其进行去顶处理。实验发现去顶能够抑制豌豆植株的生长,并且去顶的时间越早,在相同实验条件下豌豆的株高就越小。同时还发现,去顶之后有利于侧枝的生长,并且在植株越小的时候去顶,这种效应越明显。除此之外,豌豆的分支数也和去顶的时间有一定的关系,通过对豌豆形态学的记录发现,在豌豆长出一对托叶后,对其进行去顶,其再生的侧枝是最多的;而待豌豆长出五对托叶后对其进行去顶处理,其生长出的侧枝数最少;豌豆植株长出三对托叶后对其进行去顶处理,其生长出的侧枝数目则介于以上两者之间。豌豆利用邻苯三酚法测量植物SOD 含量时,方法简便、试剂简单,并且在测量过程中,实验过程所受温度的影响较小。

生物体内含有大量的C 、H 、O 、N 、P 、S 等元素,它们是构成生物体内糖类、脂质、蛋白质等物质的主要成分,因此中子与生物的相互作用就是中子与这几种元素的相互作用。由图4.1~图4.6可以看出,在低能区,中子与C 、H 、O 、N 、P 、S 的相互作用截面都很大;随着入射中子能量的升高,反应截面会迅速的减小,并且在2~10Mev 能区,都存在程度不同的共振。之后再随着中子能量的增大,反应截面将缓慢减小,截面值同中子能量间存在近似线性的关系。

在0~30Mev 能区,中子与C 、H 、O 、N 的相互作用类型以弹性散射为主,并且随着中子能量的升高,弹性散射减弱,非弹性碰撞和带电粒子发射等相互作用方式增强;但在0~30Mev 范围内,弹性散射仍然是中子与碳、氢、阳等元素相互作用最主要的方式。根据图4.1~图4.6可以知道,随着元素原子质量数的增加,中子发生弹性散射的几率也将减小。氢作为生物体内含量最多的元素,当用中子对生物体进行辐照时,它和中子发生相互作用的概率最大;中子与1H 主要通过弹性碰撞损失能量,碰撞后氢变成反冲质子将继续和生物组织发生相互作用,最终造成生物细胞的损伤。

(E )/b En/Mev

图4.1 n+1H 反应截面随能量的变化关系

σ(E )/b En/Mev

图4.2 n+12C 反应截面随能量的变化关系

B

En/Mev

图4.3 n+14N 反应截面随能量的变化关系 σ(E )/b En/Mev

图4.4 n+16O 反应截面随能量的变化关系

σ(E )/b En/Mev

图4.5 n+31P 反应截面随能量的变化关系

En/Mev

图4.6 n+32S 反应截面随能量的变化关系

电磁场的生物效应

电磁场的生物效应 对于磁场,物理学用磁场强度H和磁感应强度B来描述,物理学一开始用磁场强度H 来描述磁场,后来才发现了和电场强度相对应的磁感应强度B。严格地说,H和B不是同一术语,H是磁场,B是磁通密度(详细的分析可以参见《电动力学》),B是H所感应的磁场,所以B又叫磁感应强度。二者的关系为: B= u H 其中u是导磁率。 磁场可以产生于变化的电场(如电流就是变化的电场),也可以产生于永磁铁,地球就是一个巨大的磁铁,所以在地球表面的生物都会受到地磁场的作用,另外,人们还利用电、磁相互作用的原理制作了一些用来研究生物在各种不同强度下各种反映的仪器。 对作用和效应有影响的磁场参数有类型、磁强、均匀性、方向、作用时间等几个方面;就机体方面,对作用和效应有影响的机体因子有磁性、组成、种类、敏感性、部位和血流速度等几个方面。 生物效应:磁场从开始作用到看见机体的生物效应,一般有一段延迟时间。其主要原因可能是产生效应的磁场必须同时同方向地作用一段时间(叫物理作用时间),机体才发生明显的生物效应,累积的物理量中的大多数,可看作是产生生物效应的阈前量,并且是可逆的。所谓可逆是指磁场方向和坐标(器官、细胞、分子)方向发生变化时,其发生生物效应的可能性也变,甚至变得反相,因此应设法使磁场方向和机体方向的夹角不变,这样累积的物理量就可能达到阈值,产生可见的生物效应。 下面分别讨论地磁的生物效应以及磁效应在生物学中的一些具体的应用: (一)、地磁的生物效应 很多的星体周围都具有磁场,地球也有,我们称之为地磁场。地球近似一均匀磁化球,但有区变和日变,区变指因为区域的不同而不同,有的磁强差别很大。每天变化约0.0001——0.0004G/day。磁南(S)极在地球北极附近,磁北极在地球南极附近,平均的磁强为0.5G。 法国细菌学家巴斯德(Pasteur)1862年发现,地磁场能促进所有植物的生长,在S极下,青土豆比附近的成熟快些。 人体也同样是个磁体,也有两极。人站立时,上N极,下S极。平卧时则右侧是N极,左侧是S极,人正面是N极,背面是S极。在自然定律有所谓的稳态平衡,即此种状态下时物体最稳定,地球北极有磁S极,人睡觉时,头朝北,脚朝南,则人体处于稳态平衡,轻微的扰动不会影响睡眠深度,从而能改善健康。反之,则稍一扰动,就会失去平衡,睡得不安稳,甚至烦躁,失眠。 (二)、DNA新陈代谢与生物磁效应 脱氧核糖酸(DNA)是所有生物(一部分病毒除外)的遗传物质,也就是遗传基因的组合。DNA存在于细胞核的染色体中。DNA和核糖枝酸(RNA)统称为核酸。核酸具有复杂的结构:由嘌呤碱基或嘧啶碱基与戊糖形成核苷,一个核苷的糖上一个OH基被磷酸化时,变为核苷酸,面核苷酸借助于磷酸二酯键连接成一种特定次序(一级结构),便形成核酸。戊糖中一个OH 基说O变为H时称为脱氧核糖核酸,DNA便是含脱氧核糖的核酸。DNA这种生物大分子具有复杂的双螺旋结构,螺旋的空间缠绕、曲折等还构成二级、三级等高级结构。核酸中诸原子主要是以共价键相结合,使整体结构稳定,保持遗传特性,两条螺旋中的碱基又以氢键相结合,使局部结构可能受到外界因素作用而发生畸变,由此可能产生变异。一些物理因素(如

