数学物理方程第六章 勒让德多项式

数学物理方程第六章 勒让德多项式
数学物理方程第六章 勒让德多项式

由递推公式求通项公式的方法

由递推公式求通项公式的方法 已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本文就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习和老师的教学,不涉及具体某一题目的独特解法与技巧。 一、1()n n a a f n +=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累加法,具体做法是将通项变形为1()n n a a f n +-=,从而就有 21321(1),(2),,(1).n n a a f a a f a a f n --=-=-=- 将上述1n -个式子累加,变成1(1)(2)(1)n a a f f f n -=+++- ,进而求解。 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求 解:依题意有 213211,3,,23n n a a a a a a n --=-=-=- 逐项累加有221(123)(1)1323(1)212n n n a a n n n n +---=+++-= =-=-+ ,从而223n a n n =-+。 注:在运用累加法时,要特别注意项数,计算时项数容易出错. 变式练习:已知{}n a 满足11=a ,) 1(11+=-+n n a a n n ,求}{n a 的通项公式。 二、)(1n f a a n n ?=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累积法,具体做法是将通项变形为1()n n a f n a +=,从而就有 32121 (1),(2),,(1)n n a a a f f f n a a a -===- 将上述1n -个式子累乘,变成1 (1)(2)(1)n a f f f n a =???- ,进而求解。 例2. 已知数列{}n a 中11123,(2)321 n n n a a a n n --==?≥+,求数列{}n a 的通项公式。

数值分析 高斯—勒让德积分公式

高斯—勒让德积分公式 摘要: 高斯—勒让德积分公式可以用较少节点数得到高精度的计算结果,是现在现实生活中经常运用到的数值积分法。然而,当积分区间较大时,积分精度并不理想。 T he adva ntage of Gauss-Legendre integral formula is tend to get high-precision calculational result by using fewer Gauss-points, real life is now often applied numerical integration method. But the precision is not good when the length of integral interval is longer. 关键字: … 积分计算,积分公式,高斯—勒让德积分公式,MATLAB Keyword: Integral Calculation , Integral formula ,Gauss-Legendre integral formula, Matlab 引言: 众所周知,微积分的两大部分是微分与积分。微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数。所以,微分与积分互为逆运算。 】 实际上,积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,称为不定积分。 相对而言,另一种就是定积分了,之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 计算定积分的方法很多,而高斯—勒让德公式就是其中之一。 高斯积分法是精度最高的插值型数值积分,具有2n+1阶精度,并且高斯积分总是稳定。而高斯求积系数,可以由Lagrange多项式插值系数进行积分得到。 高斯—勒让德求积公式是构造高精度差值积分的最好方法之一。他是通过让节点和积分系数待定让函数f(x)以此取i=0,1,2....n次多项式使其尽可能多的能够精确成立来求出积分节点和积分系数。高斯积分的代数精度是2n-1,而且是最

数学物理方法第三章答案完整版

第三章答案 1. (6分)已知齐次状态方程Ax x =&的状态转移矩阵)(t Φ如下,求其逆矩阵)(1 t -Φ和系统矩阵A 。 ??? ???+-+---=Φ--------2t t 2t t 2t t 2t t 3e 2e 3e 3e 2e 2e 2e 3e )t (。 解: ??????+-+---=-Φ=Φ-2t t 2t t 2t t 2t t 1 3e 2e 3e 3e 2e 2e 2e 3e )t ()t ( (3分) ? ? ? ? ??=Φ==4-3-21|)t (A 0t & (3分) 2. (8分)求定常控制系统的状态响应。 ()()()()()()0101,0,0,11210x t x t u t t x u t t ??????=+≥== ? ? ?--?????? & 解:11t t t At t t t t t t e te te e e t t te e te -------+??+??== ? ?----?? ?? (4分) 0()()(0)()()10t t t t t x t t x Bu t d e te e d te e e ττττττ τττ------=Φ+Φ-????+??=+=??????--?????? ?? (4分) 3.(3分) 已知齐次状态方程Ax x =&的状态转移矩阵)(t Φ如下,求其系统矩阵A 。 ?? ? ???+-+---=Φ--------2t t 2t t 2t t 2t t 3e 2e 3e 3e 2e 2e 2e 3e )t (。 解:? ? ? ? ??=Φ==4-3-21|)t (A 0t & (3分) 4.(8分)已知系统的状态方程为: u x x ?? ????+??????=111101&, 初始条件为1)0(1=x ,0)0(2=x 。求系统在单位阶跃输入作用下的响应。 解:解法1:?? ? ???=??? ? ????????---=Φ--t t t e te e s s L t 01101)(1 1; (4分) ?? ????-=??????-+??????=??? ?????????-+????????????=?---t t t t t t t t t t t t t te e te e te e d e e t e e te e x 212111)(00100τττττ。 (4分) 解法2: ?? ????--=??????--+??????--=+-=-s s s s s s s s s s x s Bu A s s x 21)1(1 11)1(11)1(1)}0()({)I ()(22221 ;

