DE1102低压差线性恒流驱动芯片

DE1102低压差线性恒流驱动芯片
DE1102低压差线性恒流驱动芯片

低压差线性稳压器(LDO)的压差和功耗

低压差线性稳压器(LDO)的压差和功耗 中心议题:线性稳压器(LDO)的输入、输出压差设计线性稳压器(LDO)的功耗设计 便携产品电源设计需要系统级思维,在开发由电池供电的设备时,诸如手机、MP3、PDA、PMP、DSC等低功耗产品,如果电源系统设计不合理,则会影响到整个系统的架构、产品的特性组合、元件的选择、软件的设计和功率分配架构等。同样,在系统设计中,也要从节省电池能量的角度出发多加考虑。例如现在便携产品的处理器,一般都设有几个不同的工作状态,通过一系列不同的节能模式(空闲、睡眠、深度睡眠等)可减少对电池容量的消耗。即当用户的系统不需要最大处理能力时,处理器就会进入电源消耗较少的低功耗模式。带有使能控制的低压差线性稳压器(LDO)是不错的选择。低压差线性稳压器(LDO)的结构主要包括启动电路、恒流源偏置单元、使能电路、调整元件、基准源、误差放大器、反馈电阻网络,保护电路等,基本工作原理是这样的:系统加电,如果使能脚处于高电平时,电路开始启动,恒流源电路给整个电路提供偏置,基准源电压快速建立,输出随着输入不断上升,当输出即将达到规定值时,由反馈网络得到的输出反馈电压也接近于基准电压值,此时误差放大器将输出反馈电压和基准电压之间的误差小信号进行放大,再经调整管放大到输出,从而形成负反馈,保证了输出电压稳定在规定值上;同理如果输入电压变化或输出电流变化,这个闭环回路将使输出电压保持不变,即:VOUT=(R1+R2)/R2*Vref 产生压差的主要原因是,在调整元件中有一个P沟道的MOS管。当LDO工作时MOS管道通等效为一个电阻,RDS(ON), VDROPOUT=VIN-VOUT=RDS(ON)xIOUTR. 由此得出低压差线性稳压器(LDO)的一个重要特性,在输入电压大于最小工作电压和输出电压其标称值范围内,负载电流为零时,输出电压随输入电压的变化而变化,这就是LDO的跟随特性,待输出电压达到其标称值后不随输入而变化,从而达到稳压的目的,这就是LDO的稳压特性。如图为圣邦微电子的SGM2007输入电压和输出电压的曲线。在测试压差(Dropout)时不同的厂家有不同的标准。德州仪器(TI)电压差定义为输出电压较其标称值跌落2%时的输入、输出电压的差值.其它的如,美信(Maxim),圣邦微电子(SGMC)电压差定义为输出电压较其标称值小于100mV时的输入、输出电压的差值.如图为圣邦微电子的SGM2007负载为300mA时输入电压和输出电压的曲线。如图在箭头范围内,输入和输出和箭头组成的图形在一定范围内近试为平行四边形,在平行四边的边上任取一点,做与另一边平行的线段,由平行四边形的定义可知和另一边相等。所以这两种测试方法只是取值点不同而已,对同一芯片而言,两种方法测得值几乎相同。在TMT生产测试中,也有两种测试方法,一种是循环法,输入在某一个确定值时,以步长为1mV下降,至道输出电压较其标称值跌落2%,或输出电压较其标称值小于100mV时停止,这种方法循环的步长越多,测试的时间就越长,对芯片的成本就越高,令一种方法是,输入固定电压法,输入和输出和箭头组成的图形近试平行四边形,只要我的取值点在平行四边形内,测得的值就是相同的,所以通常是根据具体的LDO的Dropout的大小,输入加上某一个值,使输出电压约等于较其标称值跌落2%或较其标称值小于100mV。例如Dropout在150mA时为100mV,那么输入可以等于输出,这样测的输出比标称值小于100mV,等于这样测一次就可以了,节约了大量的时间,降低生产成本。单体锂离子电池充足电时的电压为4.2V,放完电后的电压为2.3V,而有些标定电压为3.3V工作的微处理器DSP的最低工作电压可以达到2.9V。这样LDO输出值在小于标称值的一定范围内还是可以工作的。由上图可见,LDO的压差越小,输入和输出和箭头组成的图形近试平行四边形越长,LDO的工作时间就越长效率就越高,电池的待机时间也就会越长。低压差线性稳压器由于存在压差,它最大的缺点是在热量管理方面,因为其转换效率近似等于输出电压除以输入电压的值。例如,如果一个驱动图像处理器的LDO 输入电源是从单节锂电池标称的3.6V,在电流为200mA时输出1.8V电压,那么转换效率仅为50%,因此在手机中产生了一些发热点,并缩短了电池工作时间。虽然就较大的输入与输

EG501线性恒流LED驱动芯片

EG501 芯片用户手册(线性恒流LED驱动芯片)

版本变更记录

目录 1. 特点 (4) 2. 描述 (4) 3. 应用领域 (4) 4. 引脚 (5) 4.1 引脚定义 (5) 4.2 引脚描述 (5) 5. 结构框图 (5) 6. 典型应用电路 (6) 7. 电气特性 (6) 7.1 极限参数 (6) 7.2 典型参数 (7) 8. 应用设计 (7) 8.1高电压驱动多个发光二极管 (7) 8.2PWM信号调节发光二极管LED亮度应用 (9) 8.3多个EG501并联恒流驱动应用 (9) 9. 封装尺寸 (10)

