鲁棒控制与故障诊断 第三章

非线性系统的鲁棒自适应控制

非线性系统的鲁棒自适应控制 Robust Adaptive Control of Uncertain Nonlinear Systems 郝仁剑3120120359 摘要:本文以非线性系统的控制问题为背景,介绍了多种经典的非线性系统的控制方法以及研究进展,分析了各种控制方法存在的优点和不足。着重介绍了鲁棒自适应控制在非线性系统中的应用,结合该领域的近期研究进展和实际应用背景,给出对鲁棒自适应控制的进一步研究目标。 关键词:非线性系统鲁棒控制自适应控制 1.前言 任何实际系统都具有非线性特性,非线性现象无处不在。严格地说,线性特性只是其中的特例,但是非线性系统与线性系统又具有本质的区别。由于非线性系统不满足叠加原理,因此非线性特性千差万别,这也给非线性系统的研究带来了很大的困难。同时,对于非线性系统很难求得完整的解,一般只能对非线性系统的运动情况做出估计。众所周知,控制理论经历了经典控制理论和现代控制理论两个发展阶段。在第二次世界大战前后发展起来的经典控制理论应用拉普拉斯变换等工程数学工具来分析系统的品质。它广泛地应用于单输入单输出、线性、定常、集中参数系统的研究中。随着控制对象的日益复杂以及人们对控制系统精度的不断提高,经典控制理论的局限性就暴露出来了。在20世纪50年代,Bellman根据最优原理创立了动态规划。同时庞特里亚金等学者创立了最大值原理。后来,Kalman提出了一系列重要的概念,如可观性,可控性,最优线性二次状态反馈,Kalman滤波等。这些理论和概念的提出大大促进了现代控制理论的发展。控制系统的设计都需要以被控对象的数学模型为依据,然而对于任何被控对象不可能得到其精确的数学模型,如在建立机器人的数学模型时,需要做一些合理的假设,而忽略一些不确定因数。不确定性的必然存在也正促使了现代控制理论中另一重要的研究领域——鲁棒控制理论的发展。Zmaes关于小增益定理的研究以及Kalman关于单输入单输出系统LQ调节器稳定裕量的分析为鲁棒控制理论的发展产生了重要的影响。特别是Zmaes1981年发表的论文[1]标志H∞控制理论的起步。1984年Francis和Zmaes基于古典插值理论提出H∞问题的初步解法。Glover运用Hankel算子理论给出了H∞问题的解析解。Doyle在状态空间上对Glover解法进行整理和归纳。至此H∞控制理论体系初步形成。同时,Doyle首次提出结构化奇异值的概念,后来形成了μ解析理论。另外一种重要的控制器设计方法是基于Lyapunov函数的方法。在进行鲁棒控制器的设计时,一般都假设系统的不确定性属于一个可描述集,比如增益有界,且上界己知等。一般来说,鲁棒控制是比较保守的控制策略。对所考虑集合内的个别元素,该系统并不是最佳控制。对于具有参数不确定性的一类系统,自适应控制技术被提了出来,如模型参考自适应控制和自校正控制等。在实际应用中,由于被控对象具有未建模动态,过程噪声或扰动的统计特性远比设计时所设想的情况更复杂,以及持续激励条件和严正实条件等“理想条件”被打破,这都会导致自适应控制算法的失稳。于是自适应控制的鲁棒性课题,即鲁棒自适应控制受到了广泛的关注。大量的工程实践表明,对于复杂的工业对象和过程,引入自适应策略能够提高控制精度,提高生产效率,降低成本。近年来,非线性自适应控制技术取得突破性的发展,控制器的结构化设计技术也正日益得到广泛的研究与应用。

鲁棒控制

鲁棒控制理论中的H∞控制理论 (浙江大学宁波理工学院信息科学与工程分院自动化) 【摘要】首先简要的介绍了鲁棒控制中的H∞控制理论,并把其发展分为两个阶段,而后就上当已存在的H∞控制的主要成果进行了讨论和归纳,还指出了H∞控制理论尚未解决的问题。 【关键词】H∞控制理论;非线性系统;时滞;范数 1.概述 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓鲁棒性,是指标称系统所具有的某一种性能品质对于具有不确定性的系统集的所有成员均成立,如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。主要的鲁棒控制理论有:Kharitonov区间理论;H∞控制理论;结构奇异值理论u理论; 鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。 2.H∞控制理论出现的背景及意义 1981年,加拿大著名学者Zames在其论文中引入了H∞范数作为目标函数进行优化设计,标志着H∞控制理论的诞生。Zames考虑了这样一个单入单出( SISO)系统的设计问题: 假设干扰信号属于某一有限能量的已知信号集,要求设计一个反馈控制器,使闭环系统稳定,且干扰对系统的影响最小。要解决这样的问题就必须在能够使闭环系统稳定的所有控制器中选出一个控制器使之相应的灵敏度函数的H∞范数最小。 虽然Zames 首先提出了H∞最优化问题,但是他没能给出行之有效的解法。

