分布式馈线自动化方案介绍分析

分布式馈线自动化方案介绍分析
分布式馈线自动化方案介绍分析

几种馈线自动化方式

1.集中控制式 集中控制式的故障处理方案是基于主站、通信系统、终端设备均已建成并运行完好的情况下的一种方案,它是由主站通过通信系统来收集所有终端设备的信息,并通过网络拓扑分析,确定故障位置,最后下发命令遥控各开关,实现故障区域的隔离和恢复非故障区域的供电。 优点:非故障区域的转供有着更大的优势,准确率高,负荷调配合理。 缺点:终端数量众多易拥堵,任一环节出错即失败。 案例: 假设F2处发生永久性故障,则 变电站1处断路器CB1因检测到故障电流而分闸,重合不成功然后分闸闭锁。定位:位于变电站内的子站或配电监控中间单元因检测到线路上各个FTU的状态及信息,发现只有FTU1流过故障电流而FTU2~FTU5没有。子站或配电监控中间单元判断出故障发生在FTU1~FTU2之间。 隔离:子站或配电监控中间单元发出命令让FTU1与FTU2跳闸,实现故障隔离。恢复:子站或配电监控中间单元发出命令让FTU3合闸,实现部分被甩掉的负荷的供电。子站或配电监控中间单元将故障信息上传配调中心,请求合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。配调中心启动故障处理软件,产生恢复供电方案,自动或由调度员确认。配调中心下发遥控命令,合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。等故障线路修复后,由人工操作,遥控恢复原来的供电方式。

2.就地自动控制 2.1负荷开关(分段器) 主要依靠自具一定功能的开关本身来完成简单的自动化,它与电源侧前级开关配合,在线路具备其本身特有的功能特性时,在失压或无流的情况下自动分闸,达到隔离故障恢复部分供电的目的。 这种开关一般或者有“电压-时间”特性,或者有“过流脉冲计数”特性。前者是凭借加压、失压的时间长短来控制其动作的,失压后分闸,加压后合闸或闭锁。后者是在一段时间内,记忆前级开关开断故障电流动作次数,当达到其预先设定的记录次数后,在前级开关跳开又重合的间隙分闸,从而达到隔离故障区域的目的。 在“电压-时间”方案中,开关动作次数多,隔离故障的时间长,变电站出口开关需重合两次,转供时容易有再次故障冲击,但它的优点是控制简单。 (1)基于重合器与电压-时间分段器方式的馈线自动化 基于电压延时方式,对于分段点位置的开关,在正常运行时开关为合闸状态,当线路因停电或故障失压时,所有的开关失压分闸。在第一次重合后,线路分段一级一级地投入,投到故障段后线路再次跳闸,故障区段两侧的开关因感受到故障电压而闭锁,当站内断路器再次合闸后,正常区间恢复供电,故障区间通过闭锁而隔离。 而对于联络点位置的开关,在正常时感受到两侧有电压时为常开状态,当一侧电源失压时,该联络开关开始延时进行故障确认,在延时时间完成后,联络开关投入,后备电源向故障线路的故障后端正常区间恢复供电。两侧同时失压时,开关为闭锁状态。 特点:造价低,动作可靠。该系统适合于辐射状、“手拉手”环状和多分段多连接的简单网格状配电网,一般不宜用于更复杂的网架结构。应用该系统的关键在于重合器和电压–时间型分段器参数的恰当整定,若整定不当,不仅会扩大故障隔离范围,也会延长健全区域恢复供电的时间。 (2)基于重合器与过流脉冲计数分段器方式的馈线自动化

智能分布式配电终端FTU-DTU..

智能分布式配电终端FTU/DTU及智能分布式FA 一、架空线路智能分布式馈线自动化终端(DAF-810馈线自动化终端) 1.现状和问题 传统的架空配电线路发生短路故障时,一般由变电站馈线出口断路器保护动作跳闸,并通过人工切除故障后,恢复供电。这种方式下,人员的维护量大,并且停电时间长,供电可靠性低。 现有的配电网自动化中一般是基于电压时间型的FTU,不依赖于通讯,当故障发生时,依然由变电站馈线出口断路器保护动作跳闸,通过FTU之间时间的配合,不断的通过重合,实现故障的自动恢复。这种方式下,如果发生的永久故障,并且故障发生在末端,会对配电网和用户设备造成多次短路冲击,而且恢复时间较长,供电可靠性依然低。 而智能分布式馈线自动化能够不依赖主站通过馈线自动化终端内部间的数据交换,实现故障点准确定位及跳闸。 图1 DAF-810馈线自动化终端FTU外观图 2.产品特点 广州市智昊电气技术有限公司DAF-810馈线自动化终端(分布式FTU)具有如下特点: 提高故障隔离与恢复的速度:为了保证系统的快速性,由智能FTU装置间就地动态决策,快速实现故障的自动恢复,有效减少馈线出口开关和分段开关的动作次数,极大的缩短停电时间。 加强系统运行的可靠性: 为了提高系统可靠性,主控FTU为动态的,当原主FTU故障时,其他FTU中编号最小的一台可自动取代原主控FTU,实现FTU协调功能。