电磁波辐射的生物学效应与人体健康

电磁波辐射的生物学效应与人体健康 生物工程学院生物工程2班冉啟春20087211 【摘要】本文从电磁波的概念入手,介绍了电磁波的生物效应——电离辐射效应和非电离辐射效应,着重分析了电磁波的产生来源,两类生物效应的原理以及对人体健康所带来的影响,列举了有效避免电磁波辐射的方法,并从不同方面分析研究了电磁波的生物效应与人体健康之间的关系。 【关键词】电磁波生物效应电离辐射非电离辐射人体健康 Bioeffect of Electromagnetic Wave and Person's Health Ran Qichun Abstract This paper introduces the concept of the electromagnetic wave and the biological effect of the electromagnetic wave including the ionization radiation and non-ionization radiation, emphatically analyzes the origin of the electromagnetic wave. The principles of two types of radiations and their affects for person's health are explained.The paper also lists some effective methods of avoiding electromagnetic wave, analyzes and studies the biological effect, and the relationship between the electromagnetic wave and human health. Keywords electromagnetic wave;bioeffect;ionization radiation;non-ionization radiation; person's health 生活在这个快速运转的社会之中,我们自身已存在着许多危机感。然而,社会的发展.科技的进步,让我们开始思考是否现今所有的一切,都足有利于我们人类的,还是人类终将成为先进科技的附属品,或者说是受害者。现实生活中,我们周围充满了各种类型的电磁波,它与人们的生活紧密相关。例如,我们用收音机可以听到电台的广播节目,用电视机可以收看到电视台的电视节目,人们天天都在使用手机打电话、发短信,这些事实都表明在我们周围存在着各种台站所发射的电磁波。与此同时,在医学健康领域基于电磁波的疾病诊断仪器和治疗仪器也得到广泛应用。也就是说当今人们的生产和生活活动中一刻也离不开电磁波,它在人们的生产和生活活动中起着不可估量的作用。当它为人们谋福利的同时,也为人们的生活和健康带来一定的负面影响。生物体受到电离辐射的作用后,即有可能通过某一机制产生一定的生物学效应。辐射的生物学效应可以是多种多样的,常涉及生物体的各种组织或器官,伴有不同程度的伤害或生理、病理反应。 1 什么是电磁波 电磁波,即有地壳的负极电离层的正极相互左右产生的电磁场,以及地磁场和大气中各种电磁波现象(如闪电)。此外,紫外线、红外线和可见光也属于电磁波。 上述电磁波均来自于自然,而如今一些人为活动造成的现象也属于电磁波。近年来,迅速扩张的工业和家电行业不断增加了电场和磁场的来源和数量。其中包括移动电话、电脑、电视、收音机、微波炉,甚至电热毯等家用电器,以及高压电线,电磁感应器、雷达等工业、医学和商业设备。这些时常被我们忽视的设备,所带来的电磁污染危害程度绝对不比环境污染来的弱。 虽说电磁波足一种客观存在的物质形式,但是通过专门的设备我们就可以感觉到它的存在。事实上,我们生活人类在自然界的电磁波海洋中,它与我们人类的生活密切相关,但是要想在这片电磁波海洋中求生也并非易事。当它在为人类谋福利的同时,也对人们的健康带来一定的负面影响。当起作用到人体的时候,不同的波段会产生不同的生物效应。 简单的来说,根据与物质作用的方式,辐射分为电离辐射(Ionizing radiation)和非电离辐射(Non-Ionizing radiation)两类。从生物学的角度,两种辐射在作用机理、反应过程和导致的最终结果方面都明显不同。非电离辐射与生物物质作用主要通过发生在分子、细胞或组织器官水平的震动、震荡和摩擦的

反应堆材料辐照损伤概述

反应堆材料辐照损伤概述 【摘要】随着能源问题日益严峻,发展核电成为人类缓解能源紧缺问题的重要手段之一。当今核电站反应堆的技术已经比较成熟,但仍存在很多难以解决的技术问题。反应堆材料的辐照损伤问题直接关系到反应堆的安全性和经济性。本文对反应堆燃料芯块、包壳、压力容器的辐照损伤机理进行了概述,并提出一些减小辐照效应的措施。 【关键字】辐照损伤燃料芯块包壳压力容器材料 一、引言 随着能源问题日益严峻,发展核电成为人类缓解能源紧缺问题的重要手段之一。当今核电站反应堆的技术已经比较成熟,但仍存在很多难以解决的技术问题。其中,反应堆材料的辐照损伤问题尤为重要。材料的辐照损伤问题与反应堆的安全性和经济性有密切的关系。甚至直接关系到未来反应堆能否安全稳定运行。 关于反应堆的材料辐照损伤问题,主要包括三个方面:燃料芯块的辐照损伤,包壳的辐照损伤,压力容器的辐照损伤。深入认识和了解这三方面的问题,并讨论有关缓解措施具有极大地研究价值。 二、水冷堆燃料芯块的辐照损伤 1.燃料芯块的结构与辐照损伤 水冷堆燃料芯块为实心圆柱体,由低富集度UO2粉末经混合、压制、烧结、磨削等工序制成。为了减小轴向膨胀和PCI(芯块-包壳相互作用),芯块两端做成浅碟形并倒角。芯块制造工艺必须稳定,以保证成品芯块的化学成分、密度、尺寸、热稳定性及显微组织等满足要求。 燃料芯块中的铀在辐照过程中会发生肿胀,造成尺寸的不稳定性和导热性能的下降。随着燃耗的增加,铀的力学性能和物理性能将发生变化,铀将变得更硬、更脆,热导率减小,燃料包壳的腐蚀作用也在加剧。对燃料芯块辐照损伤的认识和研究,一方面有助于了解在役燃料元件的运行状态和使用寿命,及时地发现并解决问题;另一方面根据辐照特性,可以采取适当的措施增强燃料元件的性能,进一步提高核电的经济效益。 2.辐照条件下燃料芯块微观结构的演化 燃料芯块在辐照过程中,辐射与物质相互作用的方式可以分为原子过程和电子过程两大类。原子过程主要产生位移效应,位移效应的主要产物是间隙-空位对。而电子过程主要产生电离效应,其主要产物是电子-离子对。 燃料芯块在辐照过程中,将产生能量很高的裂变碎片,造成严重的辐照损伤,并伴有大量的原子重新分布,尤其是裂变产物中的氙和氪,产额高,又不溶于固体,在辐照缺陷的协同作用下形成气泡,造成肿胀。另外,固体裂变产物具有很强侵蚀作用,将使芯块发生应力腐蚀而开裂。 3.燃料芯块辐照损伤机理和宏观性能变化 (1)辐照肿胀 辐照会引起体膨胀,称辐照肿胀。燃料芯块中所使用的重要金属铀,其单晶体会显示出特殊的辐照生长现象。在辐照过程中,铀的晶体线度发生异常变化。引起燃料辐照肿胀的根本原因是裂变产物的积累。发生肿胀一方面是由于铀原子的固体裂变产物以金属、氧化物、盐类等形态与燃料相形成固溶体或作为夹杂物存在于燃料相中,裂变产物的总体积超过了裂变前裂变原子所占的体积(一般在2-3%),另一方面是由于在金属中形成了大量的裂变气泡