鲁棒控制理论综述

鲁棒控制理论综述 作者学号: 摘要:本文首先介绍鲁棒控制理论涉及的两个基本概念(不确定性和鲁棒)和发展过程,然 H控制理论,最后指出鲁棒控制研后叙述鲁棒控制理论中两种主要研究方法:μ理论、∞ 究的问题和扩展方向。 H控制理论 关键词:鲁棒控制理论,μ理论,∞ 一、引言 自从系统控制(Systems and Control)作为一门独立的学科出现,对于系统鲁棒性的研究也就出现了。这是由这门学科的特色和研究对象决定的。对于世界上的任何系统。由于系统本身复杂性或是人们对其认识的不全面,在系统建立模型时,很难用数学语言完全描述刻画。在这样的背景下,鲁棒性的研究也就自然而然地出现了。 二、不确定性与鲁棒 1、不确定性 谈到系统的鲁棒性,必然会涉及系统的不确定性。由于控制系统的控制性能在很大程度上取决于所建立的系统模型的精确性,然而,由于种种原因实际被控对象与所建立的模型之间总存在着一定的差异,这种差异就是控制系统设计所面临的不确定性。这种不确定性通常分为两类:系统内部的不确定性和系统外部的不确定性。这样,就需要一种能克服不确定性影响的控制系统设计理论。这就是鲁棒控制所要研究的课题。 2、鲁棒 “鲁棒”一词来自英文单词“robust”的音译,其含义是“强壮”或“强健”。所谓鲁棒性(robustness),是指一个反馈控制系统在某一特定的不确定性条件下具有使稳定性、渐近调节和动态特性这三方面保持不变的特性,即这一反馈控制系统具有承受这一类不确定性的能力。具有鲁棒性的控制系统称为鲁棒控制系统。在工程实际控制问题中,系统的不确定性一般是有界的,在鲁棒控制系统的设计中,先假定不确定性是在一个可能的范围内变化,然后在这个可能的变化范围内进行控制器设计。鲁棒控制系统设计的思想是:在掌握不确定性变化范围的前提下,在这个界限范围内进行最坏情况下的控制系统设计。因此,如果设计的控制系统在最坏的情况下具有鲁棒性,那么在其他情况下也具有鲁棒性。 三、发展历程 鲁棒控制系统设计思想最早可以追溯到1927年Black针对具有摄动的精确系统的大增益反馈设计。由于当时不知道反馈增益和控制系统稳定性之间的确切关系,所以设计出来的控制系统往往是动态不稳定的。早期的鲁棒研究主要集中在Bode图,1932年Nyquist提出了基于Nyquist曲线的频域稳定性判据,使得反馈增益和控制系统稳定性之间的关系明朗化。1945年Bode讨论了单输入单输出(SISO)反馈系统的鲁棒性,提出了利用幅值和相位稳定裕度来得到系统能容许的不确定范围。这些方法主要用于单输入单输出系统而且这些关于鲁棒控制的早期研究主要局限于系统的不确定性是微小的参数摄动情形,尚属灵敏度分析的范畴,从数学上说是无穷小分析思想,并且只是停留在理论上。20世纪六七十年代,鲁棒控制只是将SISO系统的灵敏度分析结果向MIMIO进行了初步的推广[1],与此同时,状态空间理论引入控制论后,系统控制取得了很大的发展,鲁棒问题也显得更加重要,其中就要提到两篇对现代鲁棒控制理论的建立有重要影响的文章:一篇是Zames在1963年关于小增益定理的论文[2],另一篇是1964年Kalman关于单入单输出系统LQ调节器稳定裕量分析的研究报告[3]。鲁棒控制这一术语第一次在论文中出现是在1971年Davion的论文[4],而首先将鲁棒控制写进论文标题的是Pearson等人于1974年发表的论文[5]。当然,鲁棒控制能够

自适应PID控制综述(完整版)

自适应PID控制 摘要:自适应PID控制是一门发展得十分活跃控制理论与技术,是自适应控制理论的一个重要组成部分,本文简要回顾PID控制器的发展历程,对自适应PID控制的主要分支进行归类,介绍和评述了一些有代表性的算法。 关键词:PID控制,自适应,模糊控制,遗传算法。 Abstract: The adaptive PID control is a very active developed control theory and technology and is an important part of adaptive control theory.This paper briefly reviews the development process PID controller.For adaptive PID control of the main branches, the paper classifies,introduces and reviews some representative algorithms. Keywords: PID control, adaptive, fuzzy control, genetic algorithm 1 引言 从问世至今已历经半个世纪的PID控制器广泛地应用于冶金、机械、化工、热工、轻工、电化等工业过程控制之中,PID控制也是迄今为止最通用的控制方法, PID控制是最早发展起来的控制策略之一,因为他所涉及的设计算法和控制结构都很简单,并且十分适用于工程应用背景,所以工业界实际应用中PID 控制器是应用最广泛的一种控制策略(至今在全世界过程控制中用的80% 以上仍是纯PID调节器,若改进型包含在内则超过90%)。由于实际工业生产过程往往具有非线性和时变不确定性,应用常规PID控制器不能达到理想控制效果,长期以来人们一直寻求PID控制器参数的自动整定技术,以适应复杂的工况和高指标的控制要求。随着微机处理技术和现代控制理论诸如自适应控制、最优控制、预测控制、鲁棒控制、智能控制等控制策略引入到PID控制中,出现了许多新型PID控制器。人们把专家系统、模糊控制、神经网络等理论整合到PID控制器中,这样既保持了PID控制器的结构简单、适用性强和整定方便等优点,又通过先进控制技术在线调整PID控制器的参数,以适应被控对象特性的变化。 2 自适应PID控制概念及发展 2.1 PID控制器 常规PID控制系统原理框图如下图所示,系统由模拟PID控制器和被控对象组成。