系统基于无线通讯运行。在通讯正常的情况下,主控FTU能够准确定位故障点,并通过预置的控制策略来进行故障的快速隔离及恢复,避免了电压时间型FTU多次尝试性重合,减少了恢复过程中故障对系统的多次冲击;在通讯异常的情况下,本装置自动按传统的电压时间型FTU逻辑运行。 通过本系统的II段近后备保护,并结合馈线出口断路器的保护、母线保护、变压器保护,实现了电网、变电站和馈线各类保护的协同配合,同时本系统还具备重合闸、解列、重构等功能,完善了智能配电网的自愈体系,提高了配电网的供电质量。 提供强大的分析能力:后台监控系统主要包括系统运行监控功能、系统维护功能、分段开关四遥功能、以及后台辅助分析功能。监控功能指常态下的监控,系统维护功能主要包括馈线拓扑结构维护、控制策略的配置、定值的计算及在线下发等,而后台辅助分析功能包括故障场景再现,系统动作行为分析等。 运行过程中,本系统能将故障处理的过程信息,包括故障类型、故障点、电流、电压、DTU状态、通讯状态、分段开关状态,上传到后台监控系统或配电网自动化系统,实现故障处理的全过程监视及事后分析,便于检修人员的故障排除,缩短事故处理时间。 减少系统的维护量:后台监控系统,能提供配电网馈线拓扑结构的维护工具,能方便实现DTU装置的拓扑在线维护,并实现各类整定值的计算、校核和在线下发,系统维护量小。 本系统不需要配电自动化主站和变电站配网子站系统参与,就可自治实现配网的故障隔离及重合、故障恢复功能,安装实施简单,维护工作量小,便于推广使用。 强化投资的收益比:无线GPRS通讯是架空线型线路的标准配置,本系统要求的无线通讯并不增加投资。在资金充裕时,采用光纤通讯和断路器分段,可获得理想的保护选择性和故障智能处理特性;在资金紧张时,可使用GPRS专网、无线网桥建立通讯网络,使用负荷开关作为分段装置,也能建立就地智能FA,实现故障快速隔离及智能恢复。但是降低了故障隔离的选择性。 增强部署的灵活性:适用于市、县供电公司或大中型工矿企业中对供电可靠性有较高要求的架空线型配电线路。系统支持多种馈线拓扑结构,包括手拉手、单电源和多电源供电线路。 3.智昊电气DAF-810馈线自动化终端系统原理(中性点经小电阻接地系统的电缆网络) (1)电源甲侧首端线路故障检测

智能分布式馈线自动化的现状及发展趋势

暨南大学 本科生课程论文 论文题目:智能分布式馈线自动化 的现状及发展趋势 学院:电气信息学院 学系: 专业:自动化 课程名称:配电自动化 学生姓名: 学号: 指导教师:李伟华 2013年12 月23 日

0引言 (2) 1智能分布式馈线自动化及其故障处理概述 (3) 2分布式馈线自动化的发展概况及其局限 (3) 2.1现阶段馈线自动化系统技术分析 (2) 2.2馈线自动化技术故障处理的局限性 (2) 3智能分布式馈线自动化亟待解决的问题 (2) 3.1无电源端故障判别问题 (2) 3.2三相故障加速问题 (3) 3.3线路空载加速问题 (3) 4未来配网自动化的发展趋势 (3) 结论 (4)

智能分布式馈线自动化的现状及发展趋势何伶珍暨南大学电气信息学院广东珠海519000 摘要:智能分布式FA 的引进运用于配电网中, 大大减少无故障线路的连带性事故停电、缩小故障停电范围、缩短用户停电时间,从而提高用户的供电可靠性, 对电网的安全运行具有重要意义。本文以智能分布式FA 技术为基础, 讨论了智能馈线自动化的发展情况,重点论述了智能分布式馈线自动化故障处理的现状并就智能化馈线自动化系统组成进行了探讨,分析了其研究方向和亟待需要解决的问题。 关键词:智能配电网;分布式;馈线自动化;发展趋势 Abstract:The introduction of intelligent distributed FA used in the distribution network, greatly reducing trouble of route accidents blackout, power failure narrow range, shorten outage time users, so to improve the reliability of power supply for users, is of great significance to the safe operation of power grid.This paper is based on intelligent distributed FA technology, discusses the development of intelligent feeder automation, discusses the status of intelligent distributed feeder automation and intelligent feeder automation system are discussed, analyzed research direction and problems to solve. Keywords: intelligent distribution network;distributed;Feeder automation; the development trend 0 引言 馈线自动化( Feeder Automation,FA) ,又称配电线路自动化,是配电自动化的重要组成部分,是配电自动化的基础,是实现配电自动化的主要监控系统之一。馈线自动化是指在正常情况下,远方实时监视馈线分段开关与联络开关的状态和馈线电流、电压情况,并实现线路开关的远方合闸和分闸操作,在故障时获取故障记录,并自动判别和隔离馈线故障区段以及恢复对非故障区域供电。馈线自动化是提高配电网可靠性的关键技术之一。配电网的可靠、经济运行在很大程度上取决于配电网结构的合理性、可靠性、灵活性和经济性,这些又与配网的自动化程度紧密相关。通过实施馈线自动化技术,可以使馈线在运行中发生故障时,能自动进行故障定位,实施故障隔离和恢复对健全区域的供电,提高供电可靠性。 随着社会对电力需求的不断增长及对电能质量要求的不断提高,现有的配网故障处理及运营方式越来越难以满足用户对电能安全性及和可靠性的要求,配电自动化系统正是一种可以提高供电可靠性的重要技术手段,而它的核心就是馈线自动化功能。在配电自动化系统中,馈线自动化对于提高供电可靠性、减少停电面积和缩短停电时间具有深远的远的意义。它可以使停电时间大幅减少,并将线路故障范围从整条缩短到故障节点所在的分段之内,其最终效果使得停电故障对用户(或社会)