EG501芯片用户手册V1.0 1. 特点 ? 单通道5mA ~90mA 线性恒流驱动输出 ? 固定电流设计,不需要外加电阻设定电流 ? 宽电源电压设计,不需另外提供电源电压 ? 电源电压范围 1.6V ~5.5V ? 静态电流小仅50uA ? Vcc 脚可做PWM 调光使用 ? 高电压应用时芯片可串接使用 ? 负载调整率1%/V 2. 描述 EG501是一款线性恒流驱动芯片,内建基准电压源及电流驱动电路。EG501相比于电感升压和电荷泵升压的方案,省去了电感和升压电容等储能器件,避免了开关噪声对系统的影响,同时大大缩小了PCB 板空间和简化了系统设计。 EG501具有极好的负载与电源调整率及极小的输出电流误差,EG501能使LED 的电流非常稳定,甚至在大面积的光源上,电源及负载波动范围大时都能让LED 亮度均匀一致,并增长LED 使用寿命。 除了支援宽广电源电压范围外,EG501的VCC 脚可以充当输出使能功能使用,可配合数位PWM 控制线路,达到更精确的灰度电流调整应用。 3. 应用领域 ? 手机电话 ? MP3、MP4播放器 ? GPS 接收机 ? LED 灯 ? 数码相机 ? PDA 、笔记本电脑 ? 手电筒 ? RGB 装饰灯 产品信息 器件编号: EG501-xx 范例:“EG501-20”是表示中心电流为20mA 的驱动芯片 “EG501-50”是表示中心电流为50mA 的驱动芯片

,浅谈低压差线性稳压器(LDO)的压差和功耗

,浅谈低压差线性稳压器(LDO)的压差和功耗 便携产品电源设计需要系统级思维,在开发由电池供电的设备时,诸如手机、MP3、PDA、PMP、DSC 等低功耗产品,如果电源系统设计不合理,则会影响到整个系统的架构、产品的特性组合、元件的选择、软件的设计和功率分配架构等。同样,在系统设计中,也要从节省电池能量的角度出发多加考虑。例如现在便携产品的处理器,一般都设有几个不同的工作状态,通过一系列不同的节能模式(空闲、睡眠、深度睡眠等)可减少对电池容量的消耗。即当用户的系统不需要最大处理能力时,处理器就会进入电源消耗较少的低功耗模式。 [1]带有使能控制的低压差线性稳压器(LDO)是不错的选择。 低压差线性稳压器(LDO)的结构主要包括启动电路、恒流源偏置单元、 使能电路、调整元件、基准源、误差放大器、反馈电阻网络,保护电路等,基本工作原理是这样的:系统加电,如果使能脚处于高电平时,电路开始启动,恒流源电路给整个电路提供偏置,基准源电压快速建立,输出随着输入不断上升,当输出即将达到规定值时,由反馈网络得到的输出反馈电压也接近于基准电压值,此时误差放大器将输出反馈电压和基准电压之间的误差小信号进行放大,再经调整管放大到输出,从而形成负反馈,保证了输出电压稳定在规定值上;同理如果输入电压变化或输出电流变化,这个闭环回路将使输出电压保持不变,即: VOUT=(R1+R2)/R2 * Vref 产生压差的主要原因是,在调整元件中有一个P 沟道的MOS 管。当LDO 工作时MOS 管道通等效为一个电阻,RDS(ON), VDROPOUT = VIN - VOUT = RDS(ON) x IOUTR.

最简单地恒流源LED驱动电路

WMZD系列专门为LED照明做温度补偿的电阻,采用热敏电阻补偿法的LED恒流源,具有电路简洁,可靠性好,组合方便,经济实用,适用各种LED头灯,日光灯,路灯;车船灯,太阳能LED庭院灯;LED显示屏等对恒流的需求。是专门针对LED照明出现的由于温度引起的LED PN结电压VF下降,即-2mV/℃,称为PN结的负温效应。该特性在发光应用上是个致命的缺陷,直接影响到LED器件的发光效率、发光亮度、发光色度。比如,常温25℃时LED最佳工作电流20mA,当环境温度升高到85℃时,PN结电压VF下降,工作电流急剧增加到35mA~37mA,此时电流的增加并不会产生亮度的增加,称为亮度饱和。更为严重的是,温度的上升,引起光谱波长的偏移,造成色差。如长时工作在此高温区还将引起器件老化,发光亮度逐步衰减。同样,当环境温度下降至-40℃时,结电压VF上升,最佳工作电流将从20mA减小到8mA~10mA,发光亮度也随电流的减少而降低,达不到应用场所所需的照度。 为了避免上述特性带来的不足,一般在LED灯的相关产品上,通常采用如下措施:1.将LED装在散热板上,或风机风冷降温。2.LED采用恒流源的供电方式,不因LED随温度上升引起使回生电流增加,防止PN结恶性升温。或这两种方法并用。实践证明,这两种方法用于大功率LED灯(如广告背景灯、街灯)。确实是行之有效的措施。但当LED 灯进入寻常百姓家就碰到如下问题了:散热板和风冷能否集成在一个普通灯头的空间内;采用集成电路或诸多元器件组成的恒流源电路,它的寿命不取于LED,而取决整个系统的某块“短板”;有没有吸引眼球的价格。用热敏电阻补偿法来解决LED恒流源问题,既经济又实用。 我公司采用具有正温度系数的热敏电阻(+2mV/℃)与负温度特性的LED(-2mV/℃)串联,互补成一个温度系数极小电阻型负载。一旦工作电压确定后,串联回路中的电流,将不会随温度变化而变化,通俗地讲,当LED随温度升高电流增加时,热敏电阻也随温度升高电阻变大,阻止了回路电流上升,当LED 随温度下降电流减小时,热敏电阻也随温度下降电阻变小,阻止了回路电流的减少,如匹配得当,当环境温度在-40℃-85℃范围内变化时,LED的最佳工作电流不会明显变化,见图1电流曲线Ⅱ。 2:应用: 从图1可见,采用热敏电阻温度补偿方法与采用集成电路等元件组成的恒源相比,热敏电阻温度补偿法只用1个热敏电阻元件就可解决LED恒流源问题,其价格、体积、寿命等优势不言而喻。我们采用的