对鲁棒控制的认识

对鲁棒控制的认识 姓名:赵呈涛 学号: 092030071 专业:双控

鲁棒控制(RobustControl)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统在一定(结构、大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。 鲁棒控制的早期研究,主要针对单变量系统(SISO)的在微小摄动下的不确定性,具有代表性的是Zames提出的微分灵敏度分析。然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动,因此产生了以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。现代鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法,其设计目标是找到在实际环境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制器,它的参数不能改变而且控制性能能够保证。 鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息和它的变化范围,一些算法不需要精确的过程模型,但需要一些离线辨识。鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。主要的鲁棒控制理论有: (1)Kharitonov区间理论; 控制理论; (2)H ∞ (3)结构奇异值理论μ理论。 下面就这三种理论做简单的介绍。 1 Kharitonov区间理论 1.1参数不确定性系统的研究概况 对参数不确定性系统的研究源于20世纪20年代。Black采用大回路增益的反馈控制技术来抑制真空管放大器中存在的严重不确定性,由于采用大回路增益,所以设计的系

鲁棒控制综述

鲁棒控制综述 课程目标 1.了解鲁棒控制研究的基本问题 2.掌握鲁棒控制的基础知识和基本概念 3.明确鲁棒控制问题及其形式化描述 4.掌握几种鲁棒稳定性分析与设计方法 5.掌握状态空间H∞控制理论 6.了解鲁棒控制系统的μ分析与μ综合方法 7.初步了解非线性系统鲁棒控制方法 8.掌握时滞系统的鲁棒控制稳定性分析 控制系统就是使控制对象按照预期目标运行的系统。 大部分的控制系统是基于反馈原理来进行设计的 反馈控制已经广泛地应用于工业控制、航空航天和经济管理等各个领域。 不确定性 在实际控制问题中,不确定性是普遍存在的 所描述的控制对象的模型化误差 可能来自外界扰动 因此,控制系统设计必须考虑不确定性带来的影响。 控制系统设计的任务 对于给定的控制对象和传感器,寻找一个控制器,使反馈控制系统能够在实际工作环境中按预期目标运行 ●实际控制对象就是具体的装置、设备或生产过程 ●通过各种建模方法,可以建立实际控制对象的模型 ●针对控制对象的模型,应用控制理论提供的设计方法设计出控制器,对实际控制对 象实施控制 ●控制系统的控制效果在很大程度上取决于实际控制对象模型的准确性 ●在控制系统设计中采用的模型与实际控制对象存在着一定的差异,即存在着模型不 确定性 ●控制系统的运行也受到周围环境和有关条件的制约 ●例如,在图1-1中,传感器噪声n和外部扰动d分别来自控制系统本身和控制系统 所处的环境,它们往往是一类未知的扰动信号 ●这种扰动不确定性对控制系统的运动将产生的影响 控制系统设计中需要考虑的不确定性 (1)来自控制对象的模型化误差; (2)来自控制系统本身和外部的扰动信号 ●需要一种能克服不确定性影响的控制系统设计理论 ●这就是鲁棒控制所要研究的课题 1.1.2 控制系统设计的基本要求 在控制系统设计中,往往把图1-1所示的反馈控制系统更一般化,考虑如图1-3所示的单位反馈控制系统,其中P是控制对象,C是控制器。

鲁棒控制原理及应用举例

鲁棒控制原理及应用举例 摘要:本文简述了鲁棒控制的由来及其发展历史,强调了鲁棒控制在现代控制系统中的重要性,解释了鲁棒控制、鲁棒性、鲁棒控制系统、鲁棒控制器的意义,介绍了鲁棒控制系统的分类以及其常用的设计方法,并对鲁棒控制的应用领域作了简单介绍,并举出实例。 关键词:鲁棒控制鲁棒性不确定性设计方法现代控制系统 经典的控制系统设计方法要求有一个确定的数学模型。在建立数学模型的过程中,往往要忽略许多不确定因素:如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中不考虑高阶模态的影响等。但经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似。对许多要求不高的系统,这样的数学模型已经能够满足工程要求。然而,对于一些精度和可靠性要求较高的系统,如导弹控制系统设计,若采用这种设计方法,就会浪费了大量的人力物力在反复计算数弹道、调整控制器参数以及反复试射上。因此,为了解决不确定控制系统的设计问题,科学家们提出了鲁棒控制理论。由于鲁棒控制器是针对系统工作的最坏情况而设计的,因此能适应所有其它工况,所以它是解决这类不确定系统控制问题的有力工具。 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。上世纪60年代,状态空间结构理论的形成,与最优控制、卡尔曼滤波以及分离性理论一起,使现代控制理论成了一个严密完整的体系。随着现代控制理论的发展,从上世纪80年代以来,对控制系统的鲁棒性研究引起了众多学者的高度重视。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。 通常说一个反馈控制系统是鲁棒的,或者说一个反馈控制系统具有鲁棒性,就是指这个反馈控制系统在某一类特定的不确定性条件下具有使稳定性、渐进调节和动态特性保持不变的特性,即这一反馈控制系统具有承受这一类不确定性影响的能力。设被控系统的数学模型属于集合D,如果系统的某些特性对于集合U中的每一对象都保持不变,则称系统具有鲁棒性。鲁棒性又可以分为鲁棒稳定性、鲁棒渐进调节和鲁棒动态特性。鲁棒稳定性是指在一组不确定性的作用下仍然能够保证反馈控制系统的稳定性;鲁棒渐进调节是指在一组不确定性的影响下仍然可以实现反馈控制系统的渐进调节功能;鲁棒动态特性通常称为灵敏度特性,即要求动态特性不受不确定性的影响。 所谓鲁棒控制,使受到不确定因素作用的系统保持其原有能力的控制技术。鲁棒控制的主要思想是针对系统中存在的不确定性因素,设计一个确定的控制律,使得对于系统中所有的不确定性,闭环系统能保持稳定并具有所期望的性能。