馈线自动化两种实现模式的对比研究

龙源期刊网 https://www.360docs.net/doc/761227791.html, 馈线自动化两种实现模式的对比研究 作者:吴慧 来源:《中国新技术新产品》2015年第02期 摘要:本文主要结合孝感城区配网馈线自动化建设探索实践经验,针对馈线自动化的两 种实现模式,分别从选点原则、动作原理、实践效果方面进行对比分析,提出建议。 关键词:配网自动化;馈线自动化;实例分析 中图分类号:TM76 文献标识码:A 馈线自动化实现故障处理的模式主要分为集中式和就地式两类。下文就孝感供电公司馈线自动化建设探索进程,对馈线自动化两种模式分别进行对比分析。 一、集中式模式实例分析 孝感城区配网自动化系统于2009年7月开始建设,11月底投入运行。系统采用双层体系结构,主要由主站层和终端设备层组成,二者之间通过光纤网络进行数据通信。 1选点原则:联络点优先、就近接入 对城区10KV配网128组开关进行了改造,加装电操机构和测控元件,并全部配备智能终端。系统监控设备总数约占当时配网设备总数的40%。 2动作原理:配网常采用手拉手环网常开运行方式:正常运行情况下,开关1、2、3、4 合闸位置,联络1开关分闸位置,如图1所示。 若开关3至开关4之间发生短路故障,则可能存在开关3、2、1三级跳闸的情况,此时必须这三级开关中至少有一组保护信号变位+开关动作触发DA计算启动,主站同时接收到多个开关保护信号变位后,按照电流方向和设备连接的拓扑关系,从馈线段的首端向末端查找,找到最后一个发送保护信号的开关3后,主站判定实际故障区域为开关3——开关4。 (1)开关3保护信号变位+开关3跳闸,隔离方案:开关4分闸;恢复方案:联络1合闸。 (2)开关3保护信号变位+开关2跳闸,隔离方案:开关3分闸、开关4分闸;恢复方案:开关2合闸、联络1合闸。 (3)开关3保护信号变位+开关1跳闸,隔离方案:开关3分闸、开关4分闸;恢复方案:开关1合闸、联络1合闸。

配电自动化馈线终端FTU技术规范

配电自动化馈线终端 F T U技术规范 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

配电自动化馈线终端(FTU) 技术规范

目录

配电自动化馈线终端(FTU)技术规范 1 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 GB/T 电磁兼容试验和测量技术抗扰度试验总论 GB/T 静电放电抗扰度试验 GB/T 射频电磁场辐射抗扰度试验 GB/T 浪涌(冲击)抗扰度试验 GB/T 电快速瞬变脉冲群抗扰度试验 GB/T 工频磁场的抗扰度试验 GB/T 阻尼振荡磁场的抗扰度试验 GB/T 电压暂降、短时中断和电压变化抗扰度试验 GB/T 远动设备及系统第2部分:工作条件第1篇:电源和电磁兼容兼容性 GB/T 11022 高压开关设备和控制设备标准的共用技术要求 GB/T 14285 继电保护和安全自动装置技术规程 GB/T 4208 外壳防护等级(IP) GB/T 13729 远动终端设备 GB/T 5096 电子设备用机电件基本试验规程及测量方法 GB/T 19520 电子设备机械结构 GB 低压成套开关设备和控制设备第五部分:对户外公共场所的成套设备—动力配电网用电缆分线箱(CDCs)的特殊要求 DL/T 637-1997 阀控式密封铅酸蓄电池订货技术条件 DL/T 721 配电网自动化系统远方终端 DL/T 远动设备及系统第5-101部分:传输规约基本远动任务配套标准 DL/T 远动设备及系统第5-104部分:传输规约采用标准传输协议子集的IEC60870-5-101网络访问 DL/T 814 配电自动化系统功能规范 Q/GDW 382 配电自动化技术导则 Q/GDW 513 配电自动化主站系统功能规范 Q/GDW 514 配电自动化终端/子站功能规范 Q/GDW 625 配电自动化建设与改造标准化设计技术规定 2 技术要求 概述 馈线终端的结构形式可分为箱式馈线终端和罩式馈线终端。 箱式馈线终端

