支架基础计算

支架基础计算
支架基础计算

γ0*S≤R

γ0:结构重要性系数,取1.0

S:荷载效应组合的设计值,本工程中为风荷载

R:结构构件抗力的设计值,本工程中为光伏组件及支架自重、支架基础

W:风荷载设计值(KN)

γQ:风荷载的分项系数

W QK:风荷载标准值

根据荷载规范的规定,风荷载的分项系数取1.4

W QK—风荷载标准值(kN/m2)

βgz—高度z 处的阵风系数;

μsl—局部风压体形系数;

μz—风压高度变化系数;

Wo—基本风压(kN/㎡)

根据荷载规范7.5.1,βgz阵风系数的取值按下表

本工程中地面粗糙程度为C类,离地面高度平均为12米,βgz阵风系数为2.0。根据荷载规范7.3.3,μsl局部风压体形系数的取值为2.2

根据荷载规范表3:μz风压高度变化系数取值为0.74

本工程风荷载标准值按50年一遇采用,根据荷载规范附表D.4,风荷载标准值为0.45KN/m2

光伏电池及支架自重的计算

光伏支架采用成品,根据太阳电池组件的资料,电池及支架的荷载为

0.175 KN/m2

根据荷载规范,当其效应对结构有利时,永久荷载的分项系数1

因本工程采用基础配重抵抗风荷载的方式,所以每平方米光伏电池需要的

A:每平方米需要的基础体积

光伏支架载荷计算

支架强度计算 支架是安装从下端到上端高度为4m以下的太阳能电池阵列时使用计算因从支架前面吹来(顺风)的风压及从支架后面吹来(逆风)的风压引起的材料的弯曲强度和弯曲量,支撑臂的压曲(压缩)以及拉伸强度,安装螺栓的强度等,并确认强度。 (1)结构材料 选取支架材料,确定截面二次力矩I M和截面系数Z。 (2)假象载荷 1)固定荷重(G) 组件质量(包括边框)G M +框架自重G KI+其他G K2 固定载荷G=G M+G KI + G K2 2)风压荷重(W) (加在组件上的风压力(W M)和加在支撑物上的风压力(W K)的总和) 2 X C X V O X S)X a x I x J W=1/2 X( C w 3)积雪载荷(S)。与组件面垂直的积雪荷重。 4)地震载荷(K)。加在支撑物上的水平地震力 5)总荷重(W)正压:5) =1) +2) +3) +4)

负压:5) =1) -2) +3) +4) 载荷的条件和组合 (3)悬空横梁模型 (4)A-B间的弯曲应力 顺风时A-B点上发生的弯曲力矩: M i=WL 勺8应力(T i二M/Z (5)A-B间的弯曲 (6)B-C间的弯曲应力和弯曲形变 (7)C-D间的弯曲应力和弯曲形变 (8)支撑臂的压曲 (9)支撑臂的拉伸强度

(10)安装螺栓的强度

基础稳定性计算 1、风压载荷的计算 2、作用于基础的反作用力的计算 3、基础稳定性计算 当受到强风时,对于构造物基础要考虑以下问题: ①受横向风的影响,基础滑动或者跌倒 ②地基下沉(垂直力超过垂直支撑力) ③基础本身被破坏 ④吹进电池板背面的风使构造物浮起 ⑤吹过电池板下侧的风产生旋涡,引起气压变化,使电池板向地面吸引 对于③?⑤须采用流体解析等方法才能详细研究。研究风向只考虑危险侧的逆风状态 以下所示为各种稳定条件: a.对滑动的稳定 平时:安全率Fs> 1.5 ;地震及暴风时:安全率Fs > 1.2 b.对跌倒的稳定 平时:合力作用位置在底盘的中央1/3以内时 地震及暴风时:合力作用位置在底盘的中央2/3以内时 c.对垂直支撑力的稳定

光伏支架类型及常见问题

光伏支架类型及常见问题 光伏支架作为光伏电站重要的组成部分,它承载着光伏电站的发电主体。支架的选择直接影响着光伏组件的运行安全、破损率及建设投资,选择合适的光伏支架不但能降低工程造价,也会减少后期养护成本。 一、光伏支架类型 1、根据材料分类 根据光伏支架主要受力杆件所采用材料的不同,可将其分为铝合金支架、钢支架以及非金属支架,其中非金属支架使用较少,而铝合金支架和钢支架各有特点。

2、根据安装方式分类 二、固定式光伏支架介绍 光伏阵列不随太阳入射角变化而转动,以固定的方式接收太阳辐射。根据倾角设定情况可以分为:最佳倾角固定式、斜屋面固定式和倾角可调固定式。 1、最佳倾角固定式 先计算出当地最佳安装倾角,而后全部阵列采用该倾角固定安装,目前在平顶屋面电站和地面电站广泛使用。

1)平顶屋面-混凝土基础支架 平顶屋面混凝土基础支架是目前平屋面电站中最常用的安装形式,根据基础的形式可以分为条形基础和独立基础;支架支撑柱与基础的连接方式可以通过地脚螺栓连接或者直接将支撑柱嵌入混凝土基础。 平顶屋面条形混凝土基础支架 a.地脚螺栓连接 b. 直接嵌入基础 平顶屋面独立混凝土基础支架 平顶屋面混凝土基础支架安装方式优点为抗风能力好,可靠性强,不破坏屋面防水结构;缺点为需要先制作好混凝土基础,并养护到足够强度才能进行后续支架安装,施工周期较长。

