电视视频信号波形、标准及说明

电视视频信号波形、标准及说明
电视视频信号波形、标准及说明

电视视频信号波形、标准及说明.

分类:视频开发其他基础知识2011-01-22 11:57 1156人阅读评论(2) 收藏举报

——本文主要以ET521-F1产生信号和用ET 521A测量波形

一.彩色全电视信号(复合视频信号CVBS)简述

1.视频信号

视频信号包括图像信号(正程)和消隐信号(逆程)。我国的彩色电视视频信号采用PAL制式。视频信号是以扫描方式传送的,信号扫描每秒25帧(完整的一幅图像),每帧625行,分为奇数行和偶数行两场的隔行扫描——即每秒50场,每场312.5行。图像信号在扫描的正程,扫描方向是由左至右、由上至下。奇数行的场的首行在屏幕的左上端起始,末行在屏幕下方中间结束;偶数行的场的首行在屏幕上方中间开始,末行在屏幕的右下端结束;两场的扫描行穿插组成完整的一帧图像。就是说相邻两场信号的起始、结束的相位是不一样的。场扫描频率为50Hz,周期为1/50 s=20ms;行扫描频率为25×625(50×312.5)=15625Hz,周期为1/15625 s=64μs。视频信号的标称视频带宽度为6MHz(亮度细节的最高频率为6MHz)。

扫描的返回——逆程与正程的扫描方向相反,形成行消隐和场消隐信号。

2.图像信号

图像信号包括亮度信号Y和色度信号C。色度信号C解码为V和U信号。单独以Y信号得到的是黑白图像;Y和U、V信号经矩阵变换还原为红(R)、绿(G)、蓝(B)三基色信号,再混色显示为彩色图像。

色差信号(R-Y、B-Y)即基色与亮度信号差值的信号。V信号即经过压缩的红色差信号,V=0.877(R-Y);U信号即经过压缩的蓝色差信号,U=0.493(B-Y)。有时也用R-Y、B-Y来分别表示V、U信号。由于有Y=0.3R+ 0.59G+0.11B(0.299R+ 0.587G+0.114B)的关系,传送Y、R-Y、B-Y信号时,G信号就含在Y信号中间了。

亮度信号在电视的高频信号中是调幅的,视频信号中不同的平均直流电平表示不同的亮度级别。通常用八级阶梯亮度视频信号反映黑白图像的八级亮度层次,见图1。

色度信号是以4.43(4.43361875)MHz的彩色副载波调制的。V、U信号以90°的相位差正交平衡调制在副载波上,V、U的调制信号FV、FU混合成色度信号C,其中的FV是逐行倒相的。彩色信号是既调幅又调相的。调幅中,信号的平均直流电平反映亮度,交流幅度反映色饱和度(色饱和度为0时,副载波幅度为0;色饱和度增大,副载波幅度增大)。调相中,副载波的相位反映彩色的色调(不同的颜色)。色度信号的波形见图2。

我们用普通示波器可以观测视频信号的频率、幅度、波形,但是相位却不易观测到。为了方便观测彩色信号的波形,我们通常采用八彩条的视频信号,波形见图3。

八彩条信号的八阶梯直流电平代表白到黑的八级亮度。白、黄、青、绿、紫、红、蓝、黑共八条彩条是由于红、绿、蓝三基色在八彩条的特定位置出现:绿色在1、2、3、4,红色在1、2、5、6,蓝色在1、3、5、7。由于相邻的重合,形成特有的波形:绿每行一脉冲,红每行二脉冲,蓝每行四脉冲。绿、红、蓝信号(彩色解码输出)波形见图4、图5、图6。

彩色信号C经梳状滤波器分离的FV、FU再经同步检波得出的色差信号R-Y、B-Y,也有特定的波形,见图7、图8。

检测彩电时,输入八彩条信号,看屏幕上的颜色是否和标准相对应;还可以用示波器观看R-Y、B-Y及G、R、B信号的特定波形,就可以判别电视机的视频、彩色解码电路是否正常(不必看色副载波的相位)。彩色视频信号的解码过程见图9。

近期的电视机采用了大规模集成电路,图9中的一些电路都集成到集成电路内部。多制式、多种输入、画中画、倍频数字处理等电路,令信号流程复杂化,但是一般都可以找出Y、C、V(R-Y)、U(B-Y)、R、G、B等基本信号及波形。

为了方便观察信号的波形,各种电视维修图纸上标注的信号波形大多以八彩条信号输入时在各部位所测的波形。

3.消隐信号

视频信号除了传送图像信号,还传送消隐信号。行逆程期传送行消隐信号,场逆程期传送场消隐信号。把正程的图像信号的白电平定在0.7V,黑电平0V,消隐信号的电平则在0V以下(0—-0.3V),所以消隐信号在黑色区,不会显示在屏幕上(图文电视等在逆程期传送的信息需要经过转换后才可以在正程期显示出来)。

为了使接收端的显示与发送端的信号同步,在场消隐和行消隐信号中分别加入了场同步和行同步脉冲。为了使奇数场和偶数场的扫描正确地衔接,在场同步脉冲的前后分别加入了前均衡和后均衡脉冲。为了彩色解码的需要,在行同步脉冲的后面还加上色同步脉冲。

二.视频信号的标准及定性定量分析

1.视频信号的标准

图像信号幅度0.7V,行、场同步脉冲幅度0.3V(与图像信号反向),峰—峰值Vp-p=1.0V

实际应用中,Vp-p在0.9—1.2V(75Ω输入负荷)之间。Vp-p 过小,图像暗淡、同步不稳;Vp-p过大,图像失真、亮度层次变差。

普通的示波器不能显示一帧或一场视频信号波形的细节(含数百行的众多信息)。通常用一行信号的波形代表视频信号的波形。八彩条信号在一场扫描的正程中各行的波形是基本

一样的(彩色V信号的逐行倒相在波形中反映不出来),所以一般的电视维修图纸常用一行的八彩条信号作为视频信号的波形(见图3)。

标准的视频信号是带直流成分的,其同步信号的起点电平和波形幅度是一致的。但是,很多视频设备(影碟机、数字电视机顶盒等)在视频输出中用了隔直流的电容,信号中的直流成分变了,会引起有的电视接收设备的图像同步不稳和灰度失真。一般的电视机都有信号的直流电平恢复电路,不同的电视机恢复能力不一样,对视频信号的要求也会不一样。

2.场消隐信号

一般观测电视的场信号只观测场消隐,场消隐脉冲总宽度为1612μs(25行周期+12μs)。场消隐包含前均衡5个脉冲、场同步脉冲(开槽)、后均衡5个脉冲和场逆程期的行同步脉冲。前、后均衡脉冲和场同步脉冲波形见图10。

维修电视时,场信号只需观测场同步脉冲。场同步脉冲幅度为0.3V,脉冲总宽度为160(5×27.3+5×4.7)μs,重复周期为20 ms。为了保证在场消隐期间的行同步,在场同步信号中开5个槽,槽宽度4.7μs,场同步信号成了5个宽度27.3μs的同步脉冲和5个宽度4.7μs的间隔。用ET 521A的视频模式直接进入示波,就可以看到场同步信号的波形,见图11。

场同步信号幅度过小或起点与黑电平相对位置不稳定(直流电平偏离),就会场不同步或场抖动。有的数字电视机顶盒输出的视频信号中,画面的变换引起场同步信号的直流偏离较大,连接的有些电视机会场不同步地跳动,波形见图12。

3.行频信号

一行的扫描周期为64μs,图像信号的标准幅度为0.7V±20mV。通常用行周期来观测视频信号。

如果要看图像的亮度层次,宜用八阶梯黑白信号(见图1),可用于白平衡调整、副对比度调整、副亮度调整。白平衡调整要求在屏幕上显示的八阶梯亮度都显示为黑、灰、白而不偏色。副对比度和副亮度的调整,在屏幕上看为得到足够大的对比度而亮度的各层次仍分得清楚;在信号的波形上看为信号幅度足够大而各阶梯的层次仍分隔准确。