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

第六章. 勒让德函数

第6章 勒让德函数6.1 勒让德方程与勒让德多项式一、线性常微分方程的级数解法 主要内容:利用复变函数论求二阶线性齐次常微分方程 的级数解。 1. 级数解法的基本思想: 把方程的解表示为以 为中心、带有待定系数的幂级数,将这个幂级数带入方程及定解条件,求出所有待定系数即可得该方程的解。 0z

说明: (1)级数解法是一个比较普遍的方法,对方程无特殊的要求。 (2)对于级数,存在是否收敛和收敛范围的问题。用级数解法要选定某个点 作展开中心,得到的解是以 为中心的幂级数。另外还必须确定幂级数的收敛圆,级数解只在收敛圆内部才有意义。 0z 0z

2. 方程的常点和奇点方程的标准形式: (1) 其中:w (z )—未知的复变函数,p (z )、q (z )—已知的复 变函数 (方程的系数) 要求解的问题: 在一定条件下( 如初始条件 )满足(1)的w (z )。 ''()()'()()()0w z p z w z q z w z ++=1000)(',)(c z w c z w ==

方程(1)的解的性质 (解的存在性、唯一性、稳定性、单值性等) 由方程的系数p (z )和q (z )的解析性确定。 设p (z )和q (z )在一定的区域中,除若干个孤立奇点外,是z 的单值解析函数。区域中的点可分为两类: (i)方程的常点:如果p (z )和q (z )都在点 的邻域解析,则 称为方程的常点。 0z 0z

(ii) 方程的奇点:只要两系数p (z )和q (z )之一在点 不 解析, 就称为方程的奇点。 如果 最多是p (z )的一阶极点、q (z )的二阶极点,则 称为方程的正则奇点。否则,则 称为方程的非正则奇点。 0z 0z 0z 0z 0z

由递推关系求通项公式的类型与方法

由递推关系求通项公式的类型与方法 递推公式是给出数列的基本方式之一,在近几年高考题中占着不小的比重。2008年高考数学19份理科试卷,共19道数列部分的解答题,其中有17道涉及递推数列,(福建卷理科有两道题涉及数列问题,江苏卷、江西卷中数列题不涉及递推),说每卷都有数列问题,数列必出递推也不为过。不能不感受到高考数学试题中“递推”之风的强劲。为此本文主要以2008年试题为例重点研究由递推关系求数列通公式的类型与求解策略。 一、递推关系形如:1()n n a a f n +=+的数列 利用迭加或迭代法得:1(1)(2)(1)n a a f f f n =++++-L ,(2n ≥) 例1(08天津文20)在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠). (Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)略 (Ⅰ)证明:由题设11(1)n n n a q a qa +-=+-(2n ≥),得 11()n n n n a a q a a +--=-,即1n n b qb -=,2n ≥. 又1211b a a =-=,0q ≠,所以{}n b 是首项为1,公比为q 的等比数列. (Ⅱ)解法:由(Ⅰ)211a a -=,32a a q -=, 22121321()()()11n n n n a a a a a a a a q q q --=+-+-++-=+++++L L ,(2n ≥). 所以当2n ≥时,1 1,,. 1,111n n q q q a n q -≠=?-+ ?=-??? 上式对1n =显然成立. 二、递推关系形如:1()n n a a f n +=的数列 利用迭乘或迭代法可得: 1(1)(2)(1)n a a f f f n =-L ,(2n ≥) 例2 (2008天津理22)在数列{}n a 与{}n b 中,4,111==b a ,数列{}n a 的前n 项和n S 满足()031=+-+n n S n nS ,12+n a 为n b 与1+n b 的等比中项,*N n ∈.