2)平顶屋面-混凝土压载支架 混凝土压载支架施工方式简单,可在制作配重块时同时进行支架安装,节省施工时间,但其抗风能力相对较差,设计配重块重量时需要充分考虑到当地最大风力。 平顶屋面混凝土压载支架 3)地面电站-混凝土基础支架 地面电站混凝土基础支架多种多样,根据不用的项目地质情况,可选择对应的安装方式,以下主要介绍现浇钢筋混凝土基础、独立及条形混凝土基础、预制混凝土空心柱基础等几种最常见的混凝土基础安装形式。 现浇钢筋混凝土基础 根据基础形式不同,现浇钢筋混凝土基础可分为现浇混凝土桩和浇注锚杆。施工工艺都是先开孔,然后放入钢筋和混凝土,经养护凝固后与支架连接。其中现浇混凝土桩基础可以通过埋设地脚螺栓与支架支撑柱连接,可以直接将支撑柱嵌入混凝土,浇注锚杆基础不需成桩。现浇钢筋混凝土基础开挖土方量少,混凝土钢筋用量小,造价较低、施工速度快。但施工易受季节和天气等环境因素限制,施工要求高,一旦做好后无法再调节。 a.直接嵌入基础 b.地脚螺栓连接 c.浇注锚杆 现浇钢筋混凝土基础

屋顶光伏电站支架强度及屋面载荷计算

屋顶光伏电站支架强度及屋面载荷计算 1 工程概况 项目名称:江苏省*****中心小学49KW光伏屋顶 工程地址:江苏省*** 设计单位:上海能恩太阳能应用技术有限公司 建设单位:******有限公司 结构形式:屋面钢结构光伏支架 支架高度:0、3m 2 参考规范 《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2001(2006年版) 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板与钢带》GB/T3280—2007 3设计条件: 太阳能板规格:1650mm*990mm*50mm 混凝土屋顶太阳能板安装数量:200块 最大风速:27、5m/s 平坦开阔地域 太阳能板重量:20kg 安装条件:屋顶 计算标准:日本TRC 0006-1997 设计产品年限:20年 4型材强度计算 4、1 屋顶荷载得确定 (1)设计取值: ①假设为一般地方中最大得荷重,采用固定荷重G与暴风雨产生得风压荷重W 得短期复合荷重。 ②根据气象资料,扬中最大风速为27、5m/s,本计算最大风速设定为:30m/s。 ③对于混凝土屋面,采用最佳倾角安装得系统,需要考虑足够得配重,确保组件方阵得稳定可靠。 ④屋面高度20m。 4、2 结构材料: C型钢重量:1、8kg/m

截面面支架尺寸(mm) 41*41*2 安装角度 25° 材料镀锌 截面面积(A) 277 形心主轴到腹板边缘得距离 1、4516E+01 形心主轴到翼缘尖得距离 2、6484E+01 惯性矩 Ix 8、3731E+04 惯性矩 Iy 4、5694E+04 回转半径 ix 1、7386E+01 回转半径 iy 1、2844E+01 截面抵抗矩 Wx 4、0844E+03 截面抵抗矩 Wx 4、0844E+03 截面抵抗矩 Wy 3、1478E+03

管道支吊架设计及计算

浅谈管道门字型支吊架的设计及计算 【文 摘】 用来支撑管道的结构叫管道支吊架,管道在敷设时都必须对管子进 行固定或支承,固定或支承管子的构件是支吊架。在机电工程里,管道支架是分布广、数量大、种类繁多的安装工事,同时管道支吊架的设计和安装对管道及其附件施工质量的好坏取决定性作用。如何采用安全适用、经济合理、整齐美观的管道支吊架是机电安装工程的一个重点。 【关键词】 管道布置 管道跨距 管架分析 管架内力计算 一、 管道的布置 对管道进行合理的深化和布置是管道支吊架设计的前提条件。欲设计安全使用、经济合理、整洁美观的管道支吊架,首先需对管道进行合理的布置,其布置不得不考虑以下参数: 1. 管道布置设计应符合各种工艺管道及系统流程的要求; 2. 管道布置应统筹规划,做到安全可靠、经济合理、满足施工、操作、维 修等方面的要求,并力求整齐美观; 3. 在确定进出装置(单元)的管道的方位与敷设方式时,应做到内外协调; 4. 管道宜集中成排布置,成排管道之间的净距(保温管为保温之间净距) 不应小于50mm 。 5. 输送介质对距离、角度、高差等有特殊要求的管道以及大直径管道的布 置,应符合设备布置设计的要求,并力求短而直,切勿交叉; 6. 地上的管道宜敷设在管架或管墩上,在管架、管墩上布置管道时,宜使 管架或管墩所受的垂直荷载、水平荷载均衡; 7. 管道布置应使管道系统具有必要的柔性,在保证管道柔性及管道对设备、 机泵管口作用力和力矩不超出过允许值的惰况下,应使管道最短,组成件最少; 8. 应在管道规划的同时考虑其支承点设置,并尽量将管道布置在距可靠支 撑点最近处,但管道外表面距建筑物的最小净距不应小于100mm ,同时应尽量考虑利用管道的自然形状达到自行补偿; 9. 管道布置宜做到“步步高”或“步步低”,减少气袋或液袋。不可避免 时应根据操作、检修要求设置放空、放净。 二、 管架跨距 管架的跨距的大小直接决定着管架的数量。跨距太小造成管架过密,管架数量增多,费用增高,故需在保证管道安全和正常运行的前提下,尽可能增大管道的跨距,降低工程费用。但是管架跨距又受管道材质、截面刚度、管道其它作用何载和允许挠度等的影响,不可能无限的扩大。所以设计管道的支吊架应先确定管架的最大跨距,管架的最大允许跨距计算应按强度和刚度两个条件分别计算,取其小值作为推荐的最大允许跨距。 1. 按强度条件计算的管架最大跨距的计算公式: []t W q L δφ124 .2max =