如果要看图像的彩色状况,可用八彩条信号(见图3)或用单色信号,单色信号的波形见图13。红、绿、蓝的单色信号的彩色副载波的相位是不一样的,但波形是分不出来的。

4.行消隐信号

行消隐信号包含行同步和色同步信号,行消隐脉冲总宽度为12±0.3μs。行同步信号脉冲的起点在黑电平,标准幅度为0.3V±9mV,方向在与图像信号相反的黑电平之下,脉冲宽度为4.7±0.2μs,行同步信号的重复周期为64μs。色同步信号脉冲在行同步脉冲之后肩,与行同步脉冲前沿间隔5.6μs±0.1μs,对称于黑电平上下,标准幅度为0.3V±9mV;色同步信号包含10±1个频率为4.43MHz的彩色副载波脉冲,持续宽度为2.25±0.23μs。行同步和色同步信号的波形见图14。

PAL制的倒相识别脉冲隐藏在行消隐之中,在彩色解码过程中被恢复。倒相识别脉冲的频率为1/2行频即7.8(7.8125)KHz,脉冲宽度为8±0.2μs。

5.NTSC信号简述

NTSC信号的场频率为60Hz,周期约16.7ms;行频率为15.750KHz(30帧、525行),周期约63.49μs。彩色副载波频率为3.58(3.579545)MHz.,采用没有逐行倒相的平衡正交调制。色同步信号为8—11个频率为3.58MHz的彩色副载波脉冲。

NTSC信号(八彩条信号)的波形见图15。

NTSC的场同步信号波形见图16。

NTSC场同步信号的波形与PAL的不同,PAL的场同步信号分为5个脉冲而NTSC的分为6个。

三.信号分析对电视维修的作用

1.视频信号分析

视频信号和伴音信号经高频调制后,以无线发射或有线传输的方式传送到用户的电视机。电视信号经高频接收、中频处理后,还原出伴音信号和图像视频信号。电视的维修一般在中频之后开始用示波器观测伴音信号和图像信号。

熟悉了电视的视频标准信号的波形,有助于检测和分析电视机里的实测波形。近年来电视机的多制式,画中画,AV、TV切换,倍频、数字处理等电路使得电视机的视频信号的控制和信号走向复杂化。在无图像或图像、彩色不正常的维修中,除了要分析信号的控制、切换状态,还要沿信号的走向来检测信号是否正常(信号的类型不同、制式不同,走向会不同)。用示波器测量视频信号及解码过程的信号波形,就显得十分重要。一般的电视信号,波形会随图像变化而变化,而且不容易看出是否带彩色;若用八彩条信号输入,就可得到较为稳定和容易辨认的波形,有利于定性和定量的分析。

有的时候,需要观看或调整电视机的黑白平衡,就要输入黑白视频信号(亮度信号),常用八阶梯黑白信号(见图1)。来自信号源的亮度信号,即黑白视频信号,是带有同步信号的;而在电视机里实测的亮度信号,有的因为经过处理,是不带同步信号的,波形见图17。

图像出现干扰的故障,可输入白场或黑场信号,波形见图18、图19。信号的波形简单,R-Y、B-Y、R、G、B都呈直线,沿信号走向用示波器检测,容易找出产生干扰纹的地方。

当电视机出现偏色故障时,可以输入黑白信号检查。若仍然偏色,是黑白平衡失调、显像管驱动或显像管本身的故障;若黑白正常,是彩色解码故障或两个色差信号其中的一路有故障,

可用示波器检查。

实际的电视视频电路中,信号的幅度、极性(波形上下反向)会在不同的检测位置有所变化。所以,很多电视机的维修图纸上,会在不同的测量位置标出信号的波形及测量标准(一般以八彩条信号为准)。

在电视机的相关测试点测量时,当电视机的对比度调整加大时,视频信号的幅度会相应加大;亮度加大时,信号的直流电平会加高;色饱和度加大时,信号中的彩色副载波的幅度会加大。老式电视机是用直流电平的高低调整的,现在的电视机多以数据总线来调整。

除了了解切换状态、信号走向,还要了解一些特殊的切换。例如,蓝屏的控制:当接收到的信号较差,CPU检测判别后,切断外信号而转换为内部的蓝屏信号(或判别电路本身的故障引起误判的动作)。一些IC也有切断信号的功能,如TA8889的第8脚电平升高时,会切断R、G、B信号而成黑屏;CXA1587的32、33、34脚其中一个脚的电压被拉低后,会切断B、G、R的输出而黑屏……。

电视机的ABL、IK等保护电路动作时也会切断图像信号或拉低图像信号的幅度。

就是说,在了解电视机的工作状态和切换状态的情况下,测量视频信号和解码过程的信号波形,是电视机视频电路检修的基本方法。

2.模拟—数字信号的转换和过渡

电视信号的数字处理,使传统的模拟信号的波形产生了变化。

画中画处理,令图像信号的波形变化了;倍频、逐行扫描等处理,令图像信号的频率(周期)发生了变化……。

信号的模拟——数字转换后,信号的波形变得完全不一样了。通常无压缩的数字图像信号可以用一组八条线的0—1电平的数字脉冲来传送。例如,Y0—Y7,C0—C7,R0—R7,G0—G7,B0—B7……。还有更复杂的数字调制信号,它们是以特定方式编码后的0—1电平的数字脉冲串。有些数字脉冲可以用示波器观看,但信号的分析就不像模拟信号的波形分析那样直观了。近年来的电视、音像设备的电路板上有的会带有专门的数字接口,可以连接电脑进行信号的数据分析和处理。

数字电视从后期制作到调制传送,从接收解调到显示驱动,都可以进行完全数字化的处理,可以得到的完全是数字信号。但是,模拟电视机还大量的存在,从模拟到数字电视的转化需要有一个过渡时期。机顶盒就是把数字信号转为模拟信号的重要工具。普通的模拟电视机还会在数字电视到来后相当长的一段时间内发挥作用。

视频信号的方式只能传送400线以下的图像信号;720线以上的高清信号要用R、G、B、HD、VD的模拟方式传送,更好的是用DVI或HDMI的数码方式传送。

3.同步信号分析

同步信号用于扫描偏转的同步,彩色解码,画中画,图文电视,倍频、逐行等数字处理,字符产生,CPU保护(有些电视机在开机一段时间内,电脑主控集成块CPU若收不到行、场振荡返回的同步信号,会保护动作、切断电源)。

同步信号的走向较为复杂,不同的处理电路,不同的制式,会切换到不同的走向。检修同步电路需要检查切换状态和沿同步信号的走向用示波器测量波形。要注意的是,同步信号(SYNC)往往是视频信号或亮度信号。要在同步分离和场同步的积分、行同步的微分电路后,才得到场和行的同步信号,而这些电路可能会集成到大规模集成电路内。同步信号可用示波器的视频模式,场同步或行同步去观测;或用常规模式去观测视频状态的同步信号。

来自电视信号中的同步信号与机内产生的振荡信号比较,产生行和场的驱动信号HD和VD。不同的电视机的HD、VD信号的波形和幅度会不一样。HD和VD的波形可参考图20和图21。

电视机内的行、场振荡早期是用压控振荡电路产生的,现多以晶振(500—503KHz或4.43MHz)分频产生的。有的电视机的行、场和3.58MHz振荡都是由4.43MHz分频产生的。

为了使行扫描的相位准确、稳定,HD的产生中还需要从行扫描输出中反馈一个行逆程脉冲——沙堡脉冲来与电视信号中的行同步信号比较,产生误差校正电压去控制HD的相位,使行扫描输出与所接收的电视信号的扫描同步。沙堡脉冲一般取自行输出的次级绕组(如灯丝电压)或初级反峰压的电容分压点,取正脉冲。这个沙堡脉冲(行逆程脉冲),常作为行同步信号(H.SYNC)送到电视机的CPU用作字符的产生或行振荡停止保护的检测。这个沙堡脉冲还送到彩色解码电路,作为PAL制式彩电信号的彩色解码的同步信号。电视机接收PAL 信号的无彩色或彩色不稳定时,若接收NTSC信号的彩色正常的情况下,除了是晶振的故障,就很可能是沙堡脉冲没有正确送到(缺信号或幅度不足)。不同型号的电视机和电视机的不同测量点的沙堡脉冲的波形和幅度会不一样。沙堡脉冲的波形可参考图22。