函数递归之求n阶勒让德多项式

问题H: C语言习题求n阶勒让德多项式题目描述 用递归方法求n阶勒让德多项式的值,递归公式为 n=0 p n(x) =1 n=1 p n(x) =x n>1 p n(x) =((2n-1)*x* p n-1(x) -(n-1)* p n-2(x))/n 结果保留2位小数。 输入 n和x的值。 输出 p n(x)的值。 #include #include #include using namespace std; double polya(int n,int x) { double a; if(n==0) a=1; if(n==1) a=x; if(n>1) a=((2*n-1)*x*polya(n-1,x)-(n-1)*polya(n-2,x))/n; return a; } int main()

{ int x,n; cin>>n>>x; cout<1) a=((2*n-1)*x*polya(n-1,x)-(n-1)*polya(n-2,x))/n;); 在主函数中,输入数据(cin>>n>>x;),按照题目要求保留两位小数(cout<

北邮数理方程课件第三章的分离变量法

第三章 分离变量法 3。2 基础训练 3.2.1 例题分析 例1 解下列定解问题: ???? ?????=??-==??=><

其中A ,B 为积分常数,(7)代入(6)中边界条件,得 00 A B Ae +=???-+=?? (8) 由(8)得A=B=0,得X (x )=0,为平凡解,故不可能有0λ<。 (2) 当0λ=时,(6)式中方程的通解是 ()X x Ax B =+ 由边界条件得A=B=0,得X (x )=0,为平凡解,故也不可能有0λ=。 (3)当 02 >=βλ时,上述固有值问题有非零解.此时式(6)的通解为 x B x A x X ββsin cos )(+= 代入条件(6)中边界条件,得 0cos ,0==l B A β 由于 0≠B ,故 0cos =l β,即 ),2,1,0(212Λ=+= n l n πβ 从而得到一系列固有值与固有函数 2 2 24)12(l n n πλ+= ),2,1,0(2)12(sin )(Λ=+=n x l n B x X n n π 与这些固有值相对应的方程(3)的通解为 ),2,1,0(2)12(sin 2)12(cos )(Λ=+'++'=n t l a n D t l a n C t T n n n ππ 于是,所求定解问题的解可表示为 x l n t l a n D t l a n C t x u n n n 2)12(sin 2)12(sin 2)12(cos ),(0πππ+??? ? ? +++=∑∞ = 利用初始条件确定其中的任意常数n n D C ,,得 0=n D

如何求数列通项公式

如何求数列通项公式 一、累加法(也叫逐差求和法):利用1211()()n n n a a a a a a -=+-+???-求通项公式的方法称为累加法。累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和). 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2 (1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而利用逐差求和法求得数列{}n a 的通项公式。 例2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211 1 221 1 2 2 1 1 ()()()()(231)(23 1)(231)(231)3 2(3333)(1)33(13 ) 2 (1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 评注:本题解题的关键是把递推关系式1231n n n a a +=+?+转化为1231n n n a a +-=?+, 例3 已知数列{}n a 满足1132313n n n a a a +=+?+=,,求数列{}n a 的通项公式。

勒让德多项式

勒让德多项式[编辑] 维基百科,自由的百科全书 伴随勒让德多项式有时也简称为“勒让德多项式”。 数学上,勒让德函数指以下勒让德微分方程的解: 为求解方便一般也写成如下施图姆-刘维尔形式(Sturm-Liouville form): 上述方程及其解函数因法国数学家阿德里安-马里·勒让德而得名。勒让德方程是物理学和其他技术领域常常遇到的一类常微分方程。当试图在球坐标中求解三维拉普拉斯方程(或相关的其他偏微分方程)时,问题便会归结为勒让德方程的求解。 勒让德方程的解可写成标准的幂级数形式。当方程满足|x| < 1 时,可得到有界解(即解级数收敛)。并且当n 为非负整数,即n = 0, 1, 2,... 时,在x = ±1 点亦有有界解。这种情况下,随n 值变化方程的解相应变化,构成一组由正交多项式组成的多项式序列,这组多项式称为勒让德多项式(Legendre polynomials)。 勒让德多项式Pn(x)是n 阶多项式,可用罗德里格公式表示为: 目录 [隐藏] 1 正交性 2 部分实例 3 在物理学中的应用 4 其他性质 4.1 奇偶性 4.2 递推关系 5 移位勒让德多项式 6 分数阶勒让德多项式 7 参见 8 外部链接 9 参考文献 正交性[编辑] 勒让德多项式的一个重要性质是其在区间?1 ≤x ≤ 1 关于L2内积满足正交性,即: 其中δmn 为克罗内克δ记号,当m = n 时为1,否则为0。事实上,推导勒让德多项式的另一种方法便是关于前述内积空间对多项式{1, x, x2, ...}进行格拉姆-施密特正交化。之所以具有此正交性是因为如前所述,勒让德微分方程可化为标准的strum-liouville问题: 其中本征值λ对应于原方程中的n(n+1)。 部分实例[编辑] 下表列出了头11阶(n 从0到10)勒让德多项式的表达式: n 1