非线性鲁棒控制

非线性鲁棒控制 1. 课题意义 针对机机械手的不确定性有两种基本控制策略:自适应控制和鲁棒控制。当受控系统参数发生变化时,自适应控制通过及时的辨识、学习和调整控制规律,可以达到一定的性能指标,但实时性要求严格,实现比较复杂,特别是存在非参数不确定性时,自适应控制难以保证系统的稳定性;而鲁棒控制可以在不确定因素一定变化范围内,做到“以不变应万变”,保证系统稳定和维持一定的性能指标,它是一种固定控制,比较容易实现,在自适应控制器对系统不确定性变化来不及做辨识以校正控制律时更显鲁棒控制的重要。 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。鲁棒控制的基本特征是用一个结构和参数都固定不变的控制器,来保证即使不确定性对系统的性能品质影响最恶劣的时候也能满足设计要求.不确定性可分为两大类,不确定的外部干扰和系统的模型误差,其中,模型误差受系统本身状态激励,同时又反过来作用于系统的动态。由于工况变动、外部干扰以及建模误差的缘故,而系统的各种故障也将导致模型的不确定性,实际工业过程的精确模型很难得到,在设计鲁棒控制器时,所有的不确定性可以是不可量测的,但是必须属于某个可描述集.鲁棒控制器就是基于标称系统数学模型和不确定的描述参数来设计的.因此可以说模型的不确定性在控制系统中广泛存在。如何设计一个固定的控制器,使具有不确定性的对象满足控制品质,也就是鲁棒控制,成为了国内外科研人员热衷的研究课题。 2. 发展与研究现状 μ方法。1981年Zames首次提出了著名的鲁棒控制理论发展的最突出标志是H∞和 H∞控制思想。Zames考虑了这样一个单输入、单输出系统的设计问题,即对于属于一个有限能量集的干扰信号,设计一个控制器使得闭环系统稳定且干扰对系统期望输出影响最小。由于传递函数H∞的范数可以描述有限能量到输出能量的最大增益,所以表示上述影响的传递函数H∞范数作为目标函数对系统进行优化设计,这就可使具有有限功率谱的干扰对系统期望输出的影响最小。 目前线性系统的鲁棒控制理论主要集中在进一步寻求行之有效的解法,从而使控制系统设计更加精确,更加实用,更加符合实际的需要,并将所得理论和方法进一步向Lurie系统、线性跳跃系统和关联系统扩展 3. 改进方法 变结构控制,其基本思想是在误差系统的状态空间中,寻找一个合适的超平面,以该超平面为基准不断切换控制器的结构,并保证超平面内所有的状态轨迹都收敛于零.这样,控制系统的行为就完全由滑模表面的特性所确定,而与系统本身的行为无关,因而变结构控制对于外界的干扰和模型误差是不敏感的,具有很强的鲁棒性能。由于变结构控制本身的不连续性,容易引起“抖振”现象,它轻则会引起执行部件的机械磨损,重则会激励未建模的高频动态响应。利用变结构的思想强迫状态轨迹趋于边界层,而在时变的边界层内,保持控制的平滑。这实际上达到了控制带宽和控制精度的最优折衷,这样就消除了控制的“抖振”,增加了系统对未建模动力学的不敏感性, 鲁棒自适应控制方法结合了自适应与鲁棒控制方法两者的优点在抗千扰能力以及克服“抖振”现象等方面都要比单独的自适应控制方法和变结构控制方法强,自适应控制律的鲁棒性增强方法

对鲁棒控制的认识

对鲁棒控制的认识 赵呈涛 专业: 学号: 092030071 姓名:

鲁棒控制( RobustControl )方面的研究始于 20 世纪 50 年代。在过去的 20 年 中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统 在一定(结构、大小)的参数摄动下,维持某些性能的特性。根据对性能的不同 定义,可分为稳定鲁棒性和性能鲁棒性。如果所关心的是系统的稳定性,那么就称 该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的 品质,那么就称该系统具有鲁棒性能。以闭环系统的鲁棒性作为目标设计得到的固 定控制器称为鲁棒控制器。 定性,具有代表性的是 Zames 提出的微分灵敏度分析。然而,实际工业过程中故 障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动,因此产生了 以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。 控制是一个着重控制算法可靠性研究的控制器设计方法, 际环境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制 器,它的参数不能改变而且控制性能能够保证。 鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息 和它的变 化范围 , 一些算法不需要精确的过程模型,但需要一些离线辨识。鲁棒 控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析 及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系 统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模 型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满 足期望的性能要求。主要的鲁棒控制理论有: 1) Kharitonov 区间理论; 2) H 控制理论; 3)结构奇异值理论 理论。 面就这三种理论做简单的介绍。 1 Kharitonov 区间理论 1.1 参数不确定性系统的研究概况 对参数不确定性系统的研究源于20世纪20年代。Black 采用大回路增益的反馈控制 技术来抑制真空管放大器中存在的严重不确定性, 由于采用大回路增益 , 所以设计的系 统常常不稳定;1932年,Nyquist 给出了判断系统稳定性的频域判据,在控制系统设计时, 用来在系统稳定性和回路增益之间进行折衷;1945年,Bode 首次提出灵敏度函数的概念, 对系统的参数不确定性进行定量的描述。 在此基础上 ,Horowitz 在1962年提出一种参数 不灵敏系统的频域设计方法, 此后, 基于灵敏度分析的方法成为控制理论中对付系统参 数不确定性的主要工具。不过 , 这种方法是基于无穷小分析的 , 在实际系统的设计中并 不总是能收到良好效果。因为系统的参数不确定性通并不能看作无穷小扰动;另外 灵敏度分析法一般要求知道对象的标称值 , 这在实际中往往也难以做到。于是 , 人们开 始研究用有界扰动来刻画参数的不确定性 , 出现了鲁棒辨识方法。 此法给出的辨识结果 不是一个确定值 , 而是参数空间中的一个域 (如超矩形、凸多面体、椭球等 )。相应地 , 鲁棒控制的早期研究,主要针对单变量系统( SISO )的在微小摄动下的不确 现代鲁棒 其设计目标是找到在实

自适应控制论文综述

自适应控制系统综述 摘要: 本文首先介绍了自动控制的基本理论及其发展阶段,然后提出自适应控制系统,详细介绍了自适应控制系统的特点。最后描述的是自适应控在神经网络的应用和存在的问题。 关键字:自适应控制神经网络 一、引言 1.1控制系统的定义 自动控制原理是指在没有人直接参与的情况下,利用外加的设备或装置,使机器,设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。 在不同的控制系统中,可能具有各种不同的系统结构、被控对象,并且其复杂程度和环境条件也会各不相同,但他们都具有同样的控制目地:都是为了使系统的状态或者运动轨迹符合某一个预定的功能性能要求。其中,被控对象的运动状态或者运动轨迹称为被控过程。被控过程不仅与被控系统本身有关,还与对象所处的环境有关。控制理论中将控制系统定义为由被控系统及其控制器组成的整体成为控制系统。 1.2控制理论的发展阶段 控制理论发展主要分为三个阶段: 一:20世纪40年代末-50年代的经典控制理论时期,着重解决单输入单输出系统的控制问题,主要数学工具是微分方程、拉氏变换、传递函数;主要方法是时域法、频域法、根轨迹法;主要问题是系统的稳、准、快。 二:20世纪60年代的现代控制理论时期,着重解决多输入多输出系统的控制问题,主要数学工具是以此为峰方程组、矩阵论、状态空间法主要方法是变分法、极大值原理、动态规划理论;重点是最优控制、随即控制、自适应控制;核心控制装置是电子计算机。 三:20世纪70年代之后的先进控制理时期,先进控制理论是现代控

制理论的发展和延伸。先进控制理论内容丰富、涵盖面最广,包括自适应控制、鲁棒控制、模糊控制、人工神经网络控制等。 二、自适应控制系统 2.1自适应控制的简介 在反馈控制和最优控制中,都假定被控对象或过程的数学模型是已知的,并且具有线性定常的特性。实际上在许多工程中,被控对象或过程的数学模型事先是难以确定的,即使在某一条件下被确定了的数学模型,在工况和条件改变了以后,其动态参数乃至于模型的结构仍然经常发生变化。 在发生这些问题时,常规控制器不可能得到很好的控制品质。为此,需要设计一种特殊的控制系统,它能够自动地补偿在模型阶次、参数和输入信号方面非预知的变化,这就是自适应控制。 自适应控制的研究对象是具有一定程度不确定性的系统,这里所谓的“不确定性”是指描述被控对象及其环境的数学模型不是完全确定的,其中包含一些未知因素和随机因素。 任何一个实际系统都具有不同程度的不确定性,这些不确定性有时表现在系统内部,有时表现在系统的外部。从系统内部来讲,描述被控对象的数学模型的结构和参数,设计者事先并不一定能准确知道。作为外部环境对系统的影响,可以等效地用许多扰动来表示。这些扰动通常是不可预测的。此外,还有一些测量时产生的不确定因素进入系统。面对这些客观存在的各式各样的不确定性,如何设计适当的控制作用,使得某一指定的性能指标达到并保持最优或者近似最优,这就是自适应控制所要研究解决的问题。 自适应控制和常规的反馈控制和最优控制一样,也是一种基于数学模型的控制方法,所不同的只是自适应控制所依据的关于模型和扰动的先验知识比较少,需要在系统的运行过程中去不断提取有关模型的信息,使模型逐步完善。具体地说,可以依据对象的输入输出数据,不断地辨识模型参数,这个过程称为系统的在线辩识。随着生产过程的不断进行,通过在线辩识,模型会变得越来越准确,越来越接近于实际。既然模型在不断的改进,显然,基于这种模型综合出来的控制作用也将随之不断的改进。在这个意义下,控制系统具有一定的适应能力。比如说,当系统在设计阶段,由于对象特性的初始信息比较缺乏,系统在刚开始投入运行时可能性能不理想,但是只要经过一段时间的运行,通过在线辩识和控制以后,控制系