管道支吊架设计及计算

【文 摘】 用来支撑管道的结构叫管道支吊架,管道在敷设时都必须对管子进 行固定或支承,固定或支承管子的构件是支吊架。在机电工程里,管道支架是分布广、数量大、种类繁多的安装工事,同时管道支吊架的设计和安装对管道及其附件施工质量的好坏取决定性作用。如何采用安全适用、经济合理、整齐美观的管道支吊架是机电安装工程的一个重点。 【关键词】 管道布置 管道跨距 管架分析 管架内力计算 一、 管道的布置 对管道进行合理的深化和布置是管道支吊架设计的前提条件。欲设计安全使用、经济合理、整洁美观的管道支吊架,首先需对管道进行合理的布置,其布置不得不考虑以下参数: 1. 管道布置设计应符合各种工艺管道及系统流程的要求; 2. 管道布置应统筹规划,做到安全可靠、经济合理、满足施工、操作、维 修等方面的要求,并力求整齐美观; 3. 在确定进出装置(单元)的管道的方位与敷设方式时,应做到内外协调; 4. 管道宜集中成排布置,成排管道之间的净距(保温管为保温之间净距) 不应小于50mm 。 5. 输送介质对距离、角度、高差等有特殊要求的管道以及大直径管道的布 置,应符合设备布置设计的要求,并力求短而直,切勿交叉; 6. 地上的管道宜敷设在管架或管墩上,在管架、管墩上布置管道时,宜使 管架或管墩所受的垂直荷载、水平荷载均衡; 7. 管道布置应使管道系统具有必要的柔性,在保证管道柔性及管道对设备、 机泵管口作用力和力矩不超出过允许值的惰况下,应使管道最短,组成件最少; 8. 应在管道规划的同时考虑其支承点设置,并尽量将管道布置在距可靠支 撑点最近处,但管道外表面距建筑物的最小净距不应小于100mm ,同时应尽量考虑利用管道的自然形状达到自行补偿; 9. 管道布置宜做到“步步高”或“步步低”,减少气袋或液袋。不可避免 时应根据操作、检修要求设置放空、放净。 二、 管架跨距 管架的跨距的大小直接决定着管架的数量。跨距太小造成管架过密,管架数量增多,费用增高,故需在保证管道安全和正常运行的前提下,尽可能增大管道的跨距,降低工程费用。但是管架跨距又受管道材质、截面刚度、管道其它作用何载和允许挠度等的影响,不可能无限的扩大。所以设计管道的支吊架应先确定管架的最大跨距,管架的最大允许跨距计算应按强度和刚度两个条件分别计算,取其小值作为推荐的最大允许跨距。 1. 按强度条件计算的管架最大跨距的计算公式: []t W q L δφ124 .2max = L max ——管架最大允许跨距(m )

光伏支架分类

光伏支架分类 光伏支架作为光伏电站重要的组成部分,它承载着光伏电站的发电主体。支架的选择直接影响着光伏组件的运行安全、破损率及建设投资,选择合适的光伏支架不但能降低工程造价,也会减少后期养护成本。 一、光伏支架类型 1、根据材料分类 根据光伏支架主要受力杆件所采用材料的不同,可将其分为铝合金支架、钢支架以及非金属支架,其中非金属支架使用较少,而铝合金支架和钢支架各有特点。 2、根据安装方式分类 二、固定式光伏支架介绍 光伏阵列不随太阳入射角变化而转动,以固定的方式接收太阳辐射。根据倾角设定情况可以分为:最佳倾角固定式、斜屋面固定式和倾角可调固定式。 1、最佳倾角固定式 先计算出当地最佳安装倾角,而后全部阵列采用该倾角固定安装,目前在平顶屋面电站和地面电站广泛使用。

1)平顶屋面-混凝土基础支架 平顶屋面混凝土基础支架是目前平屋面电站中最常用的安装形式,根据基础的形式可以分为条形基础和独立基础;支架支撑柱与基础的连接方式可以通过地脚螺栓连接或者直接将支撑柱嵌入混凝土基础。 优点:抗风能力好,可靠性强,不破坏屋面防水结构。 缺点:需要先制作好混凝土基础,并养护到足够强度才能进行后续支架安装,施工周期较长。 2)平顶屋面-混凝土压载支架

优点:混凝土压载支架施工方式简单,可在制作配重块时同时进行支架安装,节省施工时间。 缺点:混凝土压载支架抗风能力相对较差,设计配重块重量时需要充分考虑到当地最大风力。 3)地面电站-混凝土基础支架 地面电站混凝土基础支架多种多样,根据不用的项目地质情况,可选择对应的安装方式,以下主要介绍现浇钢筋混凝土基础、独立及条形混凝土基础、预制混凝土空心柱基础等几种最常见的混凝土基础安装形式。 现浇钢筋混凝土基础 根据基础形式不同,现浇钢筋混凝土基础可分为现浇混凝土桩和浇注锚杆。