辐射生物效应复习题 (1)

《辐射生物效应》复习题 一、名词解释(每题3分) 生活史:植物在一生中所经历的发育和繁殖阶段,前后相继,有规律地循环的全部过程。 组织:在个体发育中,具有相同来源的同一类型,或不同类型的细胞组成的结构和功能单位 硝化作用:氨基酸脱下来的氨,在有氧的条件下,经过亚硝化细菌和硝化细菌的作用转化为硝酸的过程。 灭菌:通过超高温或其他物理、化学手段将所有微生物的营养细胞和所有芽孢和孢子全部杀死。 新陈代谢——微生物从外界环境中不断摄取营养物质,经过一系列生物化学反应,转变成细胞组分,同时产生废物并排泄到体外的过程。 菌株(strain):从自然界中分离得到的任何一种微生物的纯培养物都可以称为微生物的一个菌株。 生物固氮:常温常压下,固氮生物在体内固氮酶的催化作用下将大气中的分子态N2还原成为NH4+的过程。生活史:植物在一生中所经历的发育和繁殖阶段,前后相继,有规律地循环的全部过程。 原始生殖细胞: 产生雄性和雌性生殖细胞的早期细胞。 辐射诱变育种:生物的种类、形态、性状,均受其自身的遗传信息所控制。辐射育种(radioactive breeding techniques)是利用射线处理动植物及微生物,使生物体的主要遗传物质—脱氧核糖核酸(DNA)产生基因突变或染色体畸变,导致生物体有关性状的变异,然后通过人工选择和培育使有利的变异遗传下去,使作物(或其它生物)品种得到改良并培育出新品种。这种利用射线诱发生物遗传性的改变,经人工选择培育新的优良品种的技术就称为辐射育种。 相对生物效应RBE:由于各种辐射的品质不同,在相同吸收剂量下,不同辐射的生物效应是不同的,反映这种差异的量称为相对生物效应(relative biological

辐射生物学效应分类和影响因素

第四节辐射生物学效应分类和影响因素 、辐射生物学效应分类 机体受辐射作用时,根据照射剂量、照射方式以及效应表现的情况,在实际工作中常将生物效应分类表述 (一)按照射方式分 1.外照射与内照射(external and internal irradiation):辐射源由体外照射人体称外照射。γ线、中子、X线等穿透力强的射线,外照射的生物学效应强。放射性物质通过各 途径进入机体,以其辐射能产生生物学效应者称内照射。内照射的作用主要发生在放射性物质通过途径和沉积部位的组织器官,但其效应可波及全身。内照射的效应以射程短、电离强的α、β射线作用主。 2.局部照射和全身照射(local and total body irradiation) 当外照射的射线照射身体某一部位,引起局部细胞的反应者称局部照射。局部照射时身体各部位的辐射敏感性依次为腹部>胸部>头部>四肢。 当全身均匀地或非均匀地受到照射而产生全身效应时称全身照射。如照射剂量较小者为小剂量效应,如照射剂量较者(>1Gy)则发展为急性放射病。大面积的胸腹部局部照射也可发生全身效应,甚至急性放射病。根据照射剂量大小和不同敏感组织的反应程度,辐射所致全身损伤分为骨髓型(bone marrow type)、肠型(gastro- intestinal type)和脑型(central nervous system type)三种类型。 (二)按照射剂量率分 1.急性效应(acute radiation effect):高剂量率照射,短时间内达到较大剂量,效应迅速表现。 2.慢性效应(chronic radiation effect):低剂量率长期照射,随着照射剂量增加,效应逐渐积累,经历较长时间表现出来。 (三)按效应出现时间分 1.早期效应(early effect):照射后立即或小时后出现的变化。

激光辐照效应

一 , 等离子体发展模型和膨胀模型 1)在脉冲激光微加工中主要等离子体模型有: 纳秒激光与物质相互作用中的单温模型 飞秒激光与物质相互作用中的双温模型和库伦爆炸模型 2)在研究激光辐照固体靶蒸汽等离子体形成时有动态烧蚀耗能模型和光线跟踪激光能量等离子体吸收模型。 3)其他的一些模型 三温与多温电子等离子体自由膨胀的理论模型。自相似解成功地再现了在激光等离子体自由膨胀中离子速度分布呈现的三峰和多峰结构,这些结构已在激光打靶的实验中频繁地观察到。 二,等离子体参数的测量的方法 等离子的体的基本参数有:电子温度,电子密度等。而这些参数都可以利用实验来测得。例如利用光谱测量的光谱展宽,然后利用origin拟合曲线再萨哈方程就能计算得到粒子的电子温度和电子密度了。 三,激光支持燃烧波(LSCW)和爆破波(LSDW)的产生与传播,LSCW和LSDW 的分类法,基本结构,区别与判断方法。LSCW向LSDW转化机制。 激光维持的燃烧波(LSC)和爆轰波(LSD) 较强的激光束辐照于靶面时,使得靶蒸汽或者靶面附近的环境气体发生电离以致击穿,形成一个激光吸收区。被吸收的激光能量转化为该区气体(或等离子体)的内能,与流动发生耦合,按照气体动力学的规律运动。等离子体的一部分能量将以辐射的形式耗散,被凝聚态靶或周围气体所吸收。这种吸收激光的气体或等离子体的传播运动通常称为激光吸收波。主要的激光吸收区最终总是在环境气体中形成。在极高光强下,真空环境中的把蒸汽也会产生激光吸收波。 对于LSC,前面运动的冲击波对激光是透明的,等离子体区域是激光的吸收区。以亚声速向前推进,依靠输运机制(热传导、热辐射和扩散)时期前方冷气体加热和电离,维持LSC及其前方冲击波的传播,波后是等离子体区,等离子体温度为1~3eV。 对于LSD,冲击波阵面就是激光吸收区,被吸收的激光能量直接支持冲击波前进,LSD波相对于波前介质超声速运动,等离子体温度为10eV到几十电子伏。此冲击波压缩前方的气体,使之升温电离、吸收激光,成为新的波阵面,上溯激光入射方向继续传播。这里冲击波依靠吸收激光能量而自持传播,是一种物理性质的爆破波。 聚焦光束产的LSD波作发散传播,当波阵面传离靶面稍远处,光强已不足以维持LSD波,等离子体熄灭,这时激光又可直接入射于靶面。