浅谈智能配电网分布式馈线自动化技术应用 林丹

浅谈智能配电网分布式馈线自动化技术应用林丹 发表时间:2018-05-30T09:01:37.530Z 来源:《电力设备》2018年第2期作者:林丹 [导读] 摘要:随着我国经济技术的全面发展,民众的生活水平得到了大力提升,电力资源作为一种与民众日常生活和社会生产密切相关的现代能源,对供电稳定性提出了更高的要求。 (广东电网有限公司汕头供电局广东省汕头市 515041) 摘要:随着我国经济技术的全面发展,民众的生活水平得到了大力提升,电力资源作为一种与民众日常生活和社会生产密切相关的现代能源,对供电稳定性提出了更高的要求。在信息技术和能源技术飞速发展的大背景下,电力传输技术经历了一个飞速发展的过程,智能配电网分布式馈线自动化技术就是其中的典型代表,给全社会提供了高质量的电力能源。该文在前人研究的基础上对智能配电网分布式馈线自动化技术进行了重点介绍,并着重分析了其在输电工程中的应用,希望对我国电力系统的进一步发展有一定的指导意义。 关键词:智能配电网;分布式馈线;自动化 1 概述 1.1 智能配电网 智能配电网的形成是基于配电网,加设网络信息传输设备。通过计算机软件的数据处理,将配电网中所有用电单位的数据进行统计,并针对数据作出集成处理。最终将配电网的各类数据,形成的数据表格或图形的智能化操作。 1.2 分布式馈线 馈线区别与输电线路,其主要作用为传输信号,监控整体配电网的运行状态,并针对其中出现的问题进行快速地反馈和处理。由于整体的配电网范围较大,涉及的用电单位也较多。因此为了保证整体配电网都在馈线的监控之下,施工人员将馈线合理地分布连接在整个配电网之上。形成对整体配电网的运行监控,最终形成的全体馈线称之为分布式馈线。 1.3 自动化技术 当前针对智能配电网分布式馈线自动化技术的应用,主要存在数据监控、数据反馈、数据处理、结果执行等方面。此类操作通过网络通信,结合硬件控制完成对配电网设备线路的控制。最终达到在较短的时间内,处理相对应的故障,保障整体配电网的安全运行。 2 分布式馈线自动化的技术特征 2.1 分布式馈线自动化的基本功能分析 分布式馈线自动化技术简称FA,其基本功能就是在系统某一部位发生故障时可以利用物理开关的结构在几秒或是几十秒内切断电源,最大限度地减小局部设备故障对系统整体产生的不利影响,并利用主站快速的分析能力和故障处理能力在几分钟内实现故障的计算、处理措施的选择以及处理指令的发出等,理想状态下可以在十几分钟之内实现恢复供电。配电网馈线自动化需要的投入资金比较大,容易受到网络黑客的攻击,造成整个自动系统的崩溃。为了应对这一问题,我国电力系统积极引进以太网和GPRS等先进技术,并建成了新型的FTU馈电自动系统,主要有光线以外网、无线、专线等工作模式,有效地控制了工程建设成本,降低了故障发生概率,具备优良的性能。 2.2 分布式馈线自动化系统工作模式 配电网分布式馈线自动化的主要工作流程分为故障诊断与故障识别等两个工作阶段。故障处理是配电网馈线自动化系统最主要的功能,相较于传统配电系统重合闸的工作形式相比,馈线自动化技术更具可靠性、灵活性与及时性,可以对线路故障、瞬时或永久故障等进行及时在线处理,有效地避免了电闸切断电源给系统带来的电流震荡影响,降低了对电路系统的二次损坏。馈电系统故障自动检测系统的工作流程分为3个阶段:以配电终端为基础进行故障检测、子系统分析中心进行初步处理、主站系统收集数据进行集中处理。如果子站系统不能成功实现故障部位的隔离就会将相关信息送交主站系统进行计算、整体调度和集中处理。 馈线自动化系统中的FTU模块负责对收集的故障信号进行集中计算与处理,可将电流的瞬时采样值作为故障评判标准。如出现单相电的接地故障时,零线电位会出现与正常线路相反的情况,且正常线路的电压值是故障电位的1.5倍以上,基于这些电路信息FTU系统就会自动识别这些电路特征,判定故障等级。但是从目前我国输电网配电系统的工作情况来看,由于普遍采用中性点不接地等零序分量幅值小的模式,造成了故障诊断的准确性下降,因此可以通过增设开关操作序列提示等功能提升对接地故障的检测准确性。 3 智能配电网分布式馈线自动化技术的具体应用 3.1 配电网整体监控 智能配电网的形成,提高了整体配电网的安全稳定运行。当前我国智能配电网分布式馈线自动化技术应用的主要手段之一为:配电网整体监控。配电网由于涉及的用电单位较多,涉及的范围也较大。因此一旦出现供电故障,产生的影响也较大。当前分布式馈线自动化技术在配电网中的应用,主要为监控整体的配电网。通过对整体配电网的合理分配,将馈线分布在整体的配电网之上。通过馈线对整体的配电网运行状态,进行有效地监控。 3.2 多电源保护管理 变电站将电力变压之后,将不同电压的电力进行输送。因此一般情况下变电站中的电源线路较多,同时供电的单位也较多。一旦发生局部线路故障,就有可能造成整体配电网的故障。针对此类情况智能配电网中分布式馈线自动化技术,对变电站输出电路电源进行保护。以此保证局部电源线路出现问题时,能够快速地进行电源的隔离。并保证其他电源线路的安全供电,随后针对故障电源线路进行恢复,减少了因局部线路故障引起的大范围停电。 3.3 自动化联防控制 当前针对智能配电网分布式馈线自动化技术的应用,依靠网络技术结合硬件控制进行。例如:当部分线路出现故障时,馈线针对其运行状况作出反馈。自动化系统根据反馈数据,启动硬件设备例如继电器等设备。将故障设备,从整体的配电网中隔离。以此保证其他线路的安全运行,并在此过程中完成故障线路的故障控制。 3.4 快速处理 网络技术的快速发展,对于当前经济的发展起到了促进性的作用,极大地方便了人们的日常信息沟通,当前在变电站中的应用也较多。其中智能配电网分布式馈线自动化技术,其核心技术即为网络通信技术。网络技术的特性为快速性、及时性,因此针对智能配电网分布式馈线自动化中的应用,也具备此类特性。电力故障在配电网中的影响较大,因此数据的快处理能够提升故障的处理速度,一定程度上

电力系统自动化知识要点及其答案

第一章发电机的自动并列 1) 什么是同步发电机的并列操作?( P4 ) 将一台发电机投入电力系统并列运行的操作,称并列操作。 2) 同步发电机并列有哪几种方式?( P4 ) 准同期并列(一般采用) 自同期并列(很少采用) 3) 同步发电机准同期并列与自同期并列有何区别? 发电机在并列合闸前已励磁,当发电机频率、电压相角、电压大小分别和并列点处系统侧的频率、电压相角、电压大小接近相等时,将发电机断路器合闸,完成并列操作,这种方式称为准同期。 4) 同步发电机准同期并列的理想条件是什么?( P5 ) (1) f G =f X 待并发电机频率与系统频率相等,即滑差(频差)为零; (2) U G =U X 待并发电机电压与系统电压的幅值相等,即压差为零; (3)δe =0 断路器主触头闭合瞬间,待并发电机电压与系统电压间的瞬时相角差为零。 5) 同步发电机机端电压与电网电压差值的波形是什么形式?( P9 ) 6) 滑差频率ωsy 及周期Ts 的计算。( P10) 频差f S : f S =f G -f X 滑差ωs :电角速度之差称为滑差角速度,简称滑差 S S G X G 2)(2f f f s ππωωω=-=-= 滑差周期: S 12f T s s = =ωπ 7) 线性整步电压形成电路由几部分组成?( P13) 形成电路由整形电路、相敏电路 及滤波电路三部分组成。 8) 恒定越前时间的计算。( P13) C R t YJ 1-=