在电视机的维修中,色同步信号的观测也很重要。当电视机的中放特性没调好(中周偏调)或视放电路故障(频率特性变差)时,会造成图像失真、模糊、色彩不正常,在信号波形上表现为行消隐信号的行同步后肩变形(往上翘)、色同步信号不正常或消失。

本文着重于电视信号本身的分析,具体电视机内视频信号的实测,行、场同步及扫描电路波形的实测,需另文讨论

杜毓穗2009-3

注1:ET521-F1没有黑白视频信号(亮度信号Y)输出,可从ET521-F1的电路板底部的贴片IC的11脚(1脚靠近4.43MHz晶振)引出,串接100μ电容和62Ω电阻。

注2:ET521-F1输出不带直流成份(串有电容),所测的信号波形直流电平会有偏离。

视频输入输出接口和信号格式

视频输入输出接口和信号格式 一、传输接口 按照发展先后来概述: (1)CVBS:Composite Video Broadcast Signal,复合视频广播信号。 它是最早期的一种图像数据传输方法,是将模拟视频信号和声音信号结合,并调制到视频载波之前的一种格式。复合视频包含色差(色调和饱和度)和亮度信息,并将它们同步在消隐脉冲中,用同一信号传输。这种接口有3根线:白(左声道)、红(右声道)、黄(视频信号),如图所示: 由于是采用亮度和色度信号频谱间置方法复合在一起,所以会导致亮、色的串扰以及清晰度降低等问题。 (2)S-video:即S端子,它是将亮度信号Y和色度信号C分开传输,这样就可确保亮度和色度信号不相互干扰。 (3)VGA:Video Graghic Array,又叫显示绘图阵列,它采用非对称分布的15Pin 连接方式,共有15针,分成3排,每排5个孔。 (4)DVI:Digital Visual Interface,即数字视频接口。它采用全数字传输,可有效降低干扰和提高性能。对于DVI接口,有很多规范,常见的是DVI-D(Digital)和DVI-I(Integrated),DVI-I只能传输数字信号,可以用它来连接显卡和平板电视等。 (5)HDMI:High Definition Multimedia Interface,即高清晰度多媒体接口。它与DVI不同,可以同时传输视频和音频信号,由于音频和视频信号采用同一条电缆,可大大简化系统的安装。 除了上述有代表性的接口之外,另外还有一些典型接口,比如:色差分量接口(三基色输入)、SCART(欧洲通用视频接口)、BNC端口输入(R、G、B、行同步、场同步5个连接头),SDI(串行数字接口)等等。 二、视频输出的数字信号格式 相关名词: ITU:International Telecommunications Union (国际电信联盟)

电脑主板工作信号名词解释集合

电脑主板工作信号名词解释之RSMRST# (1) 电脑主板工作信号名词解释之PWRBTN#及IO_PWRBTN# (2) 电脑主板工作信号名词解释之SLP_S3# SLP_S5#及SUSB# SUSC# (3) 电脑主板工作信号名词解释之PSON# (4) 电脑主板工作信号名词解释之VCORE_EN VTT_PWRGD (4) 电脑主板工作信号名词解释之PWROK SB_PWROK NB_PWROK (5) 电脑主板工作信号名词解释之RSMRST# RSMRST# IO芯片的准备好信号,就是IO的供电3VSB,BATT正常后IO就会送出该信号 RSMRST#正常后IO芯片才会正常工作,所以在修不触发的板子时,这是一个关键测试点 该信号在电脑接通电源后就应该一直保持在3V左右的高电平 该信号一般是3VSB经过一个K级以上电阻提供上拉,常见的4.7K,8.2K等 如果该信号没有或偏低,需检查其上拉电阻,有时主板该信号会连着网卡芯片,所以此信号不正常时需拆掉网卡芯片看是否是网卡芯片把它拉低了,然后就是更换IO芯片,然后就是南桥了,有部分主板(SIS芯片组的最常见)RSMRST#信号同时也会送给北桥,如华硕的P5SD2-A P5SD2-VM等 电脑主板工作信号名词解释之RTCRST# BATOK# SYSRST# RTCRST# BATOK# SYSRST# 这几个信号其实就是同一个信号,只是在不同的芯片组中表示的不一样 RTCRST#一般在INTEL芯片组及NVIDIA芯片组的电路图中标识(有些地方标识的RTC_RST#) BATOK#一般在SIS芯片组的电路图中标识 SYSRST#一般在AMD芯片组的电路图中标识 这些信号一般可以理解为CMOS跳线电压准备好,如BATOK#就很好理解,BAT代表CMOS电池电压,OK那就是准备好了的意思,连起来就是CMOS电池电压准备好 这些信号大部分是从CMOS跳线的中间一针直接连着南桥给南桥提供最基本的供电,使南桥的32.768晶振起振,不过也有少数主板会经过一些电阻再接到南桥 我们都知道32.768晶振不起振电脑就不能开机(部分主板可以开机),所以这个RTCRST# BATOK# SYSR

数字化视频采集技术

摘要: 介绍了视频的模式、数字化视频的采样方式以及各种压缩算法。 关键词:视频模型;数字化视频,信号采集;压缩算法 中图分类号:TP37 文献标识码:B 文章编号:1004-373X(2003)09-012-03 随着信息技术的不断发展,人们将计算机技术引入视频采集、制作领域,传统的视频领域正面临着模拟化向数字化的变革,过去需要用大量的人力和昂贵的设备去处理视频图像,如今已经发展到在家用计算机上就能够处理。用计算机处理视频信息和用数字传输视频信号在很多领域有着广泛的应用前景。 1 视频模型 中国和欧洲采用的电视制式是PAL制(逐行倒相制),美国和日本采用的NTSC制,一个PAL信号有25fb/s 的帧率,一个NTSC制信号有30fb/s的帧率。视频信号在质量上可区分为复合视频(Composite),S-Vide,YUV和数字(Digital)4个级别。复合视频,VHS,VHS-C和VideO8都是把亮度、色差和同步信号复合到一个信号中,当把复合信号分离时,滤波器会降低图像的清晰度,亮度滤波时的带宽是有限的,否则就会无法分离亮度和色差,这样亮度的分离受到限制,对色差来讲也是如此。因此复合信号的质量比较一般,但他的硬件成本较低,目前普遍用于家用录像机。S-Vide,S-VHS,S-VHS-C和Hi8都是利用2个信号表现视频信号,即利用Y表现亮度同步,C信号是编码后的色差信号,现在很多家用电器(电视机,VCD,SHVCD,DVD)上的S端子,是在信号的传输中,采用了Y/C独立传输的技术,避免滤波带来的信号损失,因此图像质量较好。YUV视频信号是3个信号Y,U,V组成的,Y是亮度和同步信号,U,V是色差信号,由于无需滤波、编码和解码,因而图像质量极好,主要应用于专业视频领域。数字及同步信号利用4个信号:红、绿、蓝及同步信号加于电视机的显像管,因此图像质量很高。还有一种信号叫射频信号,他取自复合视频信号,经过调制到VHF或UHF(UltraHigh Frequency),这种信号可长距离发送。现在电视台就采用这种方式, 通过使用不同的发射频率同时发送多套电视节目。 模拟视频信号携带了由电磁信号变化而建立的图像信息,可用电压值的不同来表示,比如黑白信号,0 V表示黑,0.7V表示白,其他灰度介于两者之间;数字视频信号是通过把视频帧的每个象素表现为不连续的颜色值来传送图像资料,并且由计算机使用二进制数据格式来传送和储存象素值,也就是对模拟信号进行A/D 转换后得到的数字化视频信号。数字视频信号的优点很多: (1)数字视频信号没有噪声,用0和1表示,不会产生混淆,而模拟信号要求屏蔽以减少噪声。 (2)数字视频信号可利用大规模集成电路或微处理器进行各类运算处理,而模拟信号只能简单地对亮度、对比 度和颜色等进行调整。 (3)数字视频信号可以长距离传输而不产生损失,可以通过网络线、光纤等介质传输,很方便地实现资源共享, 而模拟信号在传输过程中会产生信号损失。 2 数字化视频采集 NTSC和PAL视频信号是模拟信号,但计算机是以数字方式显示信息的,因此NTSC和PAL信号在能被计算机使用之前,必须被数字化(或采样)。一个视频图形适配器(通常叫做抓帧器或视频采集卡)经常被用来数字化视频模拟信号,并将之转换为计算机图形信号。视频信号的数字记录需要大量的磁盘空间,例如,一幅640X480中分辨率的彩色图像(24b/pixel),其数据量约为0.92Mb/s,如果存放在650MB的光盘中,在不考虑音频信号的情况下,每张光盘也只能播放24s,使用如此巨大的磁盘空间存储数字视频,是大多数计算机用户所无法接受的。在这种情况下,将视频带到计算机上,以有效的帧率播放存储信息,是使用计算机处理视频能力的最大障碍,鉴于此种情况,我们采用数据压缩系统和帧尺寸、色彩深度和图像精度折衷的办法,对视频数据进行压缩,以节省磁盘存储空间,数字化视频采集技术也就变成了现实。 数字化视频的过程,通常被叫做数字化视频采集。模拟信号到数字信号的转换中通常用8b来表示,对于专业或广播级的信号转换等级会更高。对于彩色信号,无论是RGB还是YUV方式,只需用24b来表示。因此采样频率的高低是决定数字化视频图像质量的重要指标,如表1所示。