电磁辐射对人眼的危害及防护实用版

YF-ED-J2943 可按资料类型定义编号 电磁辐射对人眼的危害及 防护实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

电磁辐射对人眼的危害及防护实 用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 电磁辐射作为环境污染和职业危害的一种 新形式,受到政府和社会各界的普遍关注。联 合国人类环境会议已将电磁辐射列为必须控制 的公害之一。电磁辐射对生物体的致伤效应, 目前已成为医学领域的重大研究课题。眼睛作 为人体最重要的感觉器官之一,容易受到电磁 辐射的损伤。抗辐射镜片能有效阻止有害电磁 波进入人眼,从而降低电磁辐射对人眼的伤 害。 1电磁辐射

在空间区域内当存在变化的电场时,会在临近的区域引起随时间变化的磁场,变化的磁场会产生新的电场,交替变化的电磁场在空间中按照一定速度由远向近传播,形成了电磁波。低频的电磁振荡主要借由有形的导电体传递,磁电之间的相互变化比较缓慢,几乎没有能量辐射出去,而是全部返回原电路。当电磁振荡频率逐渐变高时,电磁振荡既可以束缚在有形的导电体内传递,也可以在自由空间内传递。在自由空间内传递的高频率电磁振荡,磁电互变速度加快,能量不再以电振荡的形式全部返回原振荡电路,电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去,在不借助任何介质的情况下以波的形式向外传递能量,这就是电磁辐射[1]。电磁辐射是

聚合物辐照效应

辐照效应(radiation effects) 固体材料在中子,离子或电子以及γ射线辐照下所产生的一切现象。辐照会改变材料的微观结构,导致宏观尺寸和多种性质的变化,对核能技术或空间技术中使用的材料是个重要问题。在晶体中,辐照产生的各种缺陷一般称为辐照损伤。对于多数材料而言,主要是离位损伤。入射离子与材料中的原子核碰撞,一部分能量转换为靶原子的反冲动能,当此动能超过点阵位置的束缚能时,原子便可离位。最简单的辐照缺陷是孤立的点缺陷,如在金属中的弗仑克尔缺陷对(由一个点阵空位和一个间隙原子组成)。级联碰撞条件下,在约10 nm 直径的体积内产生数百个空位和数百个间隙原子。若温度许可,间隙原子和空位可以彼此复合,或扩散到位错、晶界或表面等处而湮没,也可聚集成团或形成位错环。 一般地说,电子或质子照射产生孤立的点缺陷。而中等能量 (10-100KeV)的重离子容易形成空位团及位错环,而中子产生的是两种缺陷兼有。当材料在较高温度受大剂量辐照时,离位损伤导致肿胀,长大等宏观变化。肿胀是由于体内均匀产生的空位和间隙原子流向某些漏(如位错)处的量不平衡所致,位错吸收间隙原子比空位多,过剩的空位聚成微孔洞,造成体积胀大而密度降低。辐照长大只有尺寸改变而无体积变化,仅在各向异性显著的材料中,由于形成位错环的择优取向而造成。离位损伤造成的种种微观缺陷显然会导致材料力学性能变化,如辐照硬化、脆化以及辐照蠕变等。辐照缺陷还引起增强扩散,并促使一系列由扩散控制或影响的过程加速进行,诸如溶解,

沉淀,偏聚等,并往往导致非平衡态的实现。对于某些材料如高分子聚合物,陶瓷或硅酸盐等,另一类损伤,即电离损伤也很重要。入射粒子的另一部分能量转移给材料中的电子,使之激发或电离。这部分能量可导致健的断裂和辐照分解,相应的引起材料强度丧失,介电击穿强度下降等现象。 结构材料中子辐照后主要产生的效应 ·1)电离效应:指反应堆中产生的带电粒子和快中子与材料中的原子相碰撞,产生高能离位原子,高能的离位原子与靶原子轨道上的电子发生碰撞,使电子跳离轨道,产生电离的现象。从金属键特征可知,电离时原子外层轨道上丢失的电子,很快就会被金属中共有的电子所补充,因此电离效应对金属材料的性能影响不大。但对高分子材料会产生较大影响,因为电离破坏了它的分子键。 2)离位效应:中子与材料中的原子相碰撞,碰撞时如果传递给阵点原子的能量超过某一最低阈能,这个原子就可能离开它在点阵中的正常位置,在点阵中留下空位。当这个原子的能量在多次碰撞中降到不能再引起另一个阵点原子位移时,该原子会停留在间隙中成为一个间隙原子。这就是辐照产生的缺陷。 3)嬗变:即受撞的原子核吸收一个中子,变成一个异质原子的核反应。中子与材料产生的核反应(n,α),(n,p)生成的氦气会迁移到缺陷里,促使形成空洞,造成氦脆。 4)离位峰中的相变:有序合金在辐照时转变为无序相或非晶态。这是在高能中子辐照下,产生离位峰,随后又快速冷却的结果。无序