第二章同步发电机励磁自动控制系统 1) 同步发电机励磁自动控制系统由哪几部分组成? 励磁调节器,励磁功率单元和发电机 2) 同步发电机励磁系统由哪几部分组成? 励磁调节器励磁功率单元 3) 同步发电机感应电动势和励磁电流关系:等值电路图和矢量图 4) 励磁控制系统的基本任务。 ◆ 电压调节 ◆ 无功分配 ◆ 提高发电机运行稳定性 ◆ 改善电力系统运行条件 ◆ 水轮发电机组要求实现强行减磁 5) 电力系统的稳定性问题分几类? 静态稳定:小干扰后恢复到原状态。 暂态稳定:大干扰后恢复到原状态或新状态。 6) 同步发电机励磁调节器的性能应满足什么要求? 时间常数小 ,自然调差系数精确 ,电压调差系数范围大 7) 同步发电机励磁功率单元的性能应满足什么要求? 可靠性、调节容量 ,电压上升速度 8) 同步发电机他励时间常数的计算。 图2-2 同步发电机感应电动势和励磁电流关系 (a) 同步发电机运行原理;(b) 等值电路;(c) 矢量图 ) (b G I ? x d )(a G U ? U I ? q E ?

简述配网自动化及馈线自动化技术

简述配网自动化及馈线自动化技术 摘要:馈线自动化在配电网自动化系统中发挥着非常重要的作用,可远程实时 监测馈线运行过程中电压和电流参数变化以及各种开关设备和保护装置的状态, 实现远程操作控制保护装置,对开关设备进行分闸和合闸操作,准确记录配电网 线路的故障情况,并且实现故障线段的自动隔离,保障非故障线路的安全可靠供电。因此应仔细研究配电网馈线自动化技术,优化和完善馈线自动化设置,确保 配电网的安全、稳定运行。 关键词:配电网;馈线;自动化技术 一、配网自动化及馈线自动化的内容 配电自动化系统的建设应包括以下五方面:配电网架规划、馈线自动化的实施、配电设备的选择、通信系统建设和配网主站建设。 1.1配电网架规划 合理的配电网架是实施配电自动化的基础,配电网架规划是实施配电自动化 的第一步,配电网架规划应遵循如下原则:遵循相关标准,结合当地电网实际; 主干线路宜采用环网接线、运行、导线和设备应满足负荷转移的要求;主干线路 宜分为段,并装设分段开关,分段主要考虑负荷密度、负荷性质和线路长度;配 电设备自身可靠,有一定的容量裕度,并具有遥控和智能功能。 1.2馈线自动化的实施 配电网馈线自动化是配电网自动化系统的主要功能之一。配网馈线自动化是 配电系统提高供电可靠性最直接、最有效的技术手段,因此目前电力企业考虑配 网自动化系统时,首先投人的是配网馈线自动化(DA)的试点工程。馈线自动化 的主要任务是采用计算机技术、通信技术、电子技术及人工智能技术配合系统主 站或独立完成配电网的故障检测、故障定位、故障隔离和网络重构。目前通过采 用馈线测控终端(FTU)对配电网开关、重合器、环网柜等一次设备进行数据采 集和控制。因此,FTU、通信及配电一次设备成为实现馈线自动化的关键环节。 配网馈线自动化主要功能包括配网馈线运行状态监测,馈线故障检测,故障定位,故障隔离,馈线负荷重新优化配置,供电电源恢复,馈线过负荷时系统切换操作,正常计划调度操作,馈线开关远方控制操作,统计及记录。 配电网馈线自动化系统,与其它自动化系统关系密切,如变电站综合自动化 系统、集控中心站、调度自动化系统(SCADA)、用电管理系统、AM/FM/GIS地 理信息系统、MIS系统等。因此必须采用系统集成技术,实现系统之间信息高度 共享,避免重复投资和系统之间数据不一致。配电网中的停电包括检修停电和故 障停电两部分,提高供电可靠性就是要在正常检修时缩小因检修造成的停电范围;在发生故障时,减小停电范围,缩短停电时间。这就要求对具有双电源或多电源 的配电网络,在进行检修时,只对检修区段进行停电,通过操作给非检修区段进 行供电;故障时快速的对故障进行定位、隔离、恢复非故障区段的供电。配电网 络的构成有电缆和架空线路两种方式。电缆网络多采用具有远方操作功能的环网 开关,对一次设备和通信系统的要求高,适合于经济发达的城区;对于大多数县 级城市,配网改造必须综合考虑资金和效果两个因素,采用以重合器、分段器和 负荷开关为主的架空网络方案比较合适。其中,架空线路电源手拉手供电是最基 本的形式。线路主干线分段的数量取决于对供电可靠性要求的选择。理论上讲, 分段越多,故障停电的范围越小,但同时实现自动化的方案也越复杂。在手拉手 供电方式下,要求系统对各分段的故障能够自动识别并切除,最大限度缩短非故