常见视频信号传输特性(精)

常见视频信号传输特性 1. 分量视频(Component Signal) 摄像机的光学系统将景像的光束分解为三种基本的彩色:红色、绿色和蓝色。感光器材再把三种单色图像转换成分离的电信号。为了识别图像的左边沿和顶部,电信号中附加有同步信息。显示终端与摄像机的同步信息可以附加在绿色通道上,有时也附加在所有的三个通道,甚至另作为一个或两个独立的通道进行传输,下面是几种常见的同步信号附加模式和表示方法: - RGsB:同步信号附加在绿色通道,三根75Ω同轴电缆传输。 - RsGsBs:同步信号附加在红、绿、蓝三个通道,三根75Ω同轴电缆传输。 - RGBS:同步信号作为一个独立通道,四根75Ω同轴电缆传输。 - RGBHV:同步信号作为行、场二个独立通道,五根75Ω同轴电缆传输。 RGB分量视频可以产生从摄像机到显示终端的高质量图像,但传输这样的信号至少需要三个独立通道分别处理,使信号具有相同的增益、直流偏置、时间延迟和频率响应,分量视频的传输特性如下: - 传输介质:3-5根带屏蔽的同轴电缆 - 传输阻抗:75Ω- 常用接头:3-5×BNC接头 - 接线标准:红色=红基色(R)信号线,绿色=绿基色(G)信号线,蓝色=蓝基色(B)信号线,黑色=行同步(H)信号线,黄色=场同步(V)信号线,公共地=屏蔽网线(见附图VP-03) 2. 复合视频(Composite-Video)

由于分量视频信号各个通道间的增益不等或直流偏置的误差,会使终端显示的彩色产生细微的变化。同时,可能由于多条传输电缆的长度误差或者采用了不同的传输路径,这将会使彩色信号产生定时偏离,导致图像边缘模糊不清,严重时甚至出现多个分离的图像。 插入NTSC或PAL编解码器使视频信号易于处理而且是沿单线传输,这就是复合视频。复合视频格式是折中解决长距离传输的方式,色度和亮度共享 4.2MHz(NTSC)或 5.0-5.5MHz(PAL)的频率带宽,互相之间有比较大的串扰,所以还是要考虑频率响应和定时问题,应当避免使用多级编解码器,复合视频的传输特性如下: - 传输介质:单根带屏蔽的同轴电缆 - 传输阻抗:75?- 常用接头:BNC接头、莲花(RCA)接头 - 接线标准:插针=同轴信号线,外壳公共地=屏蔽网线(见附图VP-01) 3. 色差信号(Y,R-Y,B-Y) 对视频信号进行处理而传输图像时,RGB分量视频的方式并不是带宽利用率最高的方法,原因是三个分量信号均需要相同的带宽。 人类视觉对亮度细节变化的感受比彩色的变化更加灵敏,因此我们可以将整个带宽用于亮度信息,把剩余可用带宽用于色差信息,以提高信号的带宽利用率。 将视频信号分量处理为亮度和色差信号,可以减少应当传输的信息量。用一个全带宽亮度通道(Y)表示视频信号的亮度细节,两个色差通道(R-Y和B-Y)的带宽限制在亮度带宽的大约一半,仍可提供足够的彩色信息。采用这种方法,可以通过简单的线性矩阵实现RGB与Y,R-Y,B-Y的转换。色差通道的带宽限制在线性矩阵之后实现,将色差信号恢复为RGB分量视频显示时,亮度细节按全带宽得以恢复,而彩色细节会限制在可以接受的范围内。 色差信号也有多种不同的格式,有着不同的应用范围,在普遍使用的复合PAL、SECAM和NTSC制式中,编码系数是各不相同的,见下表:

主板检测卡各指示灯说明

一、主板检测卡各指示灯说明 BIOS灯:为BIOS运行灯、正常工作时应不停闪动 CLK灯:为时钟灯、正常为常亮 OSC灯:为基准时钟灯、正常为常亮 RESET灯:为复位灯、正常为开机瞬间闪一下,然后熄灭 RUN灯:为运行灯、工作时应不停闪动 +12V、-12V、+5V、+3.3V灯正常为常亮 二、常见代码检修 1、00、CO、CF、FF或D1 测BIOS芯片CS有无片选: (1)、有片选:换BIOS、测BIOS的OE是否有效、测PCI的AD线、测CPU复位有无1.5V--0V跳变 (2)、无片选:测PCI的FRAME、测CPU的DBSY ADS#,如不正常则北桥坏、若帧周期信号不正常则南桥坏 2、C0 CPU插槽脏、针脚坏、接触不好 换电源、换CPU、换转接卡有时可解决问题 刷BIOS、检查BIOS座 I/O坏、北桥虚焊、南弱桥坏 PCB断线、板上粘有导电物 3、C1、C3、C6、A7或E1 内存接触不良(用镊子划内存槽) 测内存工作电压SDRAM (3.3V),DDR(2.5和1.25V) 测时钟(CLK0~CLK3) CPU旁排阻是否损坏 测CPU地址线和数据线 测DDR的负载排阻和数据排阻 北桥坏 4、C1~05循环跳变 测32.768MHZ是否正常 BIOS损坏 I/O或南桥损坏 5、C1、C3、C6 刷BIOS、检查BIOS座 换电源、换CPU,换转接卡有时可解决问题 PCB断线、板上粘有导电物 换内存条,PC100、PC133,或速度更快更稳定的内存 换内存插槽,有些主板的内存条插槽要先插最靠里面或最靠外面的槽才可工作 目测内存槽是否有短路等机械类损坏现象 没内存的CLK0、CLK1、CLK2、CLK3、CLK4,内存主供电 打阻值检查是否有断路现象 换I/O芯片、北桥虚焊或北桥坏 6、循环显示C1-C3或C1-C5 刷BIOS

视频信号数字化处理后所带来的信号损伤和畸变的种类及特点.