第二节 太阳辐射的生物学效应

第二节 太阳辐射的生物学效应    太阳辐射是来自太阳的电磁波辐射。太阳辐射通过大气层时,约有43%被云层所反射,14%为大气中的尘埃、水蒸气、二氧化碳、臭氧吸收。仅有43%以直射日光和散射日光形式到达地面。  太阳辐射包括红外线、可视线、紫外线、无线电波、X射线、γ射线、宇宙线等。到达地球表面的主要为前三种,波长在760毫微米以上为红外线, 760~390毫微米为可视线,小于390毫微米为紫外线。  太阳辐射强度还受到各种因素的影响,例如太阳的高度角、海拔的高度、大气污染的程度等。太阳的高度角越大,海拔越高,大气污染越轻,太阳的辐射强度越大。在大气层的外界,与太阳光线相垂直的平面一分钟内照射在一平方厘米面积上的太阳辐射热量为1.97卡/厘米2·分,此值称为太阳常数。到达地面的太阳辐射,一部分被土壤吸收变为热能,一部分被反射回大气。各种不同的地表面反射率亦不同,雪的反射率最大可达80~90%,而且对太阳辐射中短波部分反射能力较强。   一、红外线(infrared ray)  红外线占太阳辐射一半以上,而且大部分集中在760~2,000毫微米部分。红外线按波长可分为近红外700~3,000毫微米,中红外3,000~20,000毫微米,远红外20,000~1,000,000毫微米。凡温度高于绝对温度的零度(0°K=-273.2℃)的物体都是红外线的辐射源。物体的温度越高,其辐射的波长越短。军事上也使用有多种人工红外线辐射源如钨灯、红外线探照灯、弧光灯、红外激光器、电焊等。  红外线对机体的作用与波长有关。红外线照射皮肤时,大部分被吸收。长波红外线被皮肤表层吸收,而短波红外线则被较深层皮肤吸收,使血液及深部组织加热。较强的红外线作用于皮肤,能使皮肤温度升高到40~49℃,而引起一度烧伤。波长600~1,000毫微米的红外线可穿过颅骨,使颅骨和脑髓间的温度达到40~42℃,因而引起日射病。红外线照射于眼睛,可以引起多种损害,如角膜吸收大剂量红外线可致热损伤,破坏角膜表皮细胞,影响视力;长期接触短波红外线还可引起白内障。人对红外线辐射比较敏感,0.02卡/厘米2·分即有热感,1.5卡/厘米2·分有不可耐受的烧灼感, 皮温可升高到40℃以上。南方地区夏季中午前后,太阳辐射可达1.3~1.5卡/厘米2·分,加上气温升高,在军事训练时,应多加注意,防止过热。  人体暴露于太阳辐射下的面积,站立时比坐着时大。站立的人接受太阳辐射可达34千卡/1米2·时,戴草帽则可大大减少曝晒的面积。 干热地区穿着衣服对于防止太阳辐射是很重要的。

电磁辐射生物学效应

电磁辐射生物学效应 射频微波电磁辐射生物学效应 引言 电子科学技术的迅速发展,射频微波等电子产品应用日趋广泛,职业和公众受环境电磁辐射污染危害越来越严重。射频微波辐射,特别是高强度的辐射,引起机体致热效应,造成健康危害,是显而易见的。但也有资料表明,人体在反复接触低强度微波照射后,体温虽无上升,但也能造成机体的健康危害,关于这一点目前国际上争论较多。我国的电磁辐射健康影响研究工作开始于六、七十年代,在七十年代即开展射频微波电磁辐射的健康影响调查工作,探讨了相关的安全卫生标准及防护技术,并取得了很大进展。流行病学调查认为,电磁辐射对人体的健康影响比较广泛,能引起神经、生殖、心血管、免疫功能及眼睛等方面的改变。有实验室研究发现,长期低强度射频电磁辐射非致热效应,对动物神经内分泌,膜通透性、离子水平等都有影响,也有报告认为射频微波能引起DNA损伤、染色体畸变等。 中枢神经系统影响 中枢神经系统对射频微波电磁辐射比较敏感,因此受到研究者的重视,尤其是职业人群接触射频微波电磁辐射对神经系统影响的流行病学调查,在我国有很多报道。射频微波电磁辐射的健康危害主要表现为神经衰弱症候群,其症状主要有头痛、头晕、记忆力减退、注意力不集中、抑郁、烦躁等[1-4] 。王少光等[2] 报道对293名脉冲微波职业接触人群进行调查,其接触微波频率为400-9400MHz,功率密度为0.07-0.18mW/cm2,神经衰弱症候群的发生率达40.3%;348名连续微波职业接触者,工作环境微波暴露频率为3400-8600MHz,功率密度为0.06-0.15mW/cm2,其神经衰弱症候群的发生率为37.1%,而对照组仅为5.1%,说明微波电磁辐射能使接触人群神经衰弱症候群症状患者明显增加,进一步的分析结果表明,神经衰弱症候群的发生率与工龄呈正相关。丁朝阳等[1,4]也有类似报道,并认为接触微波使睡眠质量降低。赵清波等[3]报道职业接触微波频率为3500-4200MHz,其场强小于0.050 mW/cm2(通常为0.010-0.030 mW/cm2)时,神经衰弱症候群的发生率为71.8%,即明显高于对照组的13.6%,且与工龄呈正相关。冯养正等[5]报道的一组暴露于0.30 mW/cm2的职业人群,其头痛、脱发的发生率显著高于对照组人群。而头晕、乏力、失眠、记忆力减退等其他症状却无显著性差异。郭保科[6]等认为在脉冲微波场强1.75mW/cm2和连续波场强为0.05mW/cm2的职业接触者,主诉症状全身无力、头痛、头晕、失 眠、多梦等神经衰弱综合症发生率与对照组比较差异无显著性,而对视力、眼晶状体损伤、眼部症状(如:干燥、易疲劳)有显著性影响。

辐射生物效应-放射生物学 夏寿萱主编 知识点复习

辐射生物学效应复习 一、名词解释 1.布喇格电离峰P6:粒子的速度控制着能量丧失的速度。快速运动的粒子的电离能力要比慢速运动的小。ɑ粒子质量较大,运动较慢,因此,有足够的时间在短距离内引起较多的电离。当ɑ粒子穿入介质后,随着深度的增加和更多电离事件的发生,能量耗失,粒子运动变慢,而慢速粒子又引起了更多的电离,这样就形成了通常称为的布喇格电离峰。 2.活性氧P24 :从强调O2对机体不利一面的角度出发,将那些较O2的化学性质更为活跃的O2的代谢产物或自由衍生的含氧物质称为活性氧。 3.靶学说P46 :靶学说认为辐射生物效应是由于电离粒子包括电磁波击中了某些分子或细胞内的特定结构(靶)的结果。 4.细胞凋亡P178:是指为维持内环境稳定,由基因控制的细胞自主的有序死亡。既包括生理性的程序死亡,又指由外来因素诱发的细胞自杀。 5. 辐射增敏剂P270:主要指那些能够增加机体或细胞的辐射敏感性的化学物质,临床上用于增强射线对肿瘤的杀伤能力。 6.染色体畸变P319:当人员受到一定剂量的电离辐射作用后,在外周血淋巴细胞和骨髓细胞中早期即可见到染色体的改变,这种变化称之为染色体畸变。 7.辐射的遗传效应P413:辐射对生物体生殖细胞内的遗传物质的损伤,即诱发基因突变和染色体畸变,可能会在子一代(F1)中表达为各种先天性畸形,而且还会在以后的许多世代中出现,这就是辐射的遗传效应。 8. 水的辐解反应P26:辐射可使水分子分解为·OH和·H两种自由基,这一过程与液相中水分子的自发性电解有着明显区别,因此称为水的辐解反应。 9. 细胞坏死P178:通常是由突然及严重的损伤所造成的细胞意外死亡。 10. 电离辐射的直接作用P28:是指来自放射源的能量或粒子直接作用于溶质分子、并造成结构与功能损伤的过程。 11. 电离辐射的间接作用P28:指的是水的辐解反应产物与溶质分子之间发生的可能导致溶质分子结构变化的各种反应。 12. 氧效应:P12:受照射的生物系统或分子的辐射效应随介质中氧浓度的增加而增加,这种现象称为氧效应。