低压差线性稳压器(LDO)简介

低压差线性稳压器(LDO)的基本原理和主要参数 摘要:本文论述了低压差线性稳压器(LDO)的基本原理和主要参数,并介绍LDO 的典型应用和国内发展概况。 引言 便携电子设备不管是由交流市电经过整流(或交流适配器)后供电,还是由蓄电池组供电,工作过程中,电源电压都将在很大范围内变化。比如单体锂离子电池充足电时的电压为4.2V ,放完电后的电压为2.3V ,变化范围很大。各种整流器的输出电压不仅受市电电压变化的影响,还受负载变化的影响。为了保证供电电压稳定不变,几乎所有的电子设备都采用稳压器供电。小型精密电子设备还要求电源非常干净(无纹波、无噪声),以免影响电子设备正常工作。为了满足精密电子设备的要求,应在电源的输入端加入线性稳压器,以保证电源电压恒定和实现有源噪声滤波[1]。 一.LDO 的基本原理 低压差线性稳压器(LDO)的基本电路如图1-1所示,该电路由串联调整管VT 、取样电阻R1和R2、比较放大器A 组成。 取样电压加在比较器A 的同相输入端,与加在反相输入 端的基准电压Uref 相比较,两者的差值经放大器A 放大 后,控制串联调整管的压降,从而稳定输出电压。当 输出电压Uout 降低时,基准电压与取样电压的差值增 加,比较放大器输出的驱动电流增加,串联调整管压 降减小,从而使输出电压升高。相反,若输出电压Uout 超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。供电过程中,输出电压 校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。 图1-1 低压差线性稳压器基本电路应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET 。 二.低压差线性稳压器的主要参数 1.输出电压(Output Voltage) 输出电压是低压差线性稳压器最重要的参数,也是电子设备设计者选用稳压器时首先应考虑的参数。低压差线性稳压器有固定输出电压和可调输出电压两种类型。 固定输出电压稳压器使用比较方便,而且由于输出电压是经过厂家精密调整的,所以稳压器精度很高。但是其设定的输出电压数值均为常用电压值,不可能满足所有的应用要求,但是外接元件数值的变化将影响稳定精度。 2.最大输出电流(Maximum Output Current) 用电设备的功率不同,要求稳压器输出的最大电流也不相同。通常,输出电流越大的稳压器成本越高。为了降低成本,在多只稳压器组成的供电系统中,应根据各部分所需的电流值选择适当的稳压器。 3.输入输出电压差(Dropout Voltage)

低压差线性稳压器

低压差线性稳压器(LDO)的基本原理和 主要参数,LDO的典型应用和国内发展概况。 引言 便携电子设备不管是由交流市电经过整流(或交流适配器)后供电,还是由蓄电池组供电,工作过程中,电源电压都将在很大范围内变化。比如单体锂离子电池充足电时的电压为4.2V,放完电后的电压为2.3V,变化范围很大。各种整流器的输出电压不仅受市电电压变化的影响,还受负载变化的影响。为了保证供电电压稳定不变,几乎所有的电子设备都采用稳压器供电。小型精密电子设备还要求电源非常干净(无纹波、无噪声),以免影响电子设备正常工作。为了满足精密电子设备的要求,应在电源的输入端加入线性稳压器,以保证电源电压恒定和实现有源噪声滤波[1]。 一.LDO的基本原理 低压差线性稳压器(LDO)的基本电路如图1-1所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。 图1-1 低压差线性稳压器基本电路 取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A 放大后,控制串联调整管的压降,从而稳定输出电压。当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。供电过程中,输出电压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。 应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET。 二.低压差线性稳压器的主要参数 1.输出电压(Output Voltage)