视频信号数字化处理后所带来的信号损伤和畸变的种类及特点 视频信号数字化处理后所带来的信号损伤和畸变的种类及特点 电视信号数字化处理需要三个步骤,即:取样、量化和编码,下面就各个步骤来分别介绍它们给视频信号带来的损伤。 一取样过程产生的信号损伤 在取样的过程中对信号造成的损伤主要有:孔阑效应、混叠效应、过冲和振铃。为了说明这些损伤所产生的原因,我们在以下叙述中给出分析结果。 取样是指用每隔一定时间的信号样值序列来代替原来在时间上连续的信号,也就是在时间上将模拟信号离散化。根据奈奎斯特取样定理:对于最大频率为fm的信号f(t),当取样频率fs不低于2fm时,由截止频率为fm矩形低通滤波器可以从取样信号中完全恢复原信号。但实际的物理过程与数字模型有不同的工程结果。 1. 孔阑效应 在数学模型的理想化状态下理想的取样脉冲宽度为无穷窄,取样情况及其频域情况如图一所示,但在实际设备中取样脉冲只能是有限宽度的脉冲,它的取样情况及其频域情况如图一所示,很显然具有不等于零的实际的有限宽度的取样脉冲所引起的孔阑效应会产生高频衰落。 由于信号的高频部分反映的是视频图象的细节,因此高频衰落会导致视频画面的细节模糊。针对这种情况实际工程中一般采用在将数字信号恢复成模拟信号以后通过提升高频的办法对这种失真进行补偿和校正。一般来讲,由于取样信号的频率fs必须满足fs>2fm,而为了减少孔阑效应要求取样脉冲的宽度τ尽量小,因此要满足τ远远小于取样信号的周期T,即取样信号的脉冲宽度要满足1/τ>>2fm。 2.混叠效应 在实际应用中,为满足奈奎斯特定理在取样之前应使用截止频率为取样频率一半的滤波器对原信号进行滤波,滤除可能产生频谱混叠的高频成分,以保证新处理的信号是一个有限带宽的处理信号。理想低通滤波器特性如图二所示,但实际的低通滤波器性能如图三所示,因此为了尽量滤除大于1/2fc的频率成分,就要选择多阶滤波器。如果滤波器的阶数不足以达到滤除1/2fc以上的高频分量,会引起恢复的信号中频谱混叠效应。混叠效应在视频图象上表现为一种被称为morie的涟漪状的干扰。 3.过冲和振铃

NB各种信号说明

主板上各种信号说明 一、CPU接口信号说明 1. A[31:3]# I/O Address(地址总线) ν这组地址信号定义了CPU的最大内存寻址空间为4GB.在地址周期的第一个子周期中,这些Pin传输的是交易的地址,在地址周期的第二个子周期中,这些Pin传输的是这个交易的信息类型. 2. A20M# I Adress-20 Mask(地址位20屏蔽) ν此信号由ICH(南桥)输出至CPU的信号.它是让CPU在Real Mode(真实模式)时仿真8086只有1M Byte(1兆字节)地址空间,当超过1 Mbyte位空间时A20M#为Low,A20被驱动为0而使地址自动折返到第一个1Mbyte地址空间上. 3.ADS#(ADS# 是RESET CPU後的第一個系統訊號去和北橋溝通) I/O Address Strobe(地址选通) ν当这个信号被宣称时说明在地址信号上的数据是有效的.在一个新的交易中,所有Bus上的信号都在监控ADS#是否有效,一但ADS#有效,它们将会作一些相应的动作,如:奇偶检查、协义检查、地址译码等操作. 4. ADSTB[1:0]# I/O Address Strobes ν这两个信号主要用于锁定A[31:3]#和REQ[4:0]#在它们的上升沿和下降沿.相应的ADSTB0#负责REQ[4:0]#和A[16:3]#,ADSTB1#负责A[31:17]#. 5. AP[1:0]# I/O Address Parity(地址奇偶校验) ν这两个信号主要用对地址总线的数据进行奇偶校验. 6.BCLK[1:0] I Bus Clock(总线时钟) 这两个Clock主要用于供应在Host Bus上进行交易所需的Clock.ν 7. BNR# I/O Block Next Request(下一块请求) ν这个信号主要用于宣称一个总线的延迟通过任一个总线代理,在这个期间,当前总线的拥有者不能做任何一个新的交易. 8. BPRI# I Bus Priority Request(总线优先权请求) ν这个信号主要用于对系统总线使用权的仲裁,它必须被连接到系统总线的适当Pin .当BPRI#有效时,所有其它的设备都要停止发出新的请求,除非这个请求正在被锁定.总线所有者要始终保持BPRI#为有效,直到所有的请求都完成才释放总线的控制权. 9. BSEL[1:0] I/O Bus Select(总线选择) ν这两组信号主要用于选择CPU所需的频率,下表定义了所选的频率: 10. D[63:0]# I/O Data(数据总线) ν这些信号线是数据总线主要负责传输数据.它们提供了CPU与NB(北桥)之间64 Bit的通道.只有当DRDY#为Low时,总在线的数据才为有效,否则视为无效数据. 11. DBI[3:0]# I/O Data Bus Inversion(数据总线倒置) ν这些信号主要用于指示数据总线的极性,当数据总在线的数据反向时,这些信号应为Low.这四个信号每个各负责16个数据总线,见下表: 12. DBSY# I/O Data Bus Busy(数据总线忙) ν当总线拥有者在使用总线时,会驱动DBSY#为Low表示总线在忙.当DBSY#为High时,数据总线被释放. 13. DP[3:0]# I/O Data Parity(数据奇偶校验) ν这四个信号主要用于对数据总在线的数据进行奇偶校验. 14. DRDY# I/O Data Ready(数据准备) ν当DRDY#为Low时,指示当前数据总在线的数据是有效的,若为High时,则总在线的数据为无效. 15. DSTBN[3:0]# I/O Data Strobe Data strobe used to latch in D[63:0]#ν : 16. DSTBP[3:0]# I/O Data Strobe Data strobe used to latch inν D[63:0]# : 17. FERR# O Floating Point Error(浮点错误) ν这个信号为一CPU输出至ICH(南桥)的信号.当CPU内部浮点运算器发生一个不可遮蔽的浮点运算错误时,FERR#被

信号说明

F信号说明 F001。7:MA控制装置进入可运转状态 F000。6:SA伺服处于正常运转状态。 F001。0:AL CNC处于报警状态 F001。2:BAL 电池电压低于2。6v F001。1:RST 复位中信号 F000。0:RWD 利用输入信号RRW,NC进行倒回时 F102:MV1-8 对应的轴在移动中 F106:MVD1-8 轴方向移动信号,‘0’:正方向‘1’:负方向 F104:INP1-8 到位信号(误差小于定幅宽度) F004。6;MREF 回参考点方式确认 F003。4;MRMT 远程方式确认信号 F094:ZP1-8 完成回参考时,对应的轴输出为‘1’ F120;ZRF1-8 在绝对编码器(APC)的机床上,当建立参考点时为‘1’ F004。2;MABSM 手动绝对确认信号 F096 ZP21-8 回第2参考点完成信号(用G30功能完成) F098 ZP31-8 回第3参考点完成信号 F100 ZP41-8 回第4参考点完成信号 F116 FRP1-8 回浮动参考点信号(在自动中用G30。1指令) F000。5:STL 自动运转中信号/启动指示灯 F000。4:SPL 自动运转暂停中/停机指示灯 F000。7:OP自动运转中信号 F004。1:MMLK 机床锁住确认信号 F004。7:MDRN 空运转确认信号 F004。3:MSBK 单程序段确认信号 F004,F005 MBDT1-9 程序段选跳确认信号 F108 MMI1-8 镜象确认信号 F002。6:CUT 切削中信号 F002。3:THRD 锣纹切削中信号 F002。1:RPDO 快速移动中信号 F002。0:INCH 英制输入信号(G20指令时) F002。4:SRNMV 程序再启动信号 F007。0:MF M码读取信号(输出M码过程中) F010,F011,F012,F013 M00-M31 M码信号(M后面的数值变成二进制) F001。3 DEN 分配完成信号(用做轴移动结束后,机床侧执行M/S/T/B功能的条件)F008。0:EF (M系)外部动作信号(在G81指令定位结束时为‘1’) F009:DM00 DM01 DM02 DM30 M译码信号(PMC无须译码) F004。4:MAFL 辅助功能锁住确认信号 F014 F015 M200-M215:第2M码信号(输出) F016 F017 M300-M315:第3M码信号(输出) F008。4:MF2 第2M功能选通信号