第五章 辐照效应。

第五章辐照效应

辐照损伤是指材料受载能粒子轰击后产生的点缺陷和缺陷团及其演化的离位峰、层错、位错环、贫原子区和微空洞以及析出的新相等。这些缺陷引起材料性能的宏观变化,称为辐照效应。 辐照效应因危及反应堆安全,深受反应堆设计、制造和运行人员的关注,并是反应堆材料研究的重要内容。辐照效应包含了冶金与辐照的双重影响,即在原有的成分、组织和工艺对材料性能影响的基础上又增加了辐照产生的缺陷影响,所以是一个涉及面比较广的多学科问题。其理论比较复杂、模型和假设也比较多。其中有的已得到证实,有的尚处于假设、推论和研究阶段。虽然试验表明,辐照对材料性能的影响至今还没有确切的定量规律,但辐照效应与辐照损伤间存在的定性趋势对实践仍有较大的指导意义。

5.1 辐照损伤 1. 反应堆结构材料的辐照损伤类型 反应堆中射线的种类很多,也很强,但对金属材料而言,主要影响来自快中子,而α,β,和γ的影响则较小。结构材料在反应堆内受中子辐照后主要产生以下几种效应: 1) 电离效应:这是指反应堆内产生的带电粒子和快中子撞出的高能离位原子与靶原子轨道上的电子发生碰撞,而使其跳离轨道的电离现象。从金属键特征可知,电离时原子外层轨道上丢失的电子,很快被金属中共有的电子所补充,所以电离效应对金属性能影响不大。但对高分子材料,电离破坏了它的分子键,故对其性能变化的影响较大。

2) 嬗变:受撞原子核吸收一个中子变成异质原子的核 反应。即中子被靶核吸收后,生成一个新核并放出质子或α带电粒子。例如: 嬗变反应对含硼控制材料有影响,其它材料因热中子或在低注量下引起的嬗变反应较少,对性能影响不大。高注量(如:>1023 n/m 2)的快中子对不锈钢影响明显,其组成元素大多都通过(n,α)和(n,p)反应产生He 和H ,产生辐照脆性。 He Li n B 42731010 5+→+H N n O 1116 7168 +→+

中子辐照生物效应的理论分析

中子辐照生物效应的理论分析 中子作为构成原子核的基础粒子,它不带电,与物质的相互作用通常是与原子核的相互作用。碳氢氧氮等元素在生物体内的含量很多,中子与生物体的相互作用主要就是与这几种元素原子的相互作用,中子与它们相互作用的概率大小同中子能量有很大的关系,在入射中子能量小于30Mev时,中子同这几种元素的作用类型以弹性散射为主,并在2~10Mev能区存在程度不同的共振。中子诱导的生物效应要高于γ射线,并且中子生物效应还同中子能量、剂量、物理生物因素以及生物终点密切相关。 关键词:中子,生物效应,弹性散射,

第一章引言 1.1中子的性质与应用 1.1.1中子的粒子性与波动性 中子存在于除氢以外的所有原子核中,是组成原子核的重要组分之一,中子主要来源于反应堆、加速器、放射性核素等中子源。自从1932年恰徳维克等人发现中子以来,人们对中子的性质进行了广泛的研究。中子会以高度凝聚态的形式构成中子星物质。[1] 中子的粒子性[1] [2] 质量:chadwick发现中子是通过测量α轰击Be核所产生的未知射线与H、Li、Be、B、C、N等轻核碰撞所产生的反冲核能量,根据能量、动量守恒的规律推算该射线粒子质量的实验完成的。通过某些有中子产生或吸收的核反应,根据运动学关系求出中子质量、中子质子质量差值,是确定中子质量的基本方法。 自旋:中子是自旋为?的费米子,遵守费米统计分布,服从泡利不相容原理。 磁矩:氘核的磁矩小于质子的磁矩表明中子和质子具有相反的磁矩,由磁共振谱仪可以推测出中子磁矩为μn=-1.913042μN,负号表示磁矩矢量方向和自旋角动量方向相反。电中性的中子具有磁矩说明中子内部有结构。在夸克模型中,中子由u、d、d三个夸克组成,分别具有电荷e、- e。 中子寿命:Chadwick于1935年指出自由中子不稳定,它会衰变放出一个质子、一个电子、和一个反中微子并放出0.782Mev的能量;半衰期为10.61±0.61min。这表明了中子的静止质量大于质子质量的实验事实。实验观察到中子衰变是通过从反应堆中子束经电偏转引出正离子,并鉴定正离子为质子而确认的。 中子的波动性[1] [2] 同其他粒子一样,中子除具有粒子性之外还具有波动性。自Chadwick发现中子后,很快观察到热能化中子在多晶铁样品上类似于衍射图像的散射角分布。中子波动性对于中子波在物质结构研究中的应用具有重要意义。电子或电磁辐射与

解读电磁辐射对生物体三个方面的影响

解读电磁辐射对生物体三个方面的影响 “头条:手机辐射致癌!少玩手机,远离辐射!”想必很多人都看过类似耸人听闻的新闻标题,虽不知真假,也不免人心惶惶。可随着科技进步,手机俨然成为低头族的“第二条命”,因此在得到百分之一万的定论之前,哪怕它可能真会要了我的命,也不能阻止我们低着头过马路! 要说远离辐射,我们首先得知道辐射是什么——自然界中的一切物体,只要温度在绝对温度零度以上,都以电磁波的形式时刻不停地向外传送热量,这种传送能量的方式称为辐射。物体通过辐射所放出的能量,称为辐射能,简称辐射。 但是,辐射在我们的生活中无处不在,大到太阳,小到手机,可以说想要完全远离辐射的可能性为零。 说到这里,我们就要对辐射加以区分——既然辐射无处不在,那我们还能安然无恙,一是人类福大命大,没那么脆弱,二来辐射本身有多种类型,大部分辐射也没有那么可怕。 顺便把合同签一下。 就像太阳将光能传递到地球,火焰将热能传向周围一样,辐射能被体物吸收时发生热的效应,物体吸收的辐射能不同,所产生的温度也不同。因此,辐射其实只是一种能量向外传播的现象。 像原子弹、日本核泄漏、切尔诺贝利产生的辐射,就叫做电离辐射,一般称为射线,比如:阿尔法射线、贝塔射线、X光-伦琴射线等,也就是人们平时谈之色变的真凶。它会破坏生物体的细胞结构,是诱发癌症的原因之一。 相对于令人恐慌的电离辐射,日常生活中的电风扇、手机、电磁炉等电器,以及通信基站所产生的的电磁辐射,属于非电离辐射的范围。 从科学的角度来看,电磁辐射对生物体的影响体现在三个方面。 第一是热效应,人体70%以上的水分子,受到电磁辐射后相互摩擦,引起机体升温,从而影响体内器官周围的温度。