递推公式求通项公式的几种方

由递推公式求通项公式的常用方法 由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。 方法一:累加法 形如a n +1-a n =f (n )(n =2,3,4,…),且f (1)+f (2)+…+f (n -1)可求,则用累加法求a n 。有时若不能直接用,可变形成这种形式,然后利用这种方法求解。 例1:(07年北京理工农医类)已知数列{a n }中,a 1=2,a n +1=a n +cn (c 是常数,n =1,2,3,…)且a 1,a 2,a 3成公比不为1的等比数列 (1)求c 的值 (2)求{a n }的通项公式 解:(1)a1,a2,a3成公比不为1的等比数列 2 022)2(2)() ,3,2,1(111113 12 2===++?=+∴=+=?=∴+c c a c c a a c a n cn a a a a a n n 因此(舍去)或解得又 (2)由(1)知n a a n a a n n n n 2,211=-+=++即,将n =1,2, …,n -1,分别代入 ) 1(2322 2121342312-=-?=-?=-?=--n a a a a a a a a n n 将上面n -1个式子相加得a n -a 1=2(1+2+3+…+n -1)=n 2 -n 又a 1=2,a n =n 2 -n +2 方法二:累乘法 形如 a n +1 a n =g (n )(n =2,3,4…),且f (1)f(2)…f (n -1)可求,则用累乘法求a n .有时若不能直接用,可变形成这种形式,然后用这种方法求解。

已知数列递推公式求通项公式的几种方法

已知数列递推公式求通项公式的几种方法 Revised on November 25, 2020

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 所以3 1.n n a n =+-

求数列通项公式的11种方法

求数列通项公式的11种方法方法 总述:一.利用递推关系式求数列通项的11种方法: 累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、 换元法(目的是去递推关系式中出现的根号)、 数学归纳法(少用) 不动点法(递推式是一个数列通项的分式表达式)、 特征根法 二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、 等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-=

两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 例2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211122112211()()()()(231)(231)(231)(231)3 2(3333)(1)3 3(13)2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=++ +++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以1 3n +,得 111 21 3333 n n n n n a a +++=++, 则 111 21 3333n n n n n a a +++-=+,故

备战2020数学高考三大类递推数列通项公式的求法

三大类递推数列通项公式的求法 湖北省竹溪县第一高级中学徐鸿 一、一阶线性递推数列求通项问题 一阶线性递推数列主要有如下几种形式: 1. 这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和). 当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时, 则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0. 2. 这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积). 当为常数时,用累乘法可求得等比数列的通项公式. 3.; 这类数列通常可转化为,或消去常数转化为二阶递推式 . 例1已知数列中,,求的通项公式. 解析:解法一:转化为型递推数列. ∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即. 解法二:转化为型递推数列. ∵=2x n-1+1(n≥2) ①∴=2x n+1 ② ②-①,得(n≥2),故{}是首项为x 2-x 1 =2, 公比为2的等比数列,即,再用累加法得.解法三:用迭代法. 当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.

例2已知函数的反函数为 求数列的通项公式. 解析:由已知得,则. 令=,则.比较系数,得. 即有.∴数列{}是以为首项,为 公比的等比数列,∴,故. 评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之. (4) 若取倒数,得,令,从而转化为(1)型而求之. (5); 这类数列可变换成,令,则转化为(1)型一阶线性递推公式. 例3设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4设求数列的通项公式. 解析:设用代入,可解出.