LED电源四段调光方案线性驱动IC看准四段恒流驱动芯片

LED电源四段调光方案线性驱动IC看准四段恒流驱动芯片 基于线性驱动IC市场的发展趋势及技术上的革新,目前聚泉鑫科技已经研发出了已被授予多项发明的高压四段恒流LED线性驱动IC,其首次在业内将恒流驱动的功率提升至95%以上,在一体化光电模块应用中引领行业。由于高压线性恒流LED驱动免除了电解电容和高频电感,对比开关电源有着成本低、生产安装便利、无EMI干扰、灯具寿命长、智能调光简单等先天优势,一直以来被寄予了去LED灯具开关电源的厚望。 “以目前市场上常见的四段恒流驱动芯片方案为例,灯具效率一般在95%以上”室内照明LED灯具,因LED灯珠的封装技术地不断创新而成本大幅下降;因采用高集成度、应用简洁的PSR隔离和非隔离开关恒流电源技术,高压线性恒流电源技术而使LED驱动电源的成本也大幅下降;高导热塑料散热器的介入,提供了使用非隔离电源LED灯具新的安全技术。 四段恒流驱动芯片,一款高功率线性led灯驱动芯片,可以将LED灯珠组成多串少并的应用模式和采用无电解电容器、无变压器、电感器的直流驱动电源。这样可以将高压线性恒流电源设计在光源板上,组成“光电引擎”,将恒流驱动电源集成在LED光源板上。高压线性恒流芯片、整流桥堆和高压LED灯珠可以通过自动贴片机贴在同一块板上,机器自动化生产,大大节省人工,提高生产力。 四段恒流驱动芯片优势: 1、性价比高; 2、去掉传统AC-DC开关电源,无需电解电容、变压器等元件,提高了产品寿命; 3、功率因素(PF)全电压大于0.98; 4、电源转换效率大于90% ,无EMC问题、THD <20% 5、电源部分和光源共用PCB板; 6、直接市电输入,支持宽电压AC180-240V ; 7、结构简单,安装方便、可根据用户产品需求订制PCB板尺寸; 8、光源采用SMD2835,散热好,光衰小; 9、做成整灯可通过RoHS,CE认证; 》》》》》》》24小时咨询热线:400-9982668

LDO低压差线性稳压器 知识总结

LDO 一.LDO的基本介绍 LDO是low dropout regulator,意为低压差线性稳压器,是相对于传统的线性稳压器来说的。传统的线性稳压器,如78xx系列的芯片都要求输入电压要比输出电压高出2v~3V以上,否则就不能正常工作。但是在一些情况下,这样的条件显然是太苛刻了,如5v转3.3v,输入与输出的压差只有1.7v,显然是不满足条件的。针对这种情况,才有了LDO类的电源转换芯片。 LDO是一种线性稳压器。线性稳压器使用在其线性区域内运行的晶体管或FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指稳压器将输出电压维持在其额定值上下100mV之内所需的输入电压与输出电压差额的最小值。正输出电压的LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为PNP。这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为200mV左右;与之相比,使用NPN复合电源晶体管的传统线性稳压器的压降为2V左右。负输出LDO使用NPN作为它的传递设备,其运行模式与正输出LDO的PNP设备类似。 更新的发展使用MOS 功率晶体管,它能够提供最低的压降电压。使用功率MOS,通过稳压器的唯一电压压降是电源设备负载电流的ON 电阻造成的。如果负载较小,这种方式产生的压降只有几十毫伏。 DC-DC的意思是直流变(到)直流(不同直流电源值的转换),只要符合这个定义都可以叫DCDC转换器,包括LDO。但是一般的说法是把直流变(到)直流由开关方式实现的器件叫DCDC。 LDO是低压降的意思,这有一段说明:低压降(LDO)线性稳压器的成本低,噪音低,静态电流小,这些是它的突出优点。它需要的外接元件也很少,通常只需要一两个旁路电容。新的LDO线性稳压器可达到以下指标:输出噪声30μV,PSRR为60dB,静态电流6μA(TI的TPS78001达到Iq=0.5uA),电压降只有100mV(TI量产了号称0.1mV的LDO)。 LDO线性稳压器的性能之所以能够达到这个水平,主要原因在于其中的调整管是用P沟道MOSFET,而普通的线性稳压器是使用PNP晶体管。P沟道MOSFET是电压驱动的,不需要电流,所以大大降低了器件本身消耗的电流;另一方面,采用PNP晶体管的电路中,为了防止PNP晶体管进入饱和状态而降低输出能力,输入和输出之间的电压降不可以太低;而P沟道MOSFET上的电压降大致等于输出电流与导通电阻的乘积。由于MOSFET的导通电阻很小,因而它上面的电压降非常低。 如果输入电压和输出电压很接近,最好是选用LDO稳压器,可达到很高的效率。所以,在把锂离子电池电压转换为3V输出电压的应用中大多选用LDO稳压器。虽说电池的能量最後有百分之十是没有使用,LDO稳压器仍然能够保证电池的工作时间较长,同时噪音较低。 如果输入电压和输出电压不是很接近,就要考虑用开关型的DCDC了,因为从上面的原理可以知道,LDO的输入电流基本上是等于输出电流的,如果压降太大,耗在LDO上能量太大,效率不高。

常用电源芯片大全

常用电源芯片大全 第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596

18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751 27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875

用常见的DC-DC芯片做LED恒流驱动电路

用常见的DC/DC芯片做LED恒流驱动电路 近一个月看了很多的广告式的LED驱动的IC介绍,感到毫无新意,即没有把IC做成真正的LED专用驱动,也没有特别的优势.其实每款DC/DC的IC(无论升压或降压)都能接成恒流的LED的驱动,现在分别以KZW3688和CE9908为例介绍一下接法及特点. 1、KZW3688降压IC,其接法如下: 原理非常简单,大家一看便知这里不再赘述;其中R1的值的算法是3.3V/所需电流.上图中接的是2-5只,也可以多路并联使用,并且这里有个问题问大家:C2是否需要呢?看一下下图中的接法:

去掉了C2,并联了一路甚至几路LED串,感到效果如何?有兴趣回答吗? 适合这种接法的电路太多了,除3688外,还有PT1102、1101、lm2596、GA8512、1016、1014、313、1011等任何的降压IC都能接成这样的电路,这种电路的转换效率高达95%以上,但实际使用时效率却是在36%-88%之间,还没有某些针对性的线性的效率高,想一想这是为什么?同时指出:很多恒流电路,把LED驱动电路的效率写成是IC转换的效率,这是不对的,是误导,希望广大工程师注意这些资料里的参数. 2、升压IC,以CE9908为例,接法如下: 原理大家想一想,接法也可以先串联接成串、再把串并起来形成N个支路,在这里我有意先不谈功率因数,只谈效率,这个效率也是在36-88%之间,大家现在明白了吧?在我们心中奉为“高效率”的IC其实际的作用在LED上的效率,一定要实际测量才是.

这两个图只是仅仅说明原理,在使用中应灵活运用,相信大家会掌握更多的技巧,例如用外接MOS管方式直接用低压降压的IC接成220V直接输入的AC/DC方式(类似于9910)、用更低的取样电压(FB端)来提高整个电路的效率、用并联谐振方式结合IC特点、针对性的设计出高效优质的LED驱动电路(这才是最后要走的路呢)等,哈哈祝大家快速成为高手. 我按板子画了一个图 整个电路非常简单,其中,黄色的部分是可去掉的部分,去掉后电路板上从红X点割断了,另附说明可以把R0直接接在目前的点,这时电路正常工作,只是这时没有了过放保护功能;电池是标明用的两节镍氢电池,LED用的是#5普通白灯三只(散光),原板寄来时是带着黄色部分的,我去掉黄色部分,直接把光敏电阻R0接到如图上的红X点,同样可以正常工作,这时电源电压下降到1.5V时(不带过放保护),电路截止. 在正常工作时,输入电流大约在24-26mA之间(随电压不同而改变),我用两节“品胜牌”800mAh镍氢电池,充饱后试验,工作了28小时,电压下降到2.0V,保护电路动作. 唯一的缺点是功率小,光线亮度不够强,每只灯的电流不足8mA,但电路的转换效率很高,而且LED在10mA以下时,发光效率也是最高的(LED的发光效率随工作电流的增大而降低,呈非线性变化),所以他用了三只装DEMO,总的光强比用一只高(用一只的电流强度是用三只时的三倍,理论上总电流基本相等).虽然功率小,但也正适合装饰用的太阳能草坪灯的要求(发光不用太强). 改进方案:

1A低压差线性稳压器

1A 低压差线性稳压器 BL1117 选型指南: BL1117 概述: BL1117是一款低压差的线性稳压器,当输出1A 电流时,输入输出的电压差典型值仅为1.2V 。 BL1117除了能提供多种固定电压版本外(Vout =1.8V,2.5V,2.85V,3.3V,5V ),还提供可调端输出版本,该版本能提供的输出电压范围为1.25V~13.8V 。 BL1117提供完善的过流保护和过热保护功能(BL1117正常工作环境温度范围极宽,为 -50℃~140℃),确保芯片和电源系统的稳定性。同时在产品生产中应用先进的修正技术,确保输出电压和参考源精度在±1%的精度范围内。 BL1117采用SOT-223封装形式。 特点: ? 包括三端可调输出和固定电压输出版本 (固定电压包括1.8V ,2.5V ,2.85V ,3.3V ,5V 等,其他电压规格可根据用户定制) ? 最大输出电流为1A ? 输出电压精度高达±1% ? 稳定工作电压范围为高达15V ? 电压线性度为0.2% ? 负载线性度为0.4% ? 环境温度:T A 的范围是-50℃~140℃ 用途: ? 计算机主板、显卡 ? LCD 监视器及LCD TV ? DVD 解码板 ? ADSL 等设备 ? 开关电源的后级稳压 引脚排列图: 温度范围: C :标准 输出电压: 18……1.8V 25……2.5V 28……2.85V 50……5.0V 缺省:输出可调版本 封装形式: X :SOT-223 Y :TO-252 A : 表示芯片生产卡号 B : 表示输出电压值

引脚定义: 固定电压型 可调电压型 产品命名目录: 产品名称 输出电压规格 封装形式 BL1117-18CX 1.8 V SOT-223 BL1117-25CX 2.5 V SOT-223 BL1117-28CX 2.85 V SOT-223 BL1117-33CX 3.3 V SOT-223 BL1117-50CX 5.0V SOT-223 BL1117-CX Adj. SOT-223 BL1117-18CY 1.8 V TO-252 BL1117-25CY 2.5 V TO-252 BL1117-28CY 2.85 V TO-252 BL1117-33CY 3.3 V TO-252 BL1117-50CY 5.0V TO-252 BL1117-CY Adj. TO-252 系统框图: 产品的极限参数: 输入电压Vin 最大值---------------------------------------------------------------------------------18V 引脚号 符号 定义 1 GND 接地脚 2 Vout 输出端 3 Vin 输入端 引脚号 符号 定义 1 Adj. 可调端 2 Vout 输出端 3 Vin 输入端