鲁棒控制讲义-第1-2章

第一章概述 §1.1 不确定系统和鲁棒控制(Uncertain System and Robust Control) 1.1.1 名义系统和实际系统(nominal system) 控制系统设计过程中,常常要先获得被控制对象的数学模型。在建立数学模型的过程中,往往要忽略许多因素:比如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中,不考虑高阶模态的影响,等等。这样处理后得到的数学模型仍嫌太复杂,于是要经过降阶处理,有时还要把非线性环节进行线性化处理,时变参数进行定常化处理,最后得到一个适合控制系统设计使用的数学模型。经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似,因此称这样的数学模型为“名义系统”,而称真实的物理系统为“实际系统”,而名义系统与实际系统的差别称为模型误差。 1.1.2不确定性和摄动(Uncertainty and Perturbation) 如立足于名义系统,可认为名义系统经摄动后,变成实际系统,这时模型误差可视为对名义系统的摄动。如果立足于实际系统,那么可视实际系统由两部分组成:即已知的模型和未知的模型(模型误差),如果模型的未知部分并非完全不知道,而是不确切地知道,比如只知道某种形式的界限(如:范数或模界限等),则称这部分模型为实际模型的不确定部分,也说实际系统中存在着不确定性,称含有不确定部分的系统为不确定系统。模型不确定性包括:参数、结构及干扰不确定性等。 1.1.3 不确定系统的控制 经典的控制系统设计方法要求有一个确定的数学模型(可能是常规的,也可能是统计的)。以往,由于对一般的控制系统要求不太高,所以系统中普遍存在的不确定性问题往往被忽略。事实上,对许多要求不高的系统,在名义系统的基础上进行分析与设计已经能够满足工程要求,而对一些精度和可靠性要求较高的系统,也只是在名义系统基础上进行分析和设计,然后考虑模型的误差,用仿真的方法来检验实际系统的性能(如稳定性、暂态性能等)。例如早期导弹控制系统设计时就是这样:首先按名义模型设计一个控制系统,然后反复调整设计参数,这样的结果是浪费了大量的人力物力;一种导弹从设计到定型要反复计算数百条弹道,对大小回路控制器参数要进行数十次调整,还要经过反复试射,这类参数的调整往往没有一个理论可以遵循,而依据设计者的经验。

鲁棒控制及其应用

鲁棒控制及其应用 沈阳电力高等专科学校杨庆柏 刊载于《中国仪电报》2000年第11期(总第703期) Robust Control翻译为鲁棒控制。 1.鲁棒性 所谓控制系统具有鲁棒性,指的是当系统数学模型存在不确定性时,控制系统仍能保持其稳定性(鲁棒稳定性)和控制性能(鲁棒性能)。系统数学模型的不确定性主要指的是:模型的不精确性;降阶近似;非线性线性化带来的误差;系统参数和特性随时间的变化或漂移。鲁棒稳定性指系统在某种扰动下保持稳定性的能力;鲁棒性能指保持某项品质指标的能力。 经典控制理论中有关系统相对稳定性的指标,反映了要求系统具有一定稳定裕量,因而能使系统在内部参数变化或外界环境条件变化的情况下保持稳定性。所以,在某种意义上是间接反映鲁棒性要求的一种指标。 2.鲁棒控制的产生 20世纪初,控制系统设计方法主要是基于伯德图和奈奎斯特图,利用间接的方法处理系统不确定性问题,发展了在增益和相位存在变化时仍能保证闭环系统稳定的增益裕度和相位裕度概念。然而,遗憾

的是,这些处理方法大多局限于单变量输入单变量输出系统。随着时间的推移,科学技术的发展,要求处理大量的多变量输入多变量输出系统的设计问题,以二次型最优控制为代表的一类多变量控制系统设计和最优化方法应运而生。但是,随着其在实际工程中的应用,发现基于LQ(linear Quadratic,线性二次型)理论设计出来的控制器对系统不确定性因素反应较为敏感。也就是说,不能保证闭环系统具有一定的稳定性和性能的鲁棒性,而且控制器设计过程要求准确知道干扰过程的全部统计特性,这一要求使该理论的工程应用受到工程实际条件的某些限制。另外,在实际工程应用过程中很难得到被控对象的精确数学模型,在控制系统设计过程中所采用的模型,常常是在一定程度上经过近似化处理的数学模型,这种数学模型的不确定性,必须在控制系统设计时予以考虑。因此,在控制系统设计中的鲁棒稳定性和在鲁棒稳定性要求的前提条件下的鲁棒性能问题是十分重要的。 一般认为,多变量系统鲁棒控制的研究始于1976年,其研究的重要特点是讨论控制系统在参数有界扰动(而不是无穷小扰动)下系统性能保持的能力。经过20多年的研究和发展,鲁棒控制理论取得了十分丰富的成果。如:内模控制理论、鲁棒控制器、稳定化控制器的Youla参数化、棱边定理、H∞控制理论、结构奇异值理论和方法、同时镇定理论和基于Lyapunov稳定性理论的系统鲁棒性分析和综合方法等。 3.鲁棒控制的应用 鲁棒控制的理论研究十分热烈,也取得了一系列成果,但应用到