光伏支架技术要求

光伏支架技术要求 支架对于我们来说并不陌生,在生活的每个角落,只要你稍加注意,就会有支架的出现,下面南通正道就详细为你介绍一下光伏支架的几种常见形式。 (1)方阵支架采用固定支架,光伏阵列的最佳倾角为36°,共1429个支架, (2)光伏组件的支撑依据风荷载按照能够抵抗当地50年一遇最大风速进行设计,支架应按承载能力极限状态计算结构和构件的强度、稳定性以及连接强度。 (3)支架设计应考虑在安装组件后,组件最低端离地高度应满足光伏电站设计规范要求,在确保安全的前提下既经济合理,又方便施工。 (4)要充分考虑现场对光伏发电对支架距离地面最小距离的要求,具体数值要经招标人确认。 (5)钢材、钢筋、水泥、砂石料的材质应满足国家标准。 (6)光伏电池组件安装采用压块式固定在组件框架上,为防止腐蚀冷弯薄壁型钢,螺栓、螺母材质为Q235B热浸镀锌,厚度不小于65μm;与冷弯薄壁型钢相联接的所有螺栓也Q235B热浸镀锌;导槽与组件之间的连接螺栓直径为不小于M8。热浸镀锌满足《金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法》GB/T13912-2002中规定,防腐寿命不低于25年,并提供抗腐蚀性测试报告。 (7)光伏组件光伏支架承受的基本风压应不小于0.4kN/m2。 (8)支架冷弯薄壁型钢檩条满足最大变形量不超过L/200,构件的允许应力比不大于0.9。 (9)钢支撑结构系统的变形量应满足《光伏发电站设计规范》 (GB50797-2012)、“钢结构设计规范(GB50017-2003)”和“钢结构工程施工质量验收规范(GB50205-2001)”。 (10)支架系统抗震等级等应满足《光伏发电站设计规范》(GB50797-2012)以及《建筑抗震设计规范》(GB50011-2012)的要求。 (11)支架与支架基础之间采用螺栓连接形式或预埋件焊接形式,安装完成后的防腐处理由投标人负责,连接螺栓的大小由投标人负责设计。 (12)支架应预留汇流箱安装支撑件,汇流箱规格待定(汇流箱不在供货范

光伏支架基础桩基施工方案

第一章编制依据 1.1本工程有关设计参考图纸 1.2本工程地质勘察报告 1.3甲方提供的标高基准点 1.4《地基与基础工程施工及验收规范》(GB502002) 1.5《建筑工程质量检验评定标准》GB/T50221-1995; 1.6《建筑地基基础工程施工质量验收规范》GB50202-2002; 1.7《建筑地基基础设计规范》DB33/1001-2003; 1.8《混凝土结构工程施工质量验收规范》GB50204-2015。 第二章工程概况 2.1地理位置 南召县中机国能电力有限公司太山庙10MWp光伏电站工程位于河南省西南部,伏牛山南麓,南阳盆地北缘,东邻方城,南接南阳市卧龙区、镇平县,北靠鲁山、嵩县,属南阳市。场址中心位于东经112°38′、北纬33°21′,海拔高度197m~226m。东西长约95公里,南北宽约62公里,总面积2946平方公里。 2.2地形条件 南召县地势西北高,东南低,大体分为三个阶梯。秦岭山脉东延形成的伏牛山脉,绵亘于西北部、西南部和北部、东北部,大小群峰300余座。诸山呈弓形自西北向西南和北东北部蜿蜒展开,最高峰石人山海拔2153.1米。海拔在500米~2000米之间,为第一阶梯。中部丘陵起伏,有山地向平原过度,有西北向东南敞开,海拔在200米~500米之间,为第二阶梯。南部衔接南阳盆地,为平原地带,海拔在200米以下,为第三阶梯。全县地势整体轮廓略呈“箕”形。山地面积占34.4%,丘陵面积占62.5%,平原面积占3.1%。 2.3气象条件 南召县位于中国重要地理分界线“秦岭-淮河”线上,南北方交汇区,800毫米等降水线上,湿润带与半湿润带交汇处,属北亚热带季风型大陆性气候,具

光伏支架受力计算书..

支架结构受力计算书 设计:___ ___ _日期:___ 校对:_ 日期:___ 审核:__ _____日期:____ 常州市**实业有限公司

1 工程概况 项目名称: *****30MW 光伏并网发电项目 工程地址: 新疆 建设单位: **集团 结构高度: 电池板边缘离地不小于500mm 2 参考规范 《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2012 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板和钢带》GB/T3280—2007 《光伏发电站设计规范》 GB50797-2012 3 主要材料物理性能 3.1材料自重 铝材——————————————————————327/kN m 钢材————————————————————3/78.5kN m 3.2弹性模量 铝材————————————————————270000/N mm 钢材———————————————————2206000/N mm 3.3设计强度 铝合金 铝合金设计强度[单位:2/N mm ]

钢材 钢材设计强度[单位:2/N mm ] 不锈钢螺栓 不锈钢螺栓连接设计强度[单位:2/N mm ] 普通螺栓 普通螺栓连接设计强度[单位:2/N mm ] 角焊缝 容许拉/剪应力—————————————————2160/N mm 4 结构计算 4.1 光伏组件参数 晶硅组件: 自重PV G :0.196kN (20kg /块) 尺寸(长×宽×厚)992164400mm ?? 安装倾角:37°

消防喷淋系统中的管道支吊架怎么计算的

答案 自动喷水灭火系统施工及验收规范 5.1.8 管道支架、吊架、防晃支架的安装应符合下列要求: 1 管道应固定牢固;管道支架或吊架之间的距离不应大于表5.1.8的规定。检查数量:抽查20%,且不得少于5处。 检查方法:尺量检查。 2 管道支架、吊架、防晃支架的型式、材质、加工尺寸及焊接质量等,应符合设计要求和国家现行有关标准的规定。 3 管道支架、吊架的安装位置不应妨碍喷头的喷水效果;管道支架、吊架与喷头之间的距离不宜小于300mm;与末端喷头之间的距离不宜大于750mm。 检查数量:抽查20%,且不得少于5处。 检查方法:尺量检查。 4 配水支管上每一直管段、相邻两喷头之间的管段设置的吊架均不宜少于1个,吊架的间距不宜大于3.6m。 检查数量:抽查20%,且不得少于5处。 检查方法:观察检查和尺量检查。 5 当管道的公称直径等于或大于50mm时,每段配水干管或配水管设置防晃支架不应少于1个,且防晃支架的间距不宜大于15m;当管道改变方向时,应增设防晃支架。 检查数量:全数检查。 检查方法:观察检查和尺量检查。 6 竖直安装的配水干管除中间用管卡固定外,还应在其始端和终端设防晃支架或采用管卡固定,其安装位置距地面或楼面的距离宜为~1.8m。 检查数量:全数检查。 检查方法:观察检查和尺量检查。 消防管道中,管道支吊架如何计算,单位KG 一根国标3 号角钢每米重量 边厚度3毫米:每米1.737KG 边厚度4毫米:每米 一根国标4 号角钢每米重量 边厚度3毫米:每米 边厚度4毫米:每米