LED恒流驱动电源的分析及设计

LED恒流驱动电源的分析及设计 作者:JYQ 【摘要】在节能技术高涨的今天,LED照明灯将成为照明技术的发展主流已成为共识。该文介绍了大功率LED的特性,分析了驱动电路的基本原理,分析LEDA驱动电源的现状和存在问题,并对LED驱动电源的发展前景提出了展望。研究设计了一种精确高效的恒定直流驱动方案。 【关键词】LED驱动电源;恒流 Constant Current drive power LED analysis and design Author: JYQ Abstract : In the energy saving technology high today, the LED lights will be lighting technology development has become the mainstream consensus. This paper introduces the characteristics of the high power LED, analyzes the basic principle of driving circuit, analysis of the present situation of LEDA drive power and the existence question, and LED to the prospect of the development of power drive is also presented. Study design a precise and efficient constant dc drive scheme. Key words: LED driving power; Constant Current 0 引言 在能源和环境问题日趋严重的今天,以具有高效、节能、环保、寿命长等特点的LED活得累人们的重视,若能以LED照明取代目前低效率、高耗能的传统照明,无疑对缓解当前越来越紧迫的能源短缺和环境恶化问题起到举足轻重的作用。LED常采用恒流驱动的形式,串联谐振变换器具有恒流特性,可将其用于实现LED的开环恒流驱动。由于LED自身的伏安特性及温度特性,使得LED对电流的敏感度要高于对电压的敏感度,这就要求用专门的电源来驱动LED。 LED即发光二极管,是全球新兴产业,LED照明灯具有巨大节能作用,每年以50%的速度增长,将会取代传统光源,从而引发人类照明史上的第四次革命,极大地改善人类的生存环境,缓解全球日益严峻的能源危机。 1 LED的介绍

LED高压线性恒流方案优缺点 对比

高压线性恒流方案优缺点对比 随着LED大规模进入商业和家庭照明,客户对产品的性能、价格、可靠性提出了更为严格的要求。一方面要求LED的发光效率不断提高、价格不断降低,另一方面对于LED灯具寿命也提出了更多要求。在一般人的心目里,LED本身的寿命已经是非常高了,但是实际寿命却是非常低,往往是由于电源寿命低而引起,目前大部分灯具解决方案都是光源+电源+外壳方式,而且电源都类同传统开关电源原理,电路复杂,电子元件较多,生产工艺复杂,生产成本较高,故障机率较高。为了降低成本,业内多家方案公司推出高压线性恒流IC方案,此方案无需高频变压器,部分方案无需电解电容,简化了灯具的工艺流程,也达到了直接用市电驱动LED的要目的,成本也得以大大的降低。 共同优缺点如下: 优点1:无高频变压器,无EMC,低谐波; 优点2:制作成本低,方案简单,体积小; 优点3:电流负温度补偿特性,有效的保护LED发光二极管芯片; 优点4:恒流二极管ESD>8000V,所有方案可以吸收1000V雷击浪涌(90度相位)。 缺点1:不能兼顾效率和功率因素双高,只能二选一。 缺点2:电源输出是高压,产品电隔离必须得做好。 缺点3:同一款方案,不能做全电压恒流。 常见线性恒流方案如下: 一、恒流晶体管+外置MOSFET(如图一、图二) 以上方案主要是靠一颗低压的带PWM调节的恒流晶体管,通过外挂MOS来承受高压多串后线路中产生的压差,当市电电压过高时候,MOS很烫也是很正常,并且当市电升高时候电流会在一定程度会增大,电源效率高达85-90%以上,但无功率因素校正。

以上方案主要是第一种方式的升级版,优劣势如下: 1、MOS内置,并且加上温度补偿电路,外部线路更简单。 1、通过内置MOS来承受高压多串后线路中产生的压差,当市电电压突然过高时候,电流会在一定程度会增大,IC温度达到一定程度,电流调节就会启动。 2、因IC制程关系,目前正向工作电压一般是7-200V,所以有些厂家的管子当市电低于灯珠VF总电压时候会有闪烁。大部分IC耐压在90V-120V,所以在工作电压波动大或者长期电压偏高地区有一定风险性。 3、单颗IC一般在50MA以下,需要更大功率用2颗或更多颗并联。但并联的2颗因为内阻不一样,会存在功率偏向现象,某一颗会损坏快一些。 4、电源效率高达85-90%以上,但无功率因素校正。 三、RM093智能控制IC+外置MOSFET(如图五、图六) 以上方案除了电路简单外,与上面两种方案有所不同之处。 1、MOS外挂,可以根据不同功率选择不同MOS,单颗IC功率可以做更大; 2、智能IC控制,有过温自动保护、过温自动调节功能; 3、此IC最大特点是过压调节功能,可以根据自己需要设定起调点,当市电高于这个电压时候马上调节输出电流,这样不需要等待IC温度过高时候就提前调节保护灯珠和器件; 4、恒流精度高,随市电升高或降低功率波动比较小; 5、IC的工作电压-0.3V-25V均正常工作,所以当输入电压低于灯珠VF总电压时候,也不会闪烁; 6、电源效率高达90%以上,但无功率因素校正。