基于智能分布式FTU、智能分布式DTU的智能分布式馈线自动化方案实现

基于智能分布式FTU、智能分布式DTU的智能分布式 馈线自动化方案实现 一、架空线路智能分布式馈线自动化(DAF-810馈线自动化终端) 1.现状和问题 传统的架空配电线路发生短路故障时,一般由变电站馈线出口断路器保护动作跳闸,并通过人工切除故障后,恢复供电。这种方式下,人员的维护量大,并且停电时间长,供电可靠性低。 现有的配电网自动化中一般是基于电压时间型的FTU,不依赖于通讯,当故障发生时,依然由变电站馈线出口断路器保护动作跳闸,通过FTU之间时间的配合,不断的通过重合,实现故障的自动恢复。这种方式下,如果发生的永久故障,并且故障发生在末端,会对配电网和用户设备造成多次短路冲击,而且恢复时间较长,供电可靠性依然低。 而智能分布式馈线自动化能够不依赖主站通过馈线自动化终端内部间的数据交换,实现故障点准确定位及跳闸。 图1 DAF-810馈线自动化终端FTU外观图 2.产品特点 广州市智昊电气技术有限公司DAF-810馈线自动化终端(分布式FTU)具有如下特点: 提高故障隔离与恢复的速度:为了保证系统的快速性,由智能FTU装置间就地动态决策,快速实现故障的自动恢复,有效减少馈线出口开关和分段开关的动作次数,极大的缩短停电时间。 加强系统运行的可靠性: 为了提高系统可靠性,主控FTU为动态的,当原主FTU故障时,其他FTU中编号最小的一台可自动取代原主控FTU,实现FTU协调功能。

系统基于无线通讯运行。在通讯正常的情况下,主控FTU能够准确定位故障点,并通过预置的控制策略来进行故障的快速隔离及恢复,避免了电压时间型FTU多次尝试性重合,减少了恢复过程中故障对系统的多次冲击;在通讯异常的情况下,本装置自动按传统的电压时间型FTU逻辑运行。 通过本系统的II段近后备保护,并结合馈线出口断路器的保护、母线保护、变压器保护,实现了电网、变电站和馈线各类保护的协同配合,同时本系统还具备重合闸、解列、重构等功能,完善了智能配电网的自愈体系,提高了配电网的供电质量。 提供强大的分析能力:后台监控系统主要包括系统运行监控功能、系统维护功能、分段开关四遥功能、以及后台辅助分析功能。监控功能指常态下的监控,系统维护功能主要包括馈线拓扑结构维护、控制策略的配置、定值的计算及在线下发等,而后台辅助分析功能包括故障场景再现,系统动作行为分析等。 运行过程中,本系统能将故障处理的过程信息,包括故障类型、故障点、电流、电压、DTU状态、通讯状态、分段开关状态,上传到后台监控系统或配电网自动化系统,实现故障处理的全过程监视及事后分析,便于检修人员的故障排除,缩短事故处理时间。 减少系统的维护量:后台监控系统,能提供配电网馈线拓扑结构的维护工具,能方便实现DTU装置的拓扑在线维护,并实现各类整定值的计算、校核和在线下发,系统维护量小。 本系统不需要配电自动化主站和变电站配网子站系统参与,就可自治实现配网的故障隔离及重合、故障恢复功能,安装实施简单,维护工作量小,便于推广使用。 强化投资的收益比:无线GPRS通讯是架空线型线路的标准配置,本系统要求的无线通讯并不增加投资。在资金充裕时,采用光纤通讯和断路器分段,可获得理想的保护选择性和故障智能处理特性;在资金紧张时,可使用GPRS专网、无线网桥建立通讯网络,使用负荷开关作为分段装置,也能建立就地智能FA,实现故障快速隔离及智能恢复。但是降低了故障隔离的选择性。 增强部署的灵活性:适用于市、县供电公司或大中型工矿企业中对供电可靠性有较高要求的架空线型配电线路。系统支持多种馈线拓扑结构,包括手拉手、单电源和多电源供电线路。 3.智昊电气DAF-810馈线自动化终端系统原理(中性点经小电阻接地系统的电缆网络) (1)电源甲侧首端线路故障检测

配电自动化馈线终端技术规范

配电自动化馈线终端(FTU) 技术规范

目录 1 规范性引用文件...................................................... 错误!未定义书签。 2 技术要求............................................................ 错误!未定义书签。 3 标准技术参数........................................................ 错误!未定义书签。 4 环境条件表........................................................... 错误!未定义书签。 5 试验................................................................. 错误!未定义书签。附录A馈线终端无线通信安装位置、航插尺寸定义(参考性附录)............. 错误!未定义书签。附录B 馈线终端接口定义(规范性附录) .................................. 错误!未定义书签。

配电自动化馈线终端(FTU)技术规范 1 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 GB/T 电磁兼容试验和测量技术抗扰度试验总论 GB/T 静电放电抗扰度试验 GB/T 射频电磁场辐射抗扰度试验 GB/T 浪涌(冲击)抗扰度试验 GB/T 电快速瞬变脉冲群抗扰度试验 GB/T 工频磁场的抗扰度试验 GB/T 阻尼振荡磁场的抗扰度试验 GB/T 电压暂降、短时中断和电压变化抗扰度试验 GB/T 远动设备及系统第2部分:工作条件第1篇:电源和电磁兼容兼容性 GB/T 11022 高压开关设备和控制设备标准的共用技术要求 GB/T 14285 继电保护和安全自动装置技术规程 GB/T 4208 外壳防护等级(IP) GB/T 13729 远动终端设备 GB/T 5096 电子设备用机电件基本试验规程及测量方法 GB/T 19520 电子设备机械结构 GB 低压成套开关设备和控制设备第五部分:对户外公共场所的成套设备—动力配电网用电缆分线箱(CDCs)的特殊要求 DL/T 637-1997 阀控式密封铅酸蓄电池订货技术条件 DL/T 721 配电网自动化系统远方终端 DL/T 远动设备及系统第5-101部分:传输规约基本远动任务配套标准 DL/T 远动设备及系统第5-104部分:传输规约采用标准传输协议子集的IEC60870-5-101网络访问 DL/T 814 配电自动化系统功能规范 Q/GDW 382 配电自动化技术导则 Q/GDW 513 配电自动化主站系统功能规范 Q/GDW 514 配电自动化终端/子站功能规范 Q/GDW 625 配电自动化建设与改造标准化设计技术规定 2 技术要求 概述 馈线终端的结构形式可分为箱式馈线终端和罩式馈线终端。 箱式馈线终端 安装在配电网馈线回路的柱上等处的配电终端,外箱为箱式,按照功能分为箱式“三遥”终端和箱