放射生物学复习重点

1、名词解释:间期死亡、增殖死亡、急性放射病、慢性放射病、骨痛症候群, 衰变常数、半衰期、氧效应、相对生物学效应; 间期死亡:指细胞受较大剂量(100Gy或更大)照射后,不经有丝分裂,在几个小时内就开始死亡。 增殖死亡:即细胞受照后经历1个或几个有丝分裂周期后,丧失了继续增殖的能力而引起的死亡。 急性放射病:机体在短时间(数秒-数天)内受到大剂量(>1Gy)电离辐射照射引起的全身性疾病。 慢性放射病:指机体在较长时间内连续或间歇受到超当量剂量限值的电离辐射作用,达到一定累计计量后引起多系统损害的全身性疾病,通常以造血组织损伤作为主要表现。 骨痛症候群:受亲骨性核素损伤的病人,出现四肢骨、胸骨、腰椎等部位的疼痛,其特点是疼痛部位不确切,与气候变化无一定关系。 衰变常数λ:每秒衰变的核数为原有放射性核数的几分之几 半衰期T?=0.693/λ:放射性核数因衰变而减少到原来的一半所需要的时间 氧效应:受照组织、细胞或者溶液系统,其辐射效应随周围介质中氧浓度的增加而增加的现象 相对生物学效应:由于各种辐射的品质不同,在相同吸收剂量下,不同辐射的生物效应也是不同的,反映这种差异的量称之为相对生物效应。 2、熟悉哪些是电离辐射(直接、间接),非电离辐射; 电离辐射:凡能引起物质的原子或分子发生电离作用的辐射,均称为电离辐射。(不仅包括粒子辐射,还包括了部分电磁辐射X、γ) 紫外线及能量低于紫外线的电磁辐射都属于非电离辐射。 电磁辐射:实质是电磁波,相对于粒子辐射而言的。 3、熟悉传能线密度的概念 带电粒子在物质中穿行单位路程时,由能量转移小于能量截止值的历次碰撞所造成的能量损失 4、熟悉元素、同位素、同质异能素。 元素:原子核内具有相同电荷数的同一类原子。 核素:原子核内质子数、中子数和能态完全相同的一类原子。 同位素:原子核内质子数相同、中子数不同的多种核素。 同质异能素:中子数和质子数都相同而仅仅是能量状态不同的两种核素。

电离辐射对细胞的作用

电离辐射对细胞的作用 第二节电离辐射对细胞的作用网络第二节电离辐 射对细胞的作用一、细胞的辐射敏感性机体各类细胞对辐射的敏感性不一致。Bergonie 和Tribondeau提出细胞的辐射敏感性同细胞的分化的程度成反比,同细胞的增殖能力成正比。Casaret按辐射敏感性由高到低,将人类和哺乳动物细胞分为4类(表3-1)。从总体上说,不断生长、增殖、自我更新的细胞群对辐射敏感,稳定状态的分裂后细胞对辐射有高度抗力。而多能性结缔组织,包括血管内皮细胞,血窦壁细胞,成纤维细胞和各种间胚叶细胞也较敏感,介于表3-1的Ⅱ、Ⅲ类之间。表3-1 哺乳类细胞辐射敏感性分类细胞类型特性举例辐射敏感性Ⅰ增殖的分裂间期细 胞(vegetative intermitosis cells)受控分裂 分化程度最低造血干细胞 肠隐窝细胞 表皮生长细胞高Ⅱ分化的分裂间期细胞(differentiating intermitosis cells)受控分裂 分裂中不断分化幼稚血细胞结缔组织细胞(Conective tissue cells)Ⅲ可逆性分裂后细胞(reverting postmitotic cells)无受控分裂 可变分化肝细胞Ⅳ稳定性分裂后细胞(fixed

postmitotic cells)不分裂 高度分化神经细胞 肌肉细胞低二、细胞周期的变化辐射可延长的细胞周期,但不同阶段的辐射敏感性不同(图3-3)。处于M 期的细胞受照很敏感,可引起细胞即刻死亡或染色体畸变(断裂、粘连、碎片等);可不立刻影响分裂过程,而使下一周期推迟,或在下一次分裂时子代细胞夭折。C1期的早期对辐射不敏感,后期则较为敏感,RNA、蛋白质和酶合成抑制,延迟进入S期。S前期亦较为敏感,直接阻止DNA合成,而在S期的后期敏感性降低,是则于此时已完成DNA合成,即使DNA受损亦可修复之故。G2期是对辐射极敏感的阶段,分裂所需特异蛋白质和RNA合成障碍,因而细胞在G2期停留下来,称“G2阻断”(G2block),是照射后即刻发生细胞分裂延迟主要原因。图3-3 细胞周期各阶段的辐射敏感性三、染色体畸变细胞在分裂过程中染色体的数量和结构发生变化称为染色体畸变(chromosome aberration)。畸变可以自然发生,称自发畸变(spontaneous aberration)。许多物理、化学因素和病毒感染可使畸变率增高。电离辐射是畸变诱发因素,其原因是电离粒子穿透染色体或其附近时,使染色体分子电离发生化学变化而断裂。(一)染色体数量变化照射时染色体发生粘着,在细胞分裂时可能产生染色体不分离现象,致使两个子细胞中染色体不是平均分