边厚度5毫米:每米 一根国标5 号角钢每米重量边厚度3毫米:每米 边厚度4毫米:每米 边厚度5毫米:每米 边厚度6毫米:每米

(公建屋面)光伏支架计算书

海南恒大海花岛影视基地光伏项目 2#、3#楼 (整体) 计算书 审核: 校核: 编写: 2017年1月22日

目录 1 设计依据 (1) 1.1作用荷载计算过程 (1) 2 计算简图 (2) 3 荷载与组合 (2) 3.1 节点荷载 (3) 3.2 单元荷载 (3) 3.3 其它荷载 (6) 3.4 荷载组合 (7) 4 内力位移计算结果 (7) 4.1 内力 (7) 4.1.1 内力包络及统计 (7) 4.2 位移 (18) 4.2.1 组合位移 (18) 5 设计验算结果 (23) 5.1 设计验算结果图及统计表 (24) 附录 (27) 6.连接螺栓计算 (28) 6.1主梁与横向次梁的连接 (28) 6.2横向次梁与纵向次梁的连接(纵向次梁端) (31) 6.3横向次梁与纵向次梁的连接(横向次梁端) (32) 6.4横向次梁与纵向次梁的连接(连接过渡用钢板) (34) 6.5拉条与横向次梁的连接(横向次梁端) (35)

1 设计依据 《钢结构设计规范》 (GB50017-2003) 《冷弯薄壁型钢结构技术规范》 (GB50018-2002) 《建筑结构荷载规范》 (GB50009-2012) 《建筑抗震设计规范》 (GB50011-2010) 《建筑地基基础设计规范》 (GB50007-2011) 《钢结构焊接规范》 (GB50661-2011) 《钢结构高强度螺栓连接技术规程》 (JGJ82-2011) 1.1作用荷载计算过程 一、与光伏板直接连接横梁所受荷载 1、永久荷载标准值(对水平投影面): 光伏板 2252 0.12630.99100 k g kN m = ≈? 2、可变荷载标准值 (1) 活荷和雪荷载 不考虑。 (2)风荷载 根据招标文件要求,光伏板所受风荷载按围护结构计算, 基本风压按50年一遇(0.80kN/m 2)考虑, 外部局部体型系数按1 2.0s μ=-外考虑。 根据《荷规》8.2.1,地面粗糙度类别为A 类,高度按26.6米考虑 查表8.2.1 ()26.620 1.67 1.52 1.52 1.6193020 z μ-= ?-+≈- 8.3.4 光伏板横梁A=0.87x0.93=0.81m 2<1.0m 2,故1s μ外不折减 8.3.5 开放式,11 2.0s s μμ==-外 查表8.6.1 ()26.620 1.53 1.55 1.55 1.5373020 gz β-= ?-+≈-

固定式光伏支架计算书讲解

固定式光伏组件支架 结 构 计 算 书 2015年11月

目录 1工程概述 (1) 2分析方法与软件 (1) 3设计依据 (1) 4材料及其截面 (1) 5荷载工况与组合 (2) 5.1 荷载工况 (2) 5.1.1 支架所受荷载 (2) 5.2 荷载组合 (2) 6 结构建模 (3) 6.1 模型概况 (3) 6.2 结构计算模型、坐标系及约束关系 (3) 6.3 荷载施加 (4) 7主要计算结果 (5) 7.1 构件应力比 (5) 7.2 构件稳定性校核 (8)

1工程概述 支架共8榀,间距为3m,两端带悬挑0.58mm,总长22.16m,电池板组水平宽度2.708米、斜面长度3.3米,荷载按25年重现期计算,结构重要性系数0.95,项目地点在黑龙江省牡丹江市,结构计算的三维示意如下图1所示。 图1.1 总体结构模型 2分析方法与软件 采用SAP2000 V15钢结构分析软件进行结构计算分析。 3设计依据 1)建筑结构可靠度设计统一标准( GB 50068-2001 ) 2)建筑结构荷载规范( GB 50009-2012) 3)建筑抗震设计规范( GB 50011-2010 4)钢结构设计规范( GB 50017-2003 ) 4材料及其截面 材料材质性能,详见下表4.1。 表4.1 材料性能