馈线自动化系统

馈线自动化系统 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

馈线自动化系统

1.概述 配电自动化系统简称配电自动化(DA-Di stri-bution Automa t ion),是对配电网上的设备进行远方实时监视、协调及控制的一个集成系统,它是近几年来发展起来的新兴技术领域,是现代计算机及通信技术在配电网监视与控制上的应用。目前,西方发达工业国家正大力推广该技术,我国有的供电部门也已经采用或正在积极地调研考察,准备采用这项技术。按照系统的纵向结构,配电自动化可分为配电管理系统(DMS主站)、变电站自动化、馈电线路自动化、用户自动化(需方管理DSM)等四个层次的内容。其中,馈电线路自动化系统,简称馈线自动化(FA-Feeder Automation),难度大,涉及的新技术比较多,是提供供电可靠性的关键。本文将介绍馈线自动化的基本概念、系统结构及其各个组成部分的功能、作用及技术要求,供有关工作者参考。

2馈线自动化简介 2.1馈线自动化的定义 在工业发达国家的配电网中,广泛采用安装在户外馈电线路上的柱上开关、分段器、重合器、无功补偿电容器等设备,以减少占地面积与投资,提高供电的质量、可靠性及灵活性。现在在我国各供电部门占也愈来愈多地采用线路上的设备。这些线路上的早期设备自动化程度低,一般都是人工操作控制。随着现代电子技术的进步,人们开始研究如何应用计算机及通信技术对这些线路上的设备实现远方实时监视、协调及控制,这样就产生了馈线自动化技术。馈线自动化,又称线路自动化或配电网自动化,按照国际电气电子工程师协会(IEEE)对配电自动化的定义,馈线自动化系统(FAS-Feeder Automa-tio n System)是对配电线路上的设备进行远方实时监视、协调及控制的一个集成系统。 2.2馈线自动化的功能 馈线自动化主要有以下几项功能: (1)数据采集与监控(SCADA) 就是通常所说的远动,即四遥(遥信、遥测、遥控、遥调)功能。 (2)故障定位、隔离及自动恢复供电 指线路故障区段(包括小电流接地故障)的定位与隔离及无故障区段供电的自动恢复。 (3)无功控制 指线路上无功补偿电容器组的自动投切控制。

馈线自动化模式选型与配置技术原则(征求意见稿)

馈线自动化模式选型与配置技术原则 (征求意见稿) 2017年12月

目录 1概述 (1) 1.1范围 (1) 1.2规范性引用文件 (1) 1.2.1设计依据性文件 (1) 1.2.2主要涉及标准、规程规范 (2) 2馈线自动化模式概述与应用选型 (3) 2.1集中型馈线自动化概述 (3) 2.2就地型馈线自动化概述 (3) 2.2.1重合器式馈线自动化 (3) 2.2.2分布式馈线自动化 (4) 2.3模式对比与应用选型 (5) 2.3.1模式对比 (5) 2.3.2应用选型 (8) 3集中型馈线自动化应用模式 (9) 3.1适用范围 (9) 3.2布点原则 (9) 3.3动作逻辑 (10) 3.3.1技术原理 (10) 3.3.2动作逻辑原理 (11) 3.3.3短路故障处理 (12) 3.3.4接地故障处理 (13)

3.4性能指标 (13) 3.5配套要求 (14) 3.5.1配套开关选用 (14) 3.5.2配套终端选用 (14) 3.5.3配套通信选用 (15) 3.5.4保护配置选用 (15) 3.6现场实施 (17) 3.6.1参数配置 (17) 3.6.2安装要求 (18) 3.6.3注意事项 (18) 3.7运行维护 (18) 3.7.1操作指导 (19) 3.7.2检修指导 (19) 3.7.3运维分析指导................ 错误!未定义书签。 3.8典型应用场景 (19) 4重合器式馈线自动化应用模式 (22) 4.1电压时间型 (22) 4.1.1适用范围 (22) 4.1.2布点原则 (22) 4.1.3动作逻辑 (22) 4.1.4性能指标 (24) 4.1.5配套要求 (24)

智能分布式配电终端FTU-DTU

智能分布式配电终端FTU/DTU及智能分布式FA 一、架空线路智能分布式馈线自动化终端(DAF-810馈线自动化终 端) 1.现状和问题 传统的架空配电线路发生短路故障时,一般由变电站馈线出口断路器保护动作跳闸,并通过人工切除故障后,恢复供电。这种方式下,人员的维护量大,并且停电时间长,供电可靠性低。 现有的配电网自动化中一般是基于电压时间型的FTU,不依赖于通讯,当故障发生时,依然由变电站馈线出口断路器保护动作跳闸,通过FTU之间时间的配合,不断的通过重合,实现故障的自动恢复。这种方式下,如果发生的永久故障,并且故障发生在末端,会对配电网和用户设备造成多次短路冲击,而且恢复时间较长,供电可靠性依然低。 而智能分布式馈线自动化能够不依赖主站通过馈线自动化终端内部间的数据交换,实现故障点准确定位及跳闸。 图1DAF-810馈线自动化终端FTU外观图 2.产品特点 广州市智昊电气技术有限公司DAF-810馈线自动化终端(分布式FTU)具有如下特点: 提高故障隔离与恢复的速度:为了保证系统的快速性,由智能FTU装置间就地动态决策,快速实现故障的自动恢复,有效减少馈线出口开关和分段开关的动作次数,极大的缩短停电时间。 加强系统运行的可靠性: 为了提高系统可靠性,主控FTU为动态的,当原主FTU故障时,其他FTU中编号最小的一台可自动取代原主控FTU,实现FTU协调功能。