电磁辐射对神经系统的生物学效应

电磁辐射对神经系统的生物学效应 关键字:951,健康,电磁辐射对神经系统的生物学效应,电磁辐射,疾病,发生率,【电磁辐射是什么】 电磁辐射又称电子烟雾,是由空间共同移送的电能量和磁能量所组成,而该能量是由电荷移动所产生;举例说,正在发射讯号的射频天线所发出的移动电荷,便会产生电磁能量。电磁“频谱”包括形形色色的电磁辐射,从极低频的电磁辐射至极高频的电磁辐射。两者之间还有无线电波、微波、红外线、可见光和紫外光等。电磁频谱中射频部分的一般定义,是指频率约由3千赫至300吉赫的辐射。 【神经系统的概念】 神经系统是人体内起主导作用的功能调节系统。人体的结构与功能均极为复杂,体内各器官、系统的功能和各种生理过程都不是各自孤立地进行,而是在神经系统的直接或间接调节控制下,互相联系、相互影响、密切配合,使人体成为一个完整统一的有机体,实现和维持正常的生命活动。同时,人体又是生活在经常变化的环境中,环境的变化必然随时影响着体内的各种功能,这也需要神经系统对体内各种功能不断进行迅速而完善的调整,使人体适应体内外环境的变化。 【电磁辐射与神经系统的关系】 随着电子设备被广泛地应用于各行各业,电磁辐射的污染越来越受到人们的重视。手机等电子通讯使用的射频辐射和电气设备及输电线周围产生的极低频辐射的生物学效应是目前研究较多的。磁场暴露会使神经系统受到影响,许多研究证明电磁场可以改变神经细胞膜结构、影响细胞因子表达、诱导基因DNA链断裂、增加神经变性疾病和脑瘤的发生率。【电磁辐射的危害及防护】 人体接受电磁辐射后,使肌体升温,如果吸收的辐射能很多,靠体温的调节无法把热量散发出去,则会引起体温升高,进而引发各种症状,如心悸、头胀、失眠、心动过缓、白细胞减少、免疫功能下降、视力下降等。我们可通过以下方法来预防身边可怕的电磁辐射。 1.提高自我保护意识,重视电磁辐射可能对人体产生的危害,多了解有关电磁辐射的常识,学会防范措施,加强安全防范。如:对配有应用手册的电器,应严格按指示规范操作,保持安全操作距离等。 2.不要把家用电器摆放得过于集中,或经常一起使用,以免使自己暴露在超剂量辐射的危害之中。特别是电视、电脑、冰箱等电器更不宜集中摆放在卧室里。 3.各种家用电器、办公设备、移动电话等都应尽量避免长时间操作。如电视、电脑等电器需要较长时间使用时,应注意至少每1小时离开一次,采用眺望远方或闭上眼睛的方式,以减少眼睛的疲劳程度和所受辐射影响。 4.当电器暂停使用时,最好不要让它们处于待机状态,因为此时可产生较微弱的电磁场,长时间也会产生辐射积累。 5.对各种电器的使用,应保持一定的安全距离。如眼睛离电视荧光屏的距离,一般为荧光屏宽度的5倍左右;微波炉在开启之后要离开至少1米远,孕妇和小孩应尽量远离微波炉;手机在使用时,应尽量使头部与手机天线的距离远一些,最好使用分离耳机和话筒接听电话。 6.男性生殖细胞和精子对电磁辐射更为敏感。因此,男性应尽量减少与电磁波太频繁密集的接触,而且接触时也要保持安全距离,一般是半米以上。 7.消费者如果长期涉身于超剂量电磁辐射环境中,应注意采取以下自我保护措施: (1)居住、工作在高压线、变电站、电台、电视台、雷达站、电磁波发射塔附近的人 员,佩带心脏起搏器的患者,经常使用电子仪器、医疗设备、办公自动化设备的

电磁辐射与眼睛的危害防护

电磁辐射与眼睛的危害防护 电磁辐射作为环境污染和职业危害的一种新形式,受到政府和社会各界的普遍关注。联合国人类环境会议已将电磁辐射列为必须控制的公害之一。电磁辐射对生物体的致伤效应,目前已成为医学领域的重大研究课题。眼睛作为人体最重要的感觉器官之一,容易受到电磁辐射的损伤。抗辐射镜片能有效阻止有害电磁波进入人眼,从而降低电磁辐射对人眼的伤害。 1.电磁辐射 在空间区域内当存在变化的电场时,会在临近的区域引起随时间变化的磁场,变化的磁场会产生新的电场,交替变化的电磁场在空间中按照一定速度由远向近传播,形成了电磁波。低频的电磁振荡主要借由有形的导电体传递,磁电之间的相互变化比较缓慢,几乎没有能量辐射出去,而是全部返回原电路。当电磁振荡频率逐渐变高时,电磁振荡既可以束缚在有形的导电体内传递,也可以在自由空间内传递。在自由空间内传递的高频率电磁振荡,磁电互变速度加快,能量不再以电振荡的形式全部返回原振荡电路,电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去,在不借助任何介质的情况下以波的形式向外传递能量,这就是电磁辐射。电磁辐射是传递能量的一种方式,电磁辐射所衍生的能量,取决于频率的高低,频率愈高,能量愈大。

电磁辐射广泛存在于职业场所和生活环境中,生物体时时刻刻都会受到不同程度的电磁场辐照。自然环境中的电场和磁场分别为 10-4V/m和10-13T,而50hz高压输电线下的电场和磁场约为1~ 10KV/m和1-10μT,极端情况下可达到11KV/m和100μT;普通居民 家中的本底电场约为1-10V/m,但电热毯或加热水床可达几个kv/m。电磁辐射的频谱很宽,频率范围从0至1025Hz,不同频率的电磁辐 射其生物学效应不同。广义的电磁辐射是指所有能辐射出能量的电磁波,狭义的电磁辐射指频率小于300GHz的在生活环境中存在并且可 能对生物体造成某种伤害的电磁波。抗辐射镜片所指的辐射是针对于在一定时间或者一定强度下会对人眼产生暂时性、永久性或者累积性伤害的电磁辐射。 2.电磁辐射的生物效应 电磁辐射使生物系统产生的与生命现象有关的响应称为电磁辐 射的生物学效应。影响电磁辐射生物学效应的主要参数是频率和强度,不同频率和强度的电磁辐射产生生物学效应的方式不同,效应也不同。电磁辐射效应按照效应出现时间可以分为近期效应和远期效应。从电磁辐射的热作用方式达到一定量值或者一定时间的生物学效应可以 分为热效应和非热效应。热效应和非热效应作用于人体后,对人体伤害尚未进行自我修复之前,再次受到电磁辐射,其伤害程度就会发生累积,这种效应称为电磁辐射的累积效应。 世界卫生组织在1998年的调查报告中指出,过量的电磁辐射可 导致视力下降,严重者可导致视网膜脱落。长期遭受低强度电磁辐射

相关文档
最新文档