视频信号格式

视频端口/视频信号格式(2008-12-19 10:07:59) Y”表示明亮度(Luminance或Luma),C色度(Chrominance或Chroma), YPbPr是将模拟的Y、PB、PR信号分开,使用三条线缆来独立传输,保障了色彩还原的准确性,YPbPr表示逐行扫描色差输出.YPbPr接口可以看做是S端子的扩展,与S端子相比,要多传输PB、PR两种信号,避免了两路色差混合解码并再次分离的过程,也保持了色度通道的最大带宽,只需要经过反矩阵解码电路就可以还原为RGB三原色信号而成像,这就最大限度地缩短了视频源到显示器成像之间的视频信号通道,避免了因繁琐的传输过程所带来的图像失真,保障了色彩还原的准确,目前几乎所有大屏幕电视都支持色差输入。 YCbCr表示隔行分量端子. 所说的Y Cb Cr和Y Pb Pr只是为了方便新人快速区分国产电视上隔/逐行接口而已. Cb Cr 就是本来理论上的分量/色差的标识, C代表分量(是component的缩写)Cr、Cb分别对应r(红)、b(蓝)分量信号,Y除了g(绿)分量信号,还叠加了亮度信号. 至于Y Pb Pr,是后来为了强调逐行概念,显示其飞跃性的变化,这个概念,有一定知识背景的人很容易理解,但普通用户只会更糊涂 YUV(亦称YCrCb)是被欧洲电视系统所采用的一种颜色编码方法(属于PAL)。YUV主要用于优化彩色视频信号的传输,使其向后兼容老式黑白电视。与RGB视频信号传输相比,它最大的优点在于只需占用极少的带宽(RGB要求三个独立的视频信号同时传输)。其中“Y”表示明亮度(Luminance或Luma),也就是灰阶值;而“U”和“V”表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。“亮度”是通过RGB输入信号来创建的,方法是将RGB信号的特定部分叠加到一起。“色度”则定义了颜色的两个方面—色调与饱和度,分别用Cr和CB来表示。其中,Cr反映了GB输入信号红色部分与RGB信号亮度值之间的差异。而CB反映的是RGB输入信号蓝色部分与RGB 信号亮度值之同的差异。 *****U,V分别是与蓝,红的色差.范围是16-240 一、高频或射频信号 https://www.360docs.net/doc/7613101454.html,/cword/3153.shtml 视频端口是背投电视和信号源(比如影碟机)连接的接口,通过这些端口,可以将电影等图像在背投设备上播放。视频端子有不同类型,购买背投电视时尽量挑接口齐全的产品,尤其是最常见的接口,这样可以更方便的和各种设备连接。目前最基本的视频端子是复合视频端子(也叫AV端子)、S端子;另外常见的还有色差端子、VGA端子、DV I端子、HDMI端口。 复合视频端子

海信TLM2077液晶彩电说明书

UOC3+GM5221液晶电视原理及维修简要说明—— LCD2003EU/TLM1588/TLM2077 一、方案概述 本机采用LG-PHILIPS公司的20.1英寸高亮度、高对比度、宽视角电视专用液晶屏。图像处理部分由GENESIS公司的嵌入式芯片GM5221(其中包括CPU、A/D转换、SCALER、DEINTERLACE部分),PHILIPS的模拟解码,图文,丽音处理芯片UOC3,成都旭光的频率合成式高频头TDQ-6FT/W124H等组成。 二、原理说明(参照电路图) (一)、电源部分 本机工作时有12V、5V、3.3V、1.8V、33V等多组电压。 (1) 12 V部分 由内置电源直接供给直流12V,由于内置电源是作为一个部件采购,这里就不在详细描述其工作原理。本机需要12V供电的部分有:伴音功放N601 (解码板TDA1517P)、耳机功放N600(解码板TDA2822M)、逆变器(INVERTER)、 升压模块N401(解码板BA6161N)。 ⑵5V部分 本机由集成电路U9(主板LM2576-5.0)及其外围电路构成了一个降压型开关电源。通过这个开关电源,将12V直流电压变为5V直流电压为整机供电。在这个电路中,U9相当于一个起开关作用的功率晶体管,L10(100yH)为储能电感,D3 11N5822)为续流二极管,由于工作于开关方式,使其输出负载电流大(3.0A),电源转换效率高(77%)发热量小,可以采用铜箔散热的方式。同时,本电路还具有输出限流,及在故障状况下提供完全保护的热关断功能。 (3)3.3V 部分 本机3.3V是通过两个低压差线性电压稳压器U11(主板LM1117-3.3)、N400 (解码板LM1117-3.3)、对5V直流电压进行稳压来得到。此外该芯片还具有内部限流和热关断的功能,LM1117-3.3的最大输出电流为800毫安。 ⑷1.8V部分 本机1.8V是通过两个低压差线性电压稳压器U13(主板LM1117-1.8) 对5V直流电压进行稳压来得到。此外该芯片还具有内部限流和热关断的功倉泛。 (5)33V部分

音视频输入输出信号格式与接口

第五讲音视频输入\输出信号格式与接口 一、视频信号类型及接口 我们在《音视频系统工程基础》课程中已经对音视频系统中各类常见信号接口的知识进行了学习,接下来,我们对各类信号,尤其是视频信号进行比较分析。在实际的工程技术中,随着视频清晰度的不断提高,从早期的RF信号开始,经历了AV、S-video、YCbCr\YPbPr、VGA、DVI、HDMI等各种信号类型。 1. RF:电视机上的TV接口又称RF射频输入接口,这是最早在电视机上出现的接口,用于接收从天线接收到的电视信号,目前在有线电视领域也是一个常用的接口。RF信号是视频信号(CVBS)和音频信号(Audio)混合编码生成的一种高频调制信号(RF),采用同轴电缆传输,由于音视频信号之间相互干扰较大,它的视频清晰度是视频信号中最低的,但采用75Ω阻抗的线材减少了阻抗不匹配和信号反射对于图像的影响,适合于长距离传输。 2. Video:这类接口通常与音频接口(Audio)一起称为AV接口,又称RCA接口(俗称莲花头),AV信号是对RF信号的改进,也是最常见的音视频连接方式。一般来说,传输AV信号用三根信号线,传输Video信号的线头接口用黄色表示,音频信号分为左右声道分别用红色和白色表示。AV信号的改进之处在于将视频信号和音频信号分离传输,在成像方面很大程度避免了视频与音频相互干扰对画质的影响,但由于Video信号依旧是将亮度信号和色度信号进行混合传输,因此,也称Composite复合视频端口,需要在终端显示设备上需要进行对亮度和色度的分离,色度、亮度的相互干扰以及分离过程造成的信号损失使得画面并不是特别出色,水平清晰度在300电视线左右。目前,AV接口广泛用于电视与DVD连接,也是每台电视必备的接口之一。 3. S-video:称为S端子,是Super-Video(超级视频信号)或Separate-Video(分离视频信号)的简称。S-video接口分别用两条75欧的同轴电缆传输模拟视频信号,一条电缆传送亮度信号,另一条电缆传送色度信号。S-video与Video不同的是将亮度和色度信号分开传输,减少了影像在“分离”、“合成”转换过程中的信号损失,降低了设备内信号干扰而产生的图像失真,能够有效的提高画质的清晰程度。S端子支持设备最大显示分辨率为1024*768,常见的S-video接口有三种:4针、7针和9针。目前,电视机、影碟机、投影机等设备配接的都是4针插头,而实际上是一种五芯接口,由两路亮度信号(亮度信号和亮度信号接地)、两路色度信号(色度信号和色度信号接地)和一路公共屏蔽地线共五条芯线组成,使用时要注意插入的方向和位置,以免弄弯针头。 4. YCbCr\YPbPr:YCbCr\YPbPr指分量信号(Component)也称色差信号,实质上是将S-video的色度信号再分解为色差Cr、Cb,这样就避免了两路色差混合编码和分离的过程。一般利用三根信号线将视频信号分离成亮度(Y)信号和两路色差信号(去掉亮度信号后的色彩差异信号Cb、Cr)进行传输,在三条线的接头处分别用绿、蓝、红色进行区别,这三条线如果相互之间插错了,可能会显示不出画面或是显示出奇怪的色彩,其所还原的信号质量比Video和S-video好。色差分为逐行和隔行显示, YCbCr表示的是隔行,YPbPr表示则是逐行,如果电视只有YCbCr分量端子的话,则说明电视不能支持逐行分量,用YPbPr分量端子的话则支持逐行和隔行两种分量。目前档次较高的电视一般拥有2组或3组分量接口,而稍差一些的电视可能只有一组隔行,色差分量信号在DVD、PS2、XBOX、NGC等视频设备上都可以使用。 5. RGBHV信号:将视频信号分解为“R、G、B、H、V”五种信号,利用三基色原理对图像进行编码,即红、绿、蓝三种视频信号外加行(黑色)、场(黄色)同步信号,分别使用五根BNC线进行传输。除此之外,RGsB、RsGsBs、RGBs均是常见传输模式。 RGsB:同步信号附加在绿色通道,使用三根同轴电缆进行传输;