数学物理方法第二篇第3章

第三章 行波法和通积分法 §2.3.1一维波动方程哥西问题达朗贝尔公式 无限长均匀弦的自由振动归结为一维齐次波动方程的哥西问题: ?? ?==>+∞<<-∞=-) ()0,(),()0,() 0,(,02x x u x x u t x u a u t xx tt ψ? 这个方程的特征方程为 0 )( 2 2 =-a t x d d , 所以波动方程是双曲型方程,有两组实的特征线 1c at x =-,2c at x =+, 作自变量的变换,令 at x -=ξ,at x +=η, 应用复合函数求导法则,有 η ξηξau au a u a u u t +-=?+-=)(, ηξηξu u u u u x +=?+?=11, ηηξηξξu a u a u a u tt 2 2 2 2+-=, ηη ξηξξu u u u xx ++=2, 代入波动方程中,化简得 0=ξηu , 利用偏导数的意义,得通解

)()()()(),(at x G at x F G F t x u ++-=+=ηξ, 其中F 和G 是任意二阶连续可微函数. 由),(t x u 满足的初始条件来确定F 和G 的具体形式,于是 得函数方程 ? ? ?='+'-=+)()()(), ()()(x x G a x F a x x G x F ψ? 积分第二式得 C a x G x F x x += +-?α αψd 0 )(1)()(,C 为积分常数. 从而得 2)(21)(21)(0C a x x F x x - - = ?ααψ?d , 2 )(21)(2 1)(0 C a x x G x x + + =?ααψ?d 故得一维齐次波动方程哥西问题的解 ααψ??d ?+-+ ++-= at x at x a at x at x t x u )(21)]()([2 1),(, 这就是著名的达朗贝尔公式. 通常称)(at x F -为右传播波(或右行波),称)(at x G +为左传播波(或左行波),a 为速度.所以这种解波动方程哥西问题的方法称为行波法,在数学上又叫通积分法.

专题由递推关系求数列的通项公式含答案

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a = ,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积 例3 已知数列{n a }中1n n s na =- ,求数列{n a }的通项公式 评注 此类问题关键是化 ()1 n n a g n a -=,且式子右边累乘时可求积,而左边中间项可消。 4、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法 称为转化法。常用的转化途径有: ⑴凑配、消项变换——如将一阶线性递推公式1n n a qa d +=+(q, d 为常数,0,1q q ≠≠)通过凑配变成 11n d a q ++ -=1n d q a q ??+ ?-?? ,或消常数项转化为()211n n n n a a q a a +++-=- 例4、已知数列{n a }中,11a =,()1212n n a a n -=+≥,求数列{n a }的通项公式 点评: 此类问题关键是利用配凑或消项变换将其转化为等比数列

第七章勒让德多项式

第7章 勒让德多项式 在第三章中我们介绍了一类特殊函数—贝塞尔函数,我们利用贝塞尔函数给出了平面圆域上拉普拉斯算子特征值问题的解,从而求解了一些与此特征值问题相关的定解问题。为求解空间中球形区域上与拉普拉斯算子相关的一些定解问题,需要引入另一类特殊函数—勒让德(Legendre )多项式,用于求解空间中球形区域上拉普拉斯算子的特征值问题。需要说明的是勒让德多项式不仅是解决数学物理方程中许多问题的重要工具,在自然科学的其它领域也有许多的应用。 §7?1勒让德多项式 本节介绍勒让德多项式及相关的一些特征值问题,为分离变量法的进一步应用作准备。 7.1.1 勒让德方程及勒让德多项式 考虑如下二阶常微分方程 2[(1)]0d dy x y dx dx λ-+=,11x -<< (7.1.1) 其中0λ≥为常数,方程(7.1.1)称为勒让德方程。设α是非负实数,使得 (1),λαα=+则方程(7.1.1)可表示成如下形式 2(1)2(1)0x y xy y αα'''--++=,11x -<< (7.1.2) 方程(7.1.2)满足第3章中定理3.1的条件,其中 22 2(1) (), ()11x p x q x x x αα+=-= -- 故(7.1.2)在区间(1,1)-有解析解,设其解为 0()k k k y x a x ∞ ==∑ (7.1.3) 其中(0)k a k ≥为待定常数。将该级数及一阶和二阶导数代入到原方程中得 22 1 21 (1)(1)2(1)0k k k k k k k k k x k k a x x ka x a x αα∞ ∞ ∞ --===---++=∑∑∑ 或 20 (1)(2)(1)2(1)0k k k k k k k k k k k k k k a x k ka x ka x a x αα∞ ∞ ∞ ∞ +====++---++=∑∑∑∑ 即 20 [(1)(2)()(1)]0k k k k k k a k k a x αα∞ +=+++-++=∑ 比较两端k x 的系数,可得 2(1)(2)()(1)0, 0k k k k a k k a k αα++++-++=≥ 由此式可得系数递推关系 2()(1) , 0(1)(2) k k k k a a k k k αα+-++=- ≥++ (7.1.4) 当系数k a 指标分别取偶数和奇数时,(7.1.4)可表示为