5荷载工况与组合 5.1 荷载工况 计算所考虑的荷载有恒载、雪荷载以及风荷载作用(由于本支架比较轻,地震工况与风荷载相比,其远不起控制作用,因此,可不考虑地震工况)。 5.1.1 支架所受荷载 支架受到的荷载主要有支架自重、电池板及安装附件自重、风载、雪载。荷载通过檩条传递到支架柱上,模型按各荷载大小均匀分布到檩条上进行加载。 1)结构构件自重:由计算软件自动考虑。 2)恒荷载(太阳能电池板等安装组件):0.15 kN/㎡(包括各种连接件)。 组件总重:W组件=150*22.16*3.3=10969.2N 檩条线荷载:q组件= W组件/(4*22.16)=123.8 N/m 3)雪荷载: 雪荷载由四根檩条承受,按线均布荷载计: 按下面公式计算: S k=μr s0=0.7*0.639=0.4473kN/m2 注:a)电池板安装角度为35度,μr取0.7 。 b)s0为25年重现期雪压值(根据牡丹江市10年和100年雪压值,按公式 E.3.4(GB50009-2012)求得) 雪压总重:W雪=447.3*22.16*2.708=26842N 檩条线荷载:q雪= W雪/(4*22.16)=302.8 N/m 4)风荷载: 电池板安装后35度斜角,风载体型系数取1.3。 按下面公式计算基本风压: ωk=βz*μs*μz*ω0 =1*1.3*1*0.43=0.559 kN/m2 其中:①、地面粗糙度为B类,安装高度小于10米,μz取1。βz取1。 ②ω0(等于0.43 kN/m2)为25年重现期风压值(根据牡丹江市10年和100年雪压值,按公式E.3.4(GB50009-2012)求得) 风压总重:W风=559*22.16*3.3=40878.6N 檩条线荷载:q风= W风/(4*22.16)=461.2 N/m 5.2 荷载组合 计算过程考虑了如下组合: (1)1.35恒载+1.4*0.7雪载 (2)1.2恒载+1.4雪载

光伏支架受力计算书.doc

支架结构受力计算书 设计: ___ ___ _日期: ___ 校对: _ 日期: ___ 审核: __ _____ 日期: ____ 常州市 ** 实业有限公司

1工程概况 项目名称:工程地址:建设单位:结构高度:*****30MW 光伏并网发电项目 新疆 ** 集团 电池板边缘离地不小于500mm 2参考规范 《建筑结构可靠度设计统一标准》 GB50068— 2001 《建筑结构荷载规范》 GB50009—2012 《建筑抗震 设计规范》 GB50011—2010 《钢结构设计规范》 GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板和钢带》GB/T3280— 2007 《光伏发电站设计规范》GB50797-2012 3主要材料物理性能 材料自重 铝材—————————————————————— 27 kN / m 3钢材———————————————————— 78.5 kN / m 3 弹性模量 铝材————————————————————70000 N / mm 2 钢材———————————————————206000 N / mm 2 设计强度 铝合金 铝合金设计强度 [ 单位:N / mm2 ]

牌号抗拉强度抗剪强度端面承压 6063-T5 90 55 185 钢材 钢材设计强度 [ 单位:N / mm2 ] 牌号抗拉强度抗剪强度端面承压 Q235 215 125 325 Q345 310 180 400 不锈钢螺栓 不锈钢螺栓连接设计强度[ 单位:N / mm2 ] 性能等级抗拉强度抗剪强度端面承压 A2-50 230 175 405 普通螺栓 普通螺栓连接设计强度 [ 单位:N / mm2 ] 性能等级抗拉强度抗剪强度端面承压 级170 140 350 级400 320 405 角焊缝 容许拉 / 剪应力—————————————————160 N / mm 2 4结构计算 光伏组件参数 晶硅组件: 自重 G PV: 0.196 kN ( 20 kg / 块 ) 尺寸(长×宽×厚)164 0 992 40 mm

消防喷淋系统中的管道支吊架怎么计算的

. 消防喷淋系统中的管道支吊架怎么计算的? 答案 自动喷水灭火系统施工及验收规范 5.1.8 管道支架、吊架、防晃支架的安装应符合下列要求: 1 管道应固定牢固;管道支架或吊架之间的距离不应大于表5.1.8的规定。检查数量:抽查20%,且不得少于5处。 检查方法:尺量检查。 2 管道支架、吊架、防晃支架的型式、材质、加工尺寸及焊接质量等,应符合设计要求和国家现行有关标准的规定。 3 管道支架、吊架的安装位置不应妨碍喷头的喷水效果;管道支架、吊架与喷头之间的距离不宜小于300mm;与末端喷头之间的距离不宜大于750mm。 检查数量:抽查20%,且不得少于5处。 检查方法:尺量检查。 4 配水支管上每一直管段、相邻两喷头之间的管段设置的吊架均不宜少于1个,吊架的间距不宜大于3.6m。 检查数量:抽查20%,且不得少于5处。 检查方法:观察检查和尺量检查。 5 当管道的公称直径等于或大于50mm时,每段配水干管或配水管设置防晃支架不应少于1个,且防晃支架的间距不宜大于15m;当管道改变方向时,应增设防晃支架。 检查数量:全数检查。 检查方法:观察检查和尺量检查。 6 竖直安装的配水干管除中间用管卡固定外,还应在其始端和终端设防晃支架或采用管卡固定,其安装位置距地面或楼面的距离宜为1.5~1.8m。 检查数量:全数检查。 检查方法:观察检查和尺量检查。 消防管道中,管道支吊架如何计算,单位KG 一根国标3 号角钢每米重量 边厚度3毫米:每米1.737KG 边厚度4毫米:每米1.786KG 一根国标4 号角钢每米重量 边厚度3毫米:每米1.852KG 边厚度4毫米:每米2.422KG 边厚度5毫米:每米2.976KG 一根国标5 号角钢每米重量 边厚度3毫米:每米2.332KG 边厚度4毫米:每米3.059KG 边厚度5毫米:每米3.770KG 边厚度6毫米:每米4.465KG .