主板供电电路图解说明

主板供电电路图解说明 主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰 cross talk 效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。 主板上的供电电路原理 图1 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。 单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。 图2

高速公路数字化视频技术发展说明

高速公路数字化视频技术发展说明 高速公路监控系统的建设是伴随着高速公路的兴建而起步、发展的,湖南省从首条高速公路建成投入运营已历经了十余年的历程。这十余年来随着经济的发展、科技的进步,湖南省高速公路事业发展也突飞猛进。 视频传输系统作为高速公路监控及收费系统的重要子系统之一,保障运营管理人员对路面及收费站实时状况直观的了解,并对各类事件及时监控、管理与调度,为高速公路的正常运营提供有效的管理手段。在十余年的时间里,视频传输方式也经历了几次较大的系统发展,在不同的阶段,为高速公路运营提供了有效的保障。以下从几个方面阐述下湖南省高速公路视频传输的应用和发展说明。一、高速公路视频传输系统现状及标准 视频传输技术在高速公路机电系统建设中,从最早的CCTV(模拟闭路电视)系统,到近年来正逐步被广泛应用的基于H.264协议的全光视频综合接入系统及数字非压缩光传输平台系统,从模拟图像到数字图像,从复杂的机电系统构架,到简洁的网络拓扑。数字化、网络化的图像传输应用为高速公路机电系统建设提供了更便捷的组网模式,成为行业视频传输发展新的方向。 不同的视频传输应用,在不同的历史阶段发挥了其各自的作用和特点。目前在高速公路采用数字化视频解决方案的主要有以下几种模式: 1、数字非压缩光端机方式 数字非压缩光端机是高速公路机电系统中,视频传输应用较多的一种模式。数字视频光端机对视频信号进行模数转换,然后将数字信号不压缩也不编码直接调制到光器件上输出,在对端采用数字视频光端机再将数字信号还原成模拟图像输出到监视器上。 在高速公路近年机电系统中,应用较多的是点对点数字非压缩光端机和节点式数字非压缩光端机,由于在光纤中传输的图像采用数字化方式传输,避免了模拟方式受到非线性失真等因素的影响,图像质量较高。另外由于数字视频光端机采用TDM及CWDM技术的应用,可以在一芯光纤中实现多节点图像的传输,较普通的数字传输模式增加了光纤的利用效率,对高速公路全程监控、隧道监控等环境适应性更强。

第四讲 信号的数字化过程

第四讲信号的数字化过程 随着数字电子技术的飞速发展,特别是信息技术的发展与普及,数字电视、液晶屏、数字音频、网络视频等用数字电路处理模拟信号的应用越来越广泛。自然界中存在的声音、电压、电流、温度、时间、速度、压力以及利用摄像机摄制的反映客观世界的图像都是连续变化的模拟量,为让计算机等数字设备能够识别这些自然物理量并保证模拟设备和数字设备之间的有效通信,则需要在连续的模拟量和离散的数字量之间进行转换。本讲中,我们将要对模拟信号的数字化过程进行学习,了解模数转换和数模转换的原理和过程。AV系统中,前端信号源设备最初多以模拟电信号形式生成音视频信号,在之后对信号的处理、传输和接收过程中则可能要进过一次或多次模数转换或数模转换。信号的数字化实际上需要进过采样、保持、量化和编码四个过程,这样得到的数字信号可以通过电缆、微波干线、卫星通道等数字线路传输,并在接收端则与上述模拟信号数字化过程相反,再经过后置滤波又恢复成原来的模拟信号。信号的数字化过程又称为脉冲编码调制。 一、信号采样 采样是对模拟信号进行周期性抽取样值的过程,即把随时间连续变化的信号转换成在时间上断续、在幅度上等于采样时间内模拟信号大小的一串脉冲(数码信号),采样间隔时间T称为采样周期,单位是秒,采样频率f=1/T,定义了每秒从连续信号中提取并组成离散信号的采样个数,单位是赫兹(Hz)。为了保证 在采样之后数字信号能完整地保留原始信号中的信息,能不失真地恢复成原模拟信号,采样频率应不小于输入模拟信号频谱中最高频率的两倍。一般实际应用中采样频率为信号最高频率的5至10倍。显然,采样频率越高,采样输出的信号就越接近连续的模拟信号。 在数字音频领域,常用的采样率有: 8,000 Hz 电话所用采样率; 22,050 Hz 无线电广播所用采样率,称为广播音质; 44,100 Hz 音频 CD, 电脑声卡,也常用于 MPEG-1 音频(VCD,

视频输入输出常用接口介绍

视频输入输出常用接口介绍 随着视频清晰度的不断提升,这也促使我们对高清视频产生了浓厚的兴趣,而如果要达某些清晰度的视频就需要配备相应的接口才能完全发挥其画质。所以说视频接口的发展是实现高清的前提,从早期最常见且最古老的有线TV输入到如今最尖端的HDMI数字高清接口,前前后后真是诞生了不少接口。但老期的接口信号还在继续使用,能过信号转换器就能达到更清晰的效果,比如:AV,S-VIDEO 转VGA AV,S-VIDEO转HDMI,图像提升几倍,效果更好。 从现在电视机背后的接口也能看出这点,背后密密麻麻且繁琐的接口让人第一眼看过去有点晕的感觉。今天小编就将这些接口的名称与作用做一个全面解析,希望能对选购电视时为接口而烦恼的朋友起到帮助。 随着视频清晰度的不断提升,这也促使我们对高清视频产生了浓厚的兴趣,而如果要达某些清晰度的视频就需要配备相应的接口才能完全发挥其画质。所以说视频接口的发展是实现高清的前提,从早期最常见且最古老的有线TV输入到如今最尖端的HDMI数字高清接口,前前后后真是诞生了不少接口。但老期的接口信号还在继续使用,能过信号转换器就能达到更清晰的效果,比如:AV,S-VIDEO 转VGA AV,S-VIDEO转HDMI,图像提升几倍,效果更好。