北邮数理方程课件 第三章 分离变量法

第三章 分离变量法 3。2 基础训练 3.2.1 例题分析 例1 解下列定解问题: ???? ?????=??-==??=><=βλ时,上述固有值问题有非零解.此时式(6)的通解为

x B x A x X ββsin cos )(+= 代入条件(6)中边界条件,得 0cos ,0==l B A β 由于 0≠B ,故 0cos =l β,即 ),2,1,0(21 2Λ=+= n l n πβ 从而得到一系列固有值与固有函数 2 2 24)12(l n n πλ+= ),2,1,0(2)12(sin )(Λ=+=n x l n B x X n n π 与这些固有值相对应的方程(3)的通解为 ),2,1,0(2)12(sin 2)12(cos )(Λ=+'++'=n t l a n D t l a n C t T n n n ππ 于是,所求定解问题的解可表示为 x l n t l a n D t l a n C t x u n n n 2)12(sin 2)12(sin 2)12(cos ),(0πππ+??? ? ? +++=∑∞ = 利用初始条件确定其中的任意常数n n D C ,,得 0=n D 3 32 02)12(322)12(sin )2(2ππ+- =+-=?n l xdx l n lx x l C l n 故所求的解为 x l n t l a n n l t x u n 2)12(sin 2)12(cos )12(132),(0 3 3 2 π ππ++?+- =∑∞ = 例2 演奏琵琶是把弦的某一点向旁边拨开一小段距离,然后放手任其自由振动。设弦 长为l ,被拨开的点在弦长的0 1 n (0n 为正整数)处,拨开距离为h ,试求解弦的振动,即求解定解问题

常见递推数列通项公式求法(教案)

问题 1:已知数列{a } , a 1 = 1 , a n +1 = n + 2 ,求{a n }的通项公式。 2 常见递推数列通项公式的求法 一、课题:常见递推数列通项公式的求法 二、教学目标 (1)会根据递推公式求出数列中的项,并能运用叠加法、叠乘法、待定系数 法求数列的通项公式。 (2) 根据等差数列通项公式的推导总结出叠加法的基本题型,引导学生分 组合作并讨论完成叠乘法及待定系数法的基本题型。 (3)通过互助合作、自主探究培养学生细心观察、认真分析、善于总结的良 好思维习惯,以及积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课时: 1 课时 六、教学手段:黑板,粉笔 七、教学方法: 激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾: 1、通项公式的定义及其重要作用 2、区别递推公式与通项公式,从而引入课题 (二)新知探究: a n 变式: 已知数列 {a n } , a 1 = 1 , a n +1 = a n + 2n ,求{a n }的通项公式。 活动 1:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学 生细致讲解整个解题过程。 解:由条件知: a n +1 - a = 2n n 分别令 n = 1,2,3,? ? ? ? ??,(n - 1) ,代入上式得 (n - 1) 个 等式叠加之, 即 (a 2 - a 1 ) + (a 3 - a 2 ) + (a 4 - a 3 ) + ? ? ? ? ? ? +(a n - a n -1 ) = 2 + 2 ? 2 + 2 ? 3 + 2 ? (n - 2) + 2 ? (n - 1) 所以 a - a = (n - 1)[2 + 2 ? (n - 1)] n 1 a = 1,∴ a = n 2 - n + 1 1 n

由递推公式求通项的9种方法经典总结

精析由递推公式求通项的9种方法 1.a n +1=a n +f (n )型 把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1). [例1] 已知数列{a n }满足a 1=1 2,a n + 1=a n +1 n 2 +n ,求a n . [解] 由条件,知a n +1-a n =1 n 2+n = 1nn +1=1n -1 n +1 ,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=? ????1-12+? ??? ?12-13+? ????13-14+…+? ?? ???1n -1-1n , 所以a n -a 1=1-1n .

因为a 1=12,所以a n =12+1-1n =32-1 n . 2.a n +1=f (n )a n 型 把原递推公式转化为a n +1 a n =f (n ),再利用累乘法(逐商相乘法) 求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a n a 1= f (1)f (2)…f (n -1). [例2] 已知数列{a n }满足a 1=2 3,a n + 1=n n +1 ·a n ,求a n . [解] 由a n +1=n n +1·a n ,得a n +1a n = n n +1 , 故a n =a n a n -1·a n -1a n -2·…·a 2 a 1 ·a 1=n -1n × n -2n -1×…×12×23=23n .即a n =2 3n . 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型

相关文档
最新文档