AMC7135_350mA_恒流LED驱动电路总汇

简单介绍 AMC7135350mA 恒流LED 驱动ic 方案汇总主要包含:1.基本典型应用。2.防反接LED 手电筒电路。3.多颗AMC7135并联驱动700mA~1A 应用。4.高电压输入驱动多颗串接LED 应用。5.通过微控制器控制 RGB 三色LED 灯。6.AMC7135主辅灯可切换的LED 矿灯应用。7.AMC713512V 输入驱动三串多并LED 应用。 AMC7135350mA 恒流LED 驱动ic 方案汇总 概述 AMC7135 堪称一款经典的降压恒流驱动芯片。平实的价格、简单的电路结构及稳定的性能着实让它的使用者们津津乐道。但是除了典型应用AMC7135还可以做更多的事,简单的东西不简单就看大家怎么去发挥它了。技术参数 350mA 恒流输出(电流档位可选) 输出开短路保护 低压差低静态电流 供电范围:2.7V~6V 2KV ESD 先进Bi-CMOS 工艺SOT89和TO252封装 AMC7135应用方案汇总见下(附电路图) 1.典型应用电路无需任何外围器件 2.防电池反接的LED 驱动电路 PACKAGE PIN OUT Supply Voltage V DD GND OUT SOT-89 V DD GND OUT TO-252 (Top View) 3.多颗AMC7135并接驱动700mA~1A 应用 3.多颗AMC7135并接驱动700mA~1A 应用

4.输入12V驱动3颗串接白光LED应用(如负载改为红光LED VF=2V,该应用则可串5颗LED) 5.通过微控制器及on/off装置配合7135实现RGB三色LED亮暗程度的控制。达到多彩混色的功能。 6.矿灯所需的主灯及辅灯可切换照明电路

理解LDO(低压差线性稳压器)的一些术语和定义

Translated by flytigery 2007/8/16 简介 这篇报告告诉你如何理解LDO的一些术语和定义,如稳压块的压降,静态电流,待机电流,效率,瞬态响应,线性/负载调整率电源纹波抑制比,输出噪声电压,精度,功耗等。而且在介绍每一个概念时都给出了例子加以说明。 1压降 压降被定义为输入电压与输出电压之间的差,当输入电压下降到一定程度时输出电压将不再维持在一个恒定的电压。 该点发生在输入电压不断接近输出电压时。 图1是一个典型的LDO 电路,在非调整区域PMOS可以看作一个电阻,电压降下量可以表示为 Vdropout=Io*Ron 举个例子,下图是TPS76733的输入输出特性,输出1A的时候它的压降是350mV,从输入电压是3.65V的时候输出电压就开始下降从2V到3.65V是该LDO的非调整区域。输入电压如果低于2V将不会有输出,也就是说LDO不动作。比较低的电压降有利于提高LDO 的效率。 2静态电流 静态电流,也被叫做流向地的电流,定义为输出电流与输入电流的差。图3定义了静态电流Iq=Ii-Io。减小静态电流有助于提高LDO 的效率。 静态电流由调整管的偏置电流(比如说参考电压消耗电流,采样电阻消耗电流,误差放大器消耗电流)和驱动调整管基级的电流组成它的大小主要由调整管,LDO的结构,和环境温度决定。 对于双级型晶体管,静态电流随着负载电流成比例的增加,因为双级型晶体管是电流驱动器件。另外在非调整区域,由于发射级和基级寄生电流路径的影响静态电流也会增加,该寄生电流路径是由于基级电压比输出电压低所引起的。 对于MOS管,静态电流几乎不随负载的变化而变化,几乎是一个恒定值,因为MOS管是电压驱动器件。对采用MOS管的LDO来说对静态电流有贡献的只有参考电压的消耗,采样电阻消耗电流,误差放大器消耗电流。在应用中如果对静态电流的消耗比较苛刻的话,最好是采用MOS管作为调整管的LDO 理解LDO的一些术语和定 义

LED驱动电源恒流电路方案详解

恒流案大全 恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。 恒流源分为流出(Current Source)和流入(Current Sink)两种形式。 最简单的恒流源,就是用一只恒流二极管。实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。 最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准,电流数值为:I = Vbe/R1。 这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。同时不同的工作电流下,这个电压也会有一定的波动。因此不适合精密的恒流需求。 为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。电流计算公式为: I = Vin/R1

这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。只不过其中的Vin还需要用户额外提供。 从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。 最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。如图(3)所示: 电流计算公式为:I = (Vd-Vbe)/R1

无纹波频闪线性高压LED驱动方案

无纹波频闪线性高压LED驱动方案(ORG8511) 一. 高压LED “高压LED”,一种是LED生产厂家提供串联好的小功率LED,如图1左图所示,它只是集成LED的一种,而右图所示的集成LED和前者的主要区别是,前者是全部串联,后者是串并联。集成LED的特点是在大晶片上采用开槽的方法,将其切割成若干小LED,然后用绝缘层把这些沟槽填平,按照串并联要求铺设连接各个LED的导线。 图1 高压LED 无论哪种“高压LED”,本文所讨论的线性高压LED驱动方案,是较小电流(小于100mA),较高电压的LED驱动方案。 图2 LED负载特性