TV接口 TV输入接口 TV接口又称RF射频输入,毫无疑问,这是在电视机上最早出现的接口。TV 接口的成像原理是将视频信号(CVBS)和音频信号(Audio)相混合编码后输出,然后在显示设备内部进行一系列分离/ 解码的过程输出成像。由于需要较多步骤进行视频、音视频混合编码,所以会导致信号互相干扰,所以它的画质输出质量是所有接口中最差的。 AV接口 AV接口又称(RCARCA)可以算是TV的改进型接口,外观方面有了很大不同。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。

32寸液晶电视说明书

高清液晶监视器 说明书 (32″)V2.0版 使用操作本产品前,请仔细阅读完本说明书,并保留好以备将来参考

用户服务指南 尊敬的用户: 感谢您选用液晶监视器,为了维护您的利益,及时为您排忧解难,敬请您注意以下事项下事项: 1、我公司产品附有一份《保修卡》,请您在购买产品之后将购机凭证(有效发票)与《保修 卡》妥善保管好,作为今后的保修依据。 2、我公司竭诚为您提供“整机免费保修一年,中心城市24小时内上门服务,边远地区预约 服务”。 3、本机所享受的保修服务只适用于中国大陆使用的用户,不适用其它国家或地区。 装箱清单 液晶监视器…………………………………………1台 说明书………………………………………………1本 合格证………………………………………………1个 保修卡………………………………………………1个 遥控器………………………………………………1个 电源线………………………………………………1条

目录 一、注意事项 (4) 二、警告注意 (5) 三、产品功能特点 (6) 四、基本技术参数 (7) 五、接口说明 (11) 六、遥控器说明 (12) 七、屏幕显示菜单(OSD) (13) 八、简单故障排除 (16)

一、注意事项 使用本产品前,请详细阅读下列注意事项,并请妥善保管以备日后查询。 产品使用本产品时请依照下列规范要求 ◆请不要掩盖或阻塞机体背后散热孔,以免妨碍机体散热。 ◆请不要用锐利物、金属或液体触碰信号接头或进入散热孔内,以免电路短路及产品损坏。 ◆请不要尝试自行分解、拆卸本产品任何部分,这样的行为可能会损坏产品及对人体造成伤害, 并使您所享有的产品保修失效。 ◆请不要用手指直接接触屏幕表面,这样可能会损伤屏幕表面,且皮肤上的油脂若留在屏幕上将很 难清除。 ◆请不要对LCD屏幕施加压力,LCD屏幕是非常精致且脆弱的。 搬运 ◆搬运监视器之前,请断开所有连接的线缆 ◆搬运大型监视器时,需要两人以上。 ◆搬运监视器时,禁止对液晶面板施加压力。 ◆搬运监视器以进行维护或移动时,请使用原有的纸箱和包装材料进行包装。 ◆抬起或移动监视器时,请牢牢扶住后侧和底部。(见下图) 安装 ◆仅可由有资格的服务人员进行监视器安装。 ◆设计安装监视器方案须参照产品外形结构尺寸图(请向经销商索取)。 ◆强烈建议您使用创捷原厂提供的配件(挂架、底座)以保证安装的可靠性和安全性。 ◆监视器安装时,须预留合理的维护操作空间和散热空间 插头在下列情况下,请拔下本产品的电源线 ◆如果您很长一段时间不使用本产品。 ◆如果电源线或电源插座/插头有损坏。 ◆请您依照本使用手册说明进行产品组装货调整,请不要自行以非本手册说明范围内的方式或程序 调整或操作本产品,如果您以非本说明手册的方式或程序调整或操作本产品发生不可预期的状况,请您将电源线拔下并通知本公司相关客服/技术人员为您处理。 ◆如果产品受撞击或摔落,以致外壳破损时。 电源线及信号连接线 ◆请不要让任何物体压迫电源线或信号连接线。 ◆请不要让本产品之电源线或信号连接线经过走道,或人们可能常走动的地方,以避免线体被踩到。 ◆请不要让电源插座或电源线超负荷使用。 ◆请不要让本产品之电源线或信号连接线置于潮湿的地方。

各种视频信号

各种视频信号格式及端子介绍 一、各种视频信号 复合视频信号(V ideo) 复合视频信号是我们日常生活中最为常见的视频信号,它在一个传输信号中包含了亮度、色度和同步信号。由于彩色编码的不同,复合视频又有PAL、NTSV、SECAM制式之分。复合视频信号本身的带宽只有5MHz (NTSC制式带宽仅4.5MHz),中间又加了彩色副载波信号(NTSC制为3.58MHz,PAL和SECAM制为4.43MHz),正好落在亮度信号带宽之内,占去了一部分亮度信号,又造成亮度和色度的相互干扰,使得复合视频成为最差的视频信号。复合视频信号一般用RCA插头连接,就是通常说的莲花插头,见图1。欧洲也用SCART接口,老式的视频设备也有用BNC插头连接。 S视频信号(S-Video) S视频信号俗称S端子信号,它同时传送两路信号:亮度信号Y和色度信号C。由于将亮度和色度分离,所以图象质量优于复合视频信号,色度对亮度的串扰现象也消失。由于S视频信号亮度带宽没有改变,色度信号仍须解调,所以其图象质量的提高是有限的,但肯定解决了亮色串扰,消除图象的爬行现象。S端子用四芯插头,见图2。欧洲也用SCART插头,老式的视频设备也有用两个BNC插头连接,计算机显卡也有用七芯插头,其外形与S端子一样,只是又包含了复合视频信号。 隔行色差信号(Y、Cr、Cb) 色差信号也叫分量信号(Component V ideo),同时传送三路信号:Y是亮度信号,只包含黑白图象信息;Cr是R-Y信号,即红色信号与亮度信号的差;Cb是B-Y信号,即蓝色信号与亮度信号的差。色差信号实际也是亮色分离信号,与S端子不同的是色度信号不用解调,之所以用R-Y和B-Y是要避免传输G绿信号,因为G信号占据色度信号的59%,不利于数据压缩,用R-Y和B-Y通过矩阵运算同样可以得到G信号。由于VCD和DVD用的MPEG1和MPEG2数字压缩信号就是用色差信号编码的,所以色差信号图象质量大大提高,完全优于S视频信号。色差信号用RCA插头,用绿、红、蓝标识,绿代表Y信号,见图3。逐行色差信号(Y、Pr、Pb) 逐行色差信号含义与隔行色差信号相同,只是对应的是逐行扫描信号,包含在Y里的行同步信号频率为31KHz,而前述的几种视频信号行频只有15KHz。逐行色差信号须配具有逐行显示功能的设备,图象质量高于隔行色差信号,主要表现在图象更稳定。逐行色差所用端子与隔行色差相同,只是C换成P。 RGB信号 我们知道图象中的各种色彩都是由R、G、B三基色组成,显象管电子枪是R、G、B三枪组成,投影机三片液晶板也是R、G、B三色。R、G、B三路信号中,行、场的同步信号加在G信号中,RGB信号的带宽可以到几十兆,只要显示设备能兼容。所以RGB信号又优于色差信号,是最好最直接的显示信号。RGB 信号同样也分为逐行和隔行,逐行信号要优于隔行信号。RGB信号所用端子为RCA插头,欧洲用SCART 插头,老式设备用BNC插头。 RGB+S信号 此信号就是在前述的RGB信号基础上,把加在G信号中的同步信号拿出来,再加一个复合同步信号,共四路信号传输。复合同步信号中包含了水平同步和垂直同步信号。此信号在老式设备中用的较多,一般用BNC插头。 RGB+Hs、Vs信号 这个信号是在上述信号基础上把复合同步信号分成水平同步信号和垂直同步信号,在老式三枪投影机用的较多,一般用BNC插头。现在17寸以上的高端显示器也此输入端子。电脑显示用的15针D型VGA 插座,就是这5根线起作用。老式的EGA和CGA显示器行频只有15KHz,用的是9针D型接口。现代视听设备逐行扫描的RGB+Hs、Vs信号是以VGA端子输出的,是视频信号的最高级,与电脑640×480分辨率是兼容的。 二、各种视频信号接口及定义 SCART端子定义

相关文档
最新文档