光伏支架计算书模板

XXXXXXXXXXXXXXXXXXXX光伏并网发电示范项目 EPC工程总承包 [钢支架结构分析计算书] 编制: 审核: 审批: [宜兴羿飞新能源科技有限公司]

目录 1.计算引用的规范、标准及资料 (2) 1.1.建筑设计规范: (2) 1.2.钢材规范: (2) 1.3.五金件规范: (2) 1.4.相关物理性能等级测试方法: (3) 1.5.《建筑结构静力计算手册》(第二版) (3) 2.结构分析基本概况 (3) 2.1.项目概述 (3) 2.2.项目所在地区 (3) 2.3.地面粗糙度分类等级 (3) 3.结构承受荷载计算 (4) 3.1.地面粗糙度分类等级 (4) 3.2.组件及结构自重计算 (4) 3.3.雪荷载标准值计算 (5) 3.4.作用效应组合 (5) 4.所采用的设计数据 (5) 4.1.牌号Q235B 钢,符合GBJ 50017-2003 (5) 4.2.牌号Q345B 钢,符合GBJ 50017-2003 (6) 4.3.牌号6063-T5铝合金,参考GB 50429-2007 (6) 4.4.牌号6063-T6铝合金,参考GB 50429-2007 (6) 4.5.普通螺栓4.6C级,参考GBJ 50017-2003 (7) 4.6.奥氏体等级为50,,参考GBJ/T 1220 (7) 4.7.奥氏体等级为70,,参考GBJ/T 1220 (7) 5.结构设计变现控制 (7) 6.支架结构分析 (8) 6.1.支架结构分析 (8) 6.2.次梁(52*41*2.0mmTH U)的计算 (10) 6.3.主梁(52*41*2.0mmTH U)的计算 (11) 6.4.立柱(52*41*2.0mmTH U)的计算 (12) 6.5.混凝土基础计算 (14) 6.6.连接螺栓计算 (14) 附录A. 支架结构分析(SAP2000结构分析软件) (15)

光伏支架受力计算书

支架结构受力计算书

设计:___ ___ _日期:___ 校对:_ 日期:___ 审核:__ _____日期:____ 常州市**实业有限公司 1 工程概况 项目名称:*****30MW光伏并网发电项目 工程地址:新疆 建设单位:**集团 结构高度:电池板边缘离地不小于500mm 2 参考规范 《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2012 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板和钢带》GB/T3280—2007

《光伏发电站设计规范》GB50797-2012 3 主要材料物理性能 3.1材料自重 铝材——————————————————————3 kN m 27/ 钢材————————————————————3 78.5kN m / 3.2弹性模量 铝材————————————————————2 N mm 70000/ 钢材———————————————————2 N mm 206000/ 3.3设计强度 铝合金 铝合金设计强度[单位:2 N mm] / 钢材 钢材设计强度[单位:2 / N mm]

不锈钢螺栓 不锈钢螺栓连接设计强度[单位:2/N mm ] 普通螺栓 普通螺栓连接设计强度[单位:2/N mm ] 角焊缝 容许拉/剪应力—————————————————2160/N mm 4 结构计算 4.1 光伏组件参数 晶硅组件: 自重PV G :0.196kN (20kg /块) 尺寸(长×宽×厚)992164400mm ?? 安装倾角:37°

消防管道支架工程量计算

消防管道支架工程量计算 如题,现在只知道管长,支架的信息没有,有150 100 80 65 50 40 3 2 25管,求一个大概标准的计算方法,尽量详细,小白一个。 我给你大体介绍一下: 1、支架的样式:支架主要的样式有"门"型或“U”支架,也叫防晃支架(多用在DN100及以上的管径)、“L”型或“角尺”支架(多用在小管径及贴墙立管上)。 2、支架的间距:支架的最大间距是有规范的,这个你可以百度的,但实际安装时支架间距比规范要小,法兰连接、螺纹连接时的支架间距要比沟槽连接时大。以消防中最常见的沟槽为例:DN65~DN 150的支架间距一般在4~4.5米左右(支架间距设置时跟梁的间跨有关,因支架经常贴梁边安装),DN25~DN50的支架间距一般在3~3.5米左右。 3、支架的选材:单根DN100、单根DN150的管道一般会选5#角钢或5#槽钢或6#槽钢;两根共用支架时会选8#或10#槽钢;三根管共用时会选1 0#或12#槽钢;DN50~DN80在喷淋中用量较小,DN65在消火栓中用量较多,一般按5#角钢考虑;DN25~DN40一般按3#或4#角钢考虑。 4、支架计算:支架计算时吊臂长度的确实是关键,所以要确定管道标高与楼板底标高(因消防管一般按贴梁底安装考虑,所以梁高很关键),一般地下室支架吊臂较长,楼层内稍短。所以喷淋管支架大致估算:150 100 管按5#槽钢间距4.5米,“U”型支架,单个支架用材1.5米计,80 65 50 管按5 #角钢间距4.5米,“U”型支架,单个支架用材1.5米计,40 32 25管按4#角钢间距3.5米,“L”型支架,单个支架用材1.2米

光伏支架基础

中广核哈密光伏并网发电站三期30MWp项目光伏支架基础施工方案 编写: 审核: 批准: 市建设工程集团 日期:2013年8月

目录 1.适用围 2.编制依据 3.工程概况及主要工程量 4.作业人员的资格和要求 5.主要机械及工器具 6.施工准备 7.作业程序 8.作业方法、工艺要求及质量标准 9.工序交接及成品保护 10.危险源辨识及防护措施 11.安全和文明施工措施 12.环境管理