LED的负载特性如图2所示,根据LED的负载特性,高压LED需要有一种可控恒流源来控制。经过整流的工频交流电电压,如果将此电压直接加到输出LED上面,这样的问题是无法实现恒流,即整个工频周期内通过LED电流不恒定。一. 无法实现亮度的控制。二. LED灯珠寿命大大缩短。 根据控制要求不同,主要的恒流控制方法有:开关电源驱动、阻容降压驱动以及线性高压驱动。 二. 技术路线PK 2.1线性高压驱动vs. 高频开关电源驱动 在LED灯珠负载里串接MOSFET,让MOSFET闭环受控于LED负载电流,工作在线性区,使线路产生“恒流-变压”效果,这样在LED负载通过的就是恒定电流,而串接的MOSFET承受了变化的电压。这就是类似LDO(Low Dropout Regulator低压差线性稳压器)的工作原理。简单说来,这就是线性高压驱动LED的工作原理。 高频开关电源驱动,是通过高频开关、磁性元器件,将交流市电转换为LED需求的电压、电流。高频开关电源驱动又分为隔离和非隔离两种。 相比与高频开关电源,线性高压方案的优点主要是:线路简单,电路工作在工频线性模式,不是工作在高频模式,省去了高频电感,同时没有EMI的问题,省去了EMC电路。 而高频开关电源驱动相比于线性高压方案,在线路复杂许多,但可以灵活实现各种负载输出需求。两者应用场合不同,严格意义上讲不具有可比性,这就比如你可以比较两种品牌的汽车的功率、扭矩等等,但你拿开汽车跟骑马比哪一种更好呢,因为马匹没有扭矩。我们接下去着重比较线性高压方案和它的主要对手:传统阻容降压方案。 2.2 线性高压驱动vs. 阻容降压驱动 阻容降压工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流,电容降压实际上是利用容抗限流,而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。如图3所示,由于整流管的导通电阻只有几欧姆,稳压管VS的动态电阻为10欧姆左右,限流电阻R1及负载电阻一般为100~200,而滤波电容一般为100uF~1000uF,其容抗非常小,可以忽略。若用R代表除C1以外所有元器件的等效电阻,

LED恒流驱动及恒流IC大盘点

LED恒流驱动简介 由于LED是特性敏感的半导体器件,又具有负温度特性,因而在应用过程中需要对其进行稳定工作状态和保护,从而产生了驱动的概念。LED器件对驱动电源的要求近乎于苛刻,LED不像普通的白炽灯泡,可以直接连接220V的交流市电。LED是2~3伏的低电压驱动,必须要设计复杂的变换电路,不同用途的LED灯,要配备不同的电源适配器。国际市场上国外客户对LED驱动电源的效率转换、有效功率、恒流精度、电源寿命、电磁兼容的要求都非常高,设计一款好的电源必须要综合考虑这些因数,因为电源在整个灯具中的作用就好比像人的心脏一样重要。 LED驱动电源把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。而LED驱动电源的输出则大多数为可随LED正向压降值变化而改变电压的恒定电流源。LED电源核心元件包括开关控制器、电感器、开关元器件(MOSfet)、反馈电阻、输入滤波器件、输出滤波器件等等。根据不同场合要求、还要有输入过压保护电路、输入欠压保护电路,LED开路保护、过流保护等电路。 LED的恒流驱动 用LED作为显示器或其他照明设备或背光源时,需要对其进行恒流驱动,主要原因是: 1. 避免驱动电流超出最大额定值,影响其可靠性。 2. 获得预期的亮度要求,并保证各个LED亮度、色度的一致性 3.能有效的避免雷击,电网的浪涌,过电流,过电压的保护,使LED寿命提高。 存在问题: 要处理好散热问题,散热问题没有处理好就会影响LED寿命。 目前LED均采用直流驱动,因此在市电与LED之间需要加一个电源适配器即LED 驱动电源。它的功能是把交流市电转换成合适LED的直流电。根据电网的用电规则和LED 的驱动特性要求,在选择和设计LED驱动电源时要考虑到以下几点: 1.高可靠性 特别像LED路灯的驱动电源,装在高空,维修不方便,维修的花费也大。 2.高效率 LED是节能产品,驱动电源的效率要高。对于电源安装在灯具内的结构,尤为重要。因为LED的发光效率随着LED温度的升高而下降,所以LED的散热非常重要。电源的效率高,它的耗损功率小,在灯具内发热量就小,也就降低了灯具的温升。对延缓LED的光衰有利。 3.高功率因素 功率因素是电网对负载的要求。一般70瓦以下的用电器,没有强制性指标。虽然功率不大的单个用电器功率因素低一点对电网的影响不大,但晚上大家点灯,同类负载太集中,会对电网产生较严重的污染。对于30瓦~40瓦的LED驱动电源,据说不久的将来,也许会对功率因素方面有一定的指标要求。 4.驱动方式 现在通行的有两种:其一是一个恒压源供多个恒流源,每个恒流源单独给每路LED 供电。这种方式,组合灵活,一路LED故障,不影响其他LED的工作,但成本会略高一点。另一种是直接恒流供电,LED串联或并联运行。它的优点是成本低一点,但灵活性差,还要解决某个LED故障,不影响其他LED运行的问题。这两种形式,在一段时间内并存。多路恒流输出供电方式,在成本和性能方面会较好。也许是以后的主流方向。 5.浪涌保护

相关文档
最新文档