第二章 鲁棒控制理论概述剖析

第二章鲁棒控制理论概述 2.1鲁棒控制理论概述 2.1.1 系统不确定性和鲁棒性 控制科学所要解决的主要问题之一是针对被控对象,设计合适的控制器,使闭环系统稳定或达到一定的性能指标要求。它经历了经典控制理论和现代控制理论两个发展阶段。无论是经典控制理论还是现代控制理论,它们的一个明显的特点是建立在精确的数学模型基础之上。但是,在实际应用中存在着许多不确定性,具体体现在: (1)参数的测量误差。由于测量技术的限制,许多参数的测量值可能有相当大的误差。尤其是某些涉及热力学、流体力学和空气动力学,以及化学反应过程的参数,往往很不容易测准,或者需要付出昂贵的代价才能测准; (2)环境和运行条件的变化。这往往是不确定性产生的最重要的原因。例如,内部元器件的老化;电气设备的电阻因温升而改变;炼钢炉因炉壁渐渐被钢水腐蚀变薄而导致导热系统的变化;飞机和导弹在高空或低空以高速或低速飞行时其空气动力学参数的变化非常剧烈,甚至由于燃料消耗造成导弹质量的变化和质心的位移,这些都会造成其参数较大的变化;(3)人为的简化。为了便于研究和设计,人们往往有意略去系统中一些次要因素,用低阶的线性定常集中参数模型来代替实际的高阶、非线性甚至是时变和分布参数的系统,这样势必要引入系统模型的不确定性。因此,在控制系统的设计过程中不可避免的问题是:如何设计控制器,使得当一定范围的参数不确定性及一定限度的未建模动态存在时,闭环系统仍能保持稳定并保证一定的动态性能,这样的系统被称为具有鲁棒性。 2.1.2鲁棒控制理论的发展概况 鲁棒控制理论正是研究系统存在不确定性时如何设计控制器使闭环系统稳定且满足一定的动态性能。自从1972年鲁棒控制(Robust Contr01)这一术语首次在期刊论文中出现以来,已有大量的书籍详细的阐述了鲁棒控制理论的产生、发展及研究现状。鲁棒控制的早期研究常只限于微摄动的不确定性,都是一种无穷小分析的思想。1972年鲁棒控制(Robust Control)这一术语首次在期刊论文中出现。经过三十多年的研究,鲁棒控制理论已比较成熟,在时域和频域都取得了令人瞩目的成就,其代表性的研究方法有多项式代数方法以Kharitonov定理为代表的多项式代数方法,为参数不确定系统的鲁棒控制研究提供了强有力的理论方法,但由于本身理论的局限性,此方法基本上只能局限于多项式空间和对系统鲁棒稳定性的分析,对参数不确定系统的鲁棒镇定问题,一直没有什么满意的结果。如何将现有方法应用到 控制理论的提出具有很强的工程应用背景。μ控制工程实践,仍有许多问题需要解决。H ∞ 控制理论的基干扰信号属于某一有限能量信号集情况下,用其相应的灵敏度函数标,从而将干扰问题化为求解使闭环系统稳定,并使相应的如范数馈控制问题。比设计方法虽然将鲁棒性直接反映在系统的设计指标映在相应的加权函数上,但它“最坏情况”下的控制却导致了

鲁棒控制及其发展概述

鲁棒控制及其发展概述 摘要 本文首先介绍了鲁棒控制理论的发展过程;接下来主要介绍了研究鲁棒多变量控制过程中两种常用的分析方法:方法以及分析方法;最后给出了鲁棒控制理论的应用及其控制方法,不仅仅用在工业控制中,它被广泛运用在经济控制、社会管理等很多领域。随着人们对于控制效果要求的不断提高,系统的鲁棒性会越来越多地被人们所重视,从而使这一理论得到更快的发展。并且指出了目前鲁棒控制尚未解决的问题以及研究的热点问题。 关键词:鲁棒控制;鲁棒多变量控制;鲁棒控制;分析方法 一、引言 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。控制系统的鲁棒性研究是现代控制理论研究中一个非常活跃的领域,鲁棒控制问题最早出现在上个世纪人们对于微分方程的研究中。 最早给出鲁棒控制问题的解的是Black在1927年给出的关于真空开关放大器的设计,他首次提出采用反馈设计和回路高增益的方法来处理振控管特信各大范围波动。之后,Nyquist频域稳定性准则和Black回路高增益概念共同构成了Bode的经典之著[1]中关于鲁棒控制设计的基础。20世纪60年代之前这段时间可称为经典灵敏度设计时

期。此间问题多集中于SISO系统,根据稳定性、灵敏度的降低和噪声等性能准则来进行回路设计。 20世纪六七十年代中鲁棒控制只是将SISO系统的灵敏度分析结果向MIMO进行了初步的推广[2],灵敏度设计问题包括跟踪灵敏度、性能灵敏度和特征值/特征向量灵敏度等的设计。 20世纪80年代,鲁棒设计进入了新的发展时期,此间研究的目的是寻求适应大范围不确定性分析的理论和方法。 二、正文 1. 鲁棒控制理论 方法在工程中应用最多,它以输出灵敏度函数的范数作为性能指标,旨在可能发生“最坏扰动”的情况下,使系统的误差在无穷范数意义下达到极小,从而将干扰问题转化为求解使闭环系统稳定并使相应的范数指标极小化的输出反馈控制问题。 鲁棒控制理论是在空间(即Hardy 空间)通过某些性能指标 的无穷范数优化而获得具有鲁棒性能的控制器的一种控制理论。空间是在开右半平面解析且有界的矩阵函数空间,其范数定义为: (1) 即矩阵函数在开右半平面的最大奇异值的上界。范数的物理意义是指系统获得的最大能量增益[3]。 鲁棒控制理论的实质是为MIMO(多输入多输出)且具有模型