1.适用围 本方案适用于中广核哈密并网光伏发电站三期30MWp项目支架基础施工。 2.编制依据 2.1《30MWp区水平面投影布置图》HMG 3.S-ZT-02 2.2《电池组件支架基础平面布置图》HMG 3.S-JG.zj-2 2.3《电力建设安全健康与环境管理工作规定》2002年版 2.4《电力建设安全工作规程》(火力发电厂部分)DL5009.1-2002 2.5《建筑地基基础工程施工质量验收规》GB50202-2002 2.6《混凝土结构工程施工质量验收规》GB50204-2002 2.7《钢筋焊接及验收规程》JGJ 18-2003 2.8工程建设标准强制性条文(房屋建筑部分)建标【2002】219号 2.9合同文件 3.工程概况及主要工程量 3.1工程概况 本工程为中广核哈密并网光伏三期30MWp发电工程,设计共30个方阵,其中1区-10区相邻阵列(东西向)间距0.5m,高差东西向不大于125mm,11区-30区相邻阵列(东西向)间距1.0m,高差(东西向)不大于250mm,道路两侧处阵列高差(东西向)高差均不大于1000mm。单个支架东西向坡度倾斜应控制在1%以。按照水土保持要求,光伏场地不得大面积平整,局部沟壑及土包根据现场情况的需要进行削平补齐,场区高程根据现场实际情况确定。支架条形基础为2600*400*400mm的长方体钢筋混凝土结构,受力筋为4根HPB235φ10圆钢,并用HPB235φ6圆钢间距300mm进行绑扎固定,混凝土采用哈密西部建设有限责任公司供给的商品混凝土,强度等级:C35。混凝土四周表面均做防腐处理,回填后露出地面150mm。每一子阵共8个条基,每一区共912个条基,30区共27360个条基。

分布式光伏电站支架结构及荷载计算书

分布式光伏电站支架结构及荷载计算书 2019年12月

目录 一、工程概况 (3) 二、工程设计依据 (3) 2.1、光伏结构设计参数 (3) 2.2、光伏系统结构设计依据 (3) 2.3、光伏系统结构设计引用规范 (4) 三、荷载相关计算 (4) 3.1、场地类别划分 (4) 3.2、风荷载核算 (4) 3.3、永久荷载计算 (5) 3.4、雪荷载计算 (6) 四、结构计算 (6) 4.1、钢架计算 (7) 4.1.1、基本信息 (7) 4.2、有限元分析 (9) 4.2.1、檩条校核(使用有限元分析软件为:sap2000v15) (9) 4.2.2、槽钢梁(使用有限元分析软件为:sap2000v15) (11) 4.3、槽钢两端拔力和剪力分析 (12) 4.4、光伏电站自重以及屋顶承载能力分析: (13)

一、工程概况 工程名称:延庆分布式光伏项目 光伏系统设计计算高度10m。 二、工程设计依据 2.1、光伏结构设计参数 2.2、光伏系统结构设计依据 a) 光伏系统工程招标文件。 b) 设计院提供的施工图文件。 c) 其他有关本次招标工作的说明文件及相关规范等。

2.3、光伏系统结构设计引用规范 《建筑结构荷载规范》GB 50009-2012 《钢结构设计规范》GB 50017-2017 《建筑地基基础设计规范》GB 50007-2011 《光伏发电站设计规范》GB 50797-2012 《冷弯薄壁型钢结构设计规范》GB50018-2002 《光伏支架结构设计规程》NB/T10115-2018 三、荷载相关计算 3.1、场地类别划分 根据地而粗糙度场地可划分为以下类别: A类:近海面,海岛,海岸,湖岸及沙漠区域; B类:指田野,乡村,丛林,丘陵以及房屋比较稀疏的乡镇和城市郊区; C类:指有密集建筑群的城市市区. D类:指有密集建筑群且房屋较高的城市市区, 本工程属千B类。 3.2、风荷载核算 根据<<建筑结构荷载规范GB 50009-2012>> 省份和城市 (Province and City): 北京市 基本风压 (Basic wind pressure): 根据《光伏电站设计规范》GB50797-2012中6.8.7条规定: 风荷载、雪荷载应按照现行国家标准《建筑结构荷载规范》GB50009中25年一遇的荷载数值取值。 25年一遇风荷载取值为: Wo = 0.38KPa 离地高度 (Height to ground): Hmax = 10m

屋顶光伏电站支架强度及屋面载荷计算

屋顶光伏电站支架强度及屋面载荷计算1 工程概况 项目名称:江苏省*****中心小学49KW光伏屋顶 工程地址:江苏省*** 设计单位:上海能恩太阳能应用技术有限公司 建设单位:******有限公司 结构形式:屋面钢结构光伏支架 支架高度:0.3m 2 参考规范 《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2001(2006年版) 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板和钢带》GB/T3280—2007 3设计条件: 太阳能板规格:1650mm*990mm*50mm 混凝土屋顶太阳能板安装数量:200块 最大风速:27.5m/s 平坦开阔地域 太阳能板重量:20kg 安装条件:屋顶 计算标准:日本TRC 0006-1997

设计产品年限:20年 4型材强度计算 4.1 屋顶荷载的确定 (1)设计取值: ①假设为一般地方中最大的荷重,采用固定荷重G和暴风雨产生的风压荷重W 的短期复合荷重。 ②根据气象资料,扬中最大风速为27.5m/s,本计算最大风速设定为:30m/s。 ③对于混凝土屋面,采用最佳倾角安装的系统,需要考虑足够的配重,确保组件方阵的稳定可靠。 ④屋面高度20m。 4.2 结构材料: C型钢重量:1.8kg/m 截面面支架尺寸(mm)41*41*2 安装角度25° 材料镀锌 截面面积(A)277

形心主轴到腹板边缘的距离1.4516E+01 形心主轴到翼缘尖的距离2.6484E+01 惯性矩Ix 8.3731E+04 惯性矩Iy 4.5694E+04 回转半径ix 1.7386E+01 回转半径iy 1.2844E+01 截面抵抗矩Wx 4.0844E+03 截面抵抗矩Wx 4.0844E+03 截面抵抗矩Wy 3.1478E+03 截面抵抗矩Wyy 1.7254E+03 4.3 假定荷重: ①固定荷重G 太阳能板质量:G1=20kg×20=400kg →3920N; 所以C形轨道承载的固定荷载重量G=3920N; ②风压荷重W

相关文档
最新文档