系统基于无线通讯运行。在通讯正常的情况下,主控FTU能够准确定位故障点,并通过预置的控制策略来进行故障的快速隔离及恢复,避免了电压时间型FTU多次尝试性重合,减少了恢复过程中故障对系统的多次冲击;在通讯异常的情况下,本装置自动按传统的电压时间型FTU逻辑运行。 通过本系统的II段近后备保护,并结合馈线出口断路器的保护、母线保护、变压器保护,实现了电网、变电站和馈线各类保护的协同配合,同时本系统还具备重合闸、解列、重构等功能,完善了智能配电网的自愈体系,提高了配电网的供电质量。 提供强大的分析能力:后台监控系统主要包括系统运行监控功能、系统维护功能、分段开关四遥功能、以及后台辅助分析功能。监控功能指常态下的监控,系统维护功能主要包括馈线拓扑结构维护、控制策略的配置、定值的计算及在线下发等,而后台辅助分析功能包括故障场景再现,系统动作行为分析等。 运行过程中,本系统能将故障处理的过程信息,包括故障类型、故障点、电流、电压、DTU状态、通讯状态、分段开关状态,上传到后台监控系统或配电网自动化系统,实现故障处理的全过程监视及事后分析,便于检修人员的故障排除,缩短事故处理时间。 减少系统的维护量:后台监控系统,能提供配电网馈线拓扑结构的维护工具,能方便实现DTU装置的拓扑在线维护,并实现各类整定值的计算、校核和在线下发,系统维护量小。 本系统不需要配电自动化主站和变电站配网子站系统参与,就可自治实现配网的故障隔离及重合、故障恢复功能,安装实施简单,维护工作量小,便于推广使用。 强化投资的收益比:无线GPRS通讯是架空线型线路的标准配置,本系统要求的无线通讯并不增加投资。在资金充裕时,采用光纤通讯和断路器分段,可获得理想的保护选择性和故障智能处理特性;在资金紧张时,可使用GPRS专网、无线网桥建立通讯网络,使用负荷开关作为分段装置,也能建立就地智能FA,实现故障快速隔离及智能恢复。但是降低了故障隔离的选择性。 增强部署的灵活性:适用于市、县供电公司或大中型工矿企业中对供电可靠性有较高要求的架空线型配电线路。系统支持多种馈线拓扑结构,包括手拉手、单电源和多电源供电线路。 3.智昊电气DAF-810馈线自动化终端系统原理(中性点经小电阻接地系统的电缆网络) (1)电源甲侧首端线路故障检测

馈线自动化基本应用

馈线自动化基本应用 摘要:馈线自动化是配电自动化主要功能之一。本文针对我国配电自动化实施情况,充分讨论了馈线保护技术现状及发展。提出了建立光纤通信基础上配电网馈线系统保护新原理和新概念。馈线系统保护充分吸取了高压线路纵联保护特点,利用馈线保护装置之间快速通信一次性实现对馈线故障故障隔离、重合闸、恢复供电功能,将馈线自动化实现方式从集中监控模式发展为分布式保护模式,提高配电自动化整体功能。 关键词:配电网馈线自动化系统保护 馈线自动化就是监视馈线的运行方式和负荷。由于目前国内配电网自动化系统尚没有统一的模式,因此,不同设备、不同设计方案组成的配网自动化系统的馈线自动化实施方法就不同。本文以"手拉手"供电网为研究对象,就馈线自动化中故障自动隔离功能的解决方案进行分析探讨。馈线系统保护充分吸取了高压线路纵联保护的特点,利用馈线保护装置之间的快速通信一次性实现对馈线故障的故障隔离、重合闸、恢复供电功能,将馈线自动化的实现方式从集中监控模式发展为分布式保护模式,从而提高配电自动化的整体功能。 1馈线自动化的基本功能 馈线自动化系统应具有如下功能: ①遥测、遥信、遥控功能;②故障处理:故障区域自动判断和自动隔离,故障消除后迅速恢复供电功能;③负荷管理:根据配电网的负荷均衡程度合理改变配电网的运行方式;④重合闸控制:当发生过电流并导致断路器跳闸时启动,并在断路器一侧电压恢复时开始延时计数,从而实现沿线从电源至末端依次重合,若一次重合失败则不再重合;⑤对时功能;⑥过电流记录功能;⑦事件顺序记录(SOE)功能;⑧定值的远方修改和召唤功能;⑨停电后仍维持工作的功能。 2线路故障区段查找的基本原理 2.1馈线故障区段的定位: 对于辐射状网、树状网和处于开环运行的环状网,在判断故障区域时,只须根据馈线沿线各断路器是否流过故障电流就可以判断故障区段。假设馈线上出现单一故障,显然故障区段位于从电源侧到线路末端方向最后一个经历了故障电流的断路器和第一个未经历故障电流的断路器之间。 2.2事故跳闸断路器的定位: 事实上,由于种种原因,线路故障时,未必是第一个经过故障电流的断路器跳闸,极有可能越级跳闸。例如图1中e点故障,分段断路器3没有跳开而是断路器2跳开。根据断路器位置不能判断故障区段,但根据是否流过了故障电流却能够做出正确判断(断路器1、2、3经历了故障电流而断路器4却没有经历,从而得出故障区段在e段的结论)。 图1 手拉手供电线路示意图 为了确定各断路器是否经历了故障电流,需对安装于其上的各台FTU进行整定,由于从原理上不是通过对各台断路器整定值的差别,来隔离故障区段的,因此多台断路器可以采用同一定值。这样即使增加馈线上的分段数目也不会带来任何影响。 而故障区段隔离后,越级跳闸的断路器要复位,对于事故后跳闸断路器的准确定位是非故障区段自动恢复供电的关键。

相关文档
最新文档