鲁棒控制简介

当今的自动控制技术都是基于反馈的思想。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。 这个理论应用于自动控制的关键是,做出正确的测量和比较后,如何利用误差才能更好地纠正系统(即控制器的设计)。 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。 由于工作状况变动、外部干扰以及建模误差的缘故,实际工业过程的精确模型很难得到,而系统的各种故障也将导致模型的不确定性,因此可以说模型的不确定性在控制系统中广泛存在。如何设计一个固定的控制器,使具有不确定性的对象满足控制品质,也就是鲁棒控制,成为国内外科研人员的研究课题。 主要的鲁棒控制理论有:(1)Kharitonov区间理论;(2)H∞控制理论(IMPORTANT);(3)结构奇异值理论(μ理论)等等。 H∞控制理论 H∞控制理论是20世纪80年代开始兴起的一门新的现代控制理论。H∞控制理论是为了改变近代控制理论过于数学化的倾向以适应工程实际的需要而诞生的,其设计思想的真髓是对系统的频域特性进行整形(Loopshaping),而这种通过调整系统频率域特性来获得预期特性的方法,正是工程技术人员所熟悉的技术手段,也是经典控制理论的根本。 1981年Zames首次用明确的数学语言描述了H∞优化控制理论,他提出用传递函数阵的H∞范数来记述优化指标。1984年加拿大学者Fracis和Zames用古典的函数插值理论提出了H∞设计问题的最初解法,同时基于算子理论等现代数学工具,这种解法很快被推广到一般的多变量系统,而英国学者Glover则将H∞设计问题归纳为函数逼近问题,并用Hankel算子理论给出这个问题的解析解。Glover 的解法被Doyle在状态空间上进行了整理并归纳为H∞控制问题,至此H∞控制理论体系已初步形成。 在这一阶段提出了H∞设计问题的解法,所用的数学工具非常繁琐,并不像问题本身那样具有明确的工程意义。直到1988年Doyle等人在全美控制年会上发表了著名的DGKF论文,证明了H∞设计问题的解可以通过适当的代数Riccati方程得到。DGKF的论文标志着H∞控制理论的成熟。迄今为止,H∞设计方法主要是DGKF等人的解法。不仅如此,这些设计理论的开发者还同美国的The Math Works公司合作,开发了MA TLAB中鲁棒控制软件工具箱(Robust Control Toolbox),使H∞控制理论真正成为实用的工程设计理论。 研究——现代鲁棒控制(有界摄动) 鲁棒控制的早期研究,主要针对单变量系统(SISO)的在微小摄动下的不确定性,具有代表性的是Zames提出的微分灵敏度分析。然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动。因此产生了以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。 现代鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法。其设计目

鲁棒控制大作业

一、鲁棒控制概述 鲁棒控制(Robust Control )的研究始于20 世纪50 年代。所谓“鲁棒性” ,是指控制系统在一定的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可以分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器成为鲁棒控制器。 由于工作情况变动、外部干扰以及建模误差的缘故,实际工业过程的精确模型很难得到,而系统的各种故障也将导致模型的不确定性,因此可以说模型的不确定性在控制系统中广泛存在。如何设计一个固定的控制器,使具有不确定性的对象满足控制品质,也就是鲁棒控制,成为国内科研人员的研究课题。 鲁棒控制的早期研究,主要针对单变量系统(SISO在微小摄动下的不确定性,具有代表性的是Zames提出的微分灵敏度分析。然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界扰动而不是无穷小摄动。因此产生了以讨论参数在有机摄动下系统性能保持和控制为内容的现代鲁棒控制。 现代鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法。其设计目标是找到在实际环境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制器,它的参数不能改变而且控制性能能够保证。主要的鲁棒控制理论有:(1)Kharitonov 区间理论;(2)H控制理论;(3)结构奇异值理论(卩理论)等等。 二、H鲁棒控制理论 H 鲁棒控制理论是在H 空间(即Hardy 空间),通过某些性能指标的无穷范数优化而获得具有鲁棒性能的控制器的一种控制理论。它的基本思想是:当利用研究对象的数学模型G 来设计控制器时由于参数的不确定性与变化性以及人们为了便于设计与计算往往把对象的模型简化使得对象的数学模型G 存在误差 G。H控制的目的为:当存在模型误差G时如何利用名义模型G来设计控制 器K,使得K在稳定被控对象的同时使某一目标函数S的H范数最小。 H 控制方法引入输出灵敏度函数作为系统评价的指标,主要考虑了这样的一个设计问题,即要求设计一个控制器,不但使得闭环系统稳定,而且在可能发生“最坏扰动”的情况下,使系统误差在无穷范数意义下达到极小,从而将干扰问题转化为求解闭环系统稳定的问题。传递函数的H 范数描述了输入有限能量到输出能量的最大增益,如果能使其达到最小,那么干扰对系统误差的影响将会降到最低程度。许多实际的控制问题,如灵敏度极小化问题、鲁棒稳定问题、混合灵敏度优化问题、跟踪问题、模型匹配问题等,都可以归结为标准H 控制问题来研究。 H 标准控制问题如图1 所示

相关文档
最新文档