聚合物地玻璃化转变温度

聚合物地玻璃化转变温度
聚合物地玻璃化转变温度

聚合物的玻璃化转变温度

姓名:罗新杰学号:20101648 班级:高分子材料与工程一班

摘要:在高分子科学中,聚合物的玻璃化转变是一个非常重要的现象,玻璃化转变是非晶

态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。本文主要简单地介绍玻璃化转变温度的相关知识和理论。

前言:玻璃化转变温度(Tg)是非晶态聚合物的一个重要的物理性质,也是凝聚态物理基础理论中的一个重要问题和难题,是涉及动力学和热力学的众多前沿问题。玻璃转变的理论一直在不断的发展和更新。从20世纪50年代出现的自由体积理论到现在还在不断完善的模态祸合理论及其他众多理论,都只能解决玻璃转变中的某些问题。一个完整的玻璃转变理论仍需要人们作艰苦的努力。

对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度-形变曲线或热机械曲线。非晶聚物有四种力学状态,它们是玻璃态、粘弹态、高弹态和粘流态。在温度较低时,材料为刚性固体状,与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态,当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态,温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是玻璃化温度。

高分子材料玻璃化转变的表征可提供丰富的信息,例如固化程度、热历史、材料的最高服役温度,共聚、共混物组分的相容性和相分离,组分的定性和定量等等,因此长期以来它都是高分子物理研究的主要内容。所以我们得研究和掌握不同高分子玻璃化转变温度的测试方法,并比较不同测试方法的优缺点。

通过对玻璃化转变温度的不断研究,人们逐渐了解了影响玻璃化转变温度的不同因素,从而能更加灵活的处理和运用聚合物的玻璃化转变温度。让玻璃化转变温度得到更加广泛的应用。

1、玻璃化转变

玻璃化转变是指无定形或半结晶的聚合物材料中的无定形区域在降温过程中从橡胶态或高弹态转变为玻璃态的一种可逆变化。在橡胶态/高弹态时,分子能发生相对移动(即分子重排);在玻璃态,分子重排被冻结。从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不像相转变那样有相变热,所以它是一种二级相变(高分子动态力学中称主转变)。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,如果温度再升高,进一步达到粘流温度,就使整个分子链运动而表现出粘流性质。所以在聚合物使用上,玻璃化转变温度一般为塑料的使用湿度上限,橡胶使用温度的下限。

2、玻璃化转变温度的测定方法

2.1热分析法

2.1.1膨胀计法

在膨胀计内装入适量的受测聚合物,通过抽真空的方法在负压下将对受测聚合物没有溶解作用的惰性液体充入膨胀计内,然后在油浴中以一定的升温速率对膨胀计加热,记录惰性液体柱高度随温度的变化。由于高分子聚合物在玻璃化温度前后体积的突变,因此惰性液体柱高度-温度曲线上对应有折点。折点对应的温度即为受测聚合物的玻璃化温度(见下图)。

2.1.2示差扫描量热法DSC(差热分析法DTA)

在玻璃化温度时,高聚物的比热客、热膨胀系数、粘度、折光率、自由体积以及弹性模量等都要发生一个突变。DSC/DTA测定玻璃化转变温度Tg就是基于高聚物在玻璃化温度转变时,热容增加这一性质。以DSC为例,当温度逐渐升高,通过高分子聚合物的玻璃化转变温度时,DSC曲线上的基线向吸热方向移动(见下图)。图中A点是开始偏离基线的点。将转变前后的基线延长,两线之间的垂直距离为阶差ΔJ,在ΔJ/2 处可以找到C点,从C点作切线与前基线相交于B点,B点所对应的温度值即为玻璃化转变温度Tg。

在测定过程中,△J阶差除了与试样玻璃化转变前后的热容Cp之差有关外,还与升温速率β有关,此外与DSC灵敏度也有关。

2.1.3热机械法(温度-变形法)

在加热炉或环境箱内对高分子聚合物的试样施加恒定载荷;记录不同温度下的温度-变形曲线。类似于膨胀计法,找出曲线上的折点所对应的温度,即为:玻璃化转变温度。2.2动态力学方法

2.2.1动态力学性能分析(DMA)法

高分子材料的动态性能分析(DMA)通过在受测高分子聚合物上施加正弦交变载荷获取聚合物材料的动态力学响应。对于弹性材料(材料无粘弹性质),动态载荷与其引起的变形之间无相位差(ε=σ0sin(ωt)/E)。当材料具有粘弹性质时,材料的变形滞后于施加的载荷,载荷与变形之间出现相位差δ:ε=σ0sin(ωt+δ)/E。将含相位角的应力应变关系按三角函数关系展开,定义出对应与弹性性质的储能模量 E’=Ecos(δ)和对应于粘弹性的损耗模量 E”=Esin(δ) E因此称为绝对模量 E=sqrt(E’2+E”2) 由于相位角差δ的存在,外部载荷在对粘弹性材料加载时出现能量的损耗。粘弹性材料的这一性质成为其对于外力的阻尼。阻尼系数γ=tan(δ)=E’’/E’由此可见,高分子聚合物的粘弹性大小体现在应变滞后相位角上。当温度由低向高发展并通过玻璃化转变温度时,材料内部高分子的结构形态发生变化,与分子结构形态相关的粘弹性随之的变化。这一变化同时反映在储能模量,损耗模量和阻尼系数上。

2.3NMR核磁共振松弛法

温度升高后,分子运动加快,质子环境被平均化(处于高能量的带磁矩质子与处于低能量的的带磁矩质子在数量上开始接近;N-/N+=exp(-E/kT)),共振谱线变窄。到玻璃化转变温度,Tg时谱线的宽度有很大的改变。利用这一现象,可以用核磁共振仪,通过分析其谱线的方法获取高分子材料的玻璃化转变温度。

2.4介电热分析法

在玻璃化转变过程中由于高分子链段运动的增加,材料中的偶极子或离子就有了受电场影响重新排列和消耗能量的可能,材料的介电性能发生了很大的变化,因此可通过介电热分析法(DEA)来确定玻璃化温度。DEA将正弦电压施加于夹有试样的两电极间而测量电流的变化,通过激发电压的频率、响应电流的振幅和相位角的变化可换算出介电性能的3个信息:介电常数ε'、损耗因子ε"和介电损耗tanδ。在玻璃化转变过程中介电常数和介电损耗曲线会出现陡然增高,而损耗因子形成一个峰。一般把曲线较平坦部分和陡升部分所作前后切线的交点,即ε'和tanδ的ONSET温度,以及ε"的峰值确定为玻璃化温度。

3、影响玻璃化转变温度的因素

3.1化学结构的影响

3.1.1主链结构

(1)主链由饱和单键构成的聚合物,例如C-C-,-C-N-,-C-O-,-Si-O-等,因为分子链可以围绕单键进行内旋转,如果分子链上没有极性或具有位阻大的取代基团存在,则这些高聚物都是柔顺的,Tg较低。

(2)主链上含有孤立双键,双键相邻的单键具有sp2杂化轨道结构,其内旋转位阻较小而更加容易,分子链具有高度柔性,Tg较低。天然橡胶(-73℃)、合成橡胶、顺丁胶等属于此类结构。

(3)当主链中引入苯基、联苯基、萘基和均苯四酸二酰亚胺基等芳杂环以后,链上可以内旋转的单键比例相对的减少,分子链的刚性增大,因此有利于玻璃化温度的提高。3.1.2取代基团的空间位阻和侧链的柔性

3.1.2.1侧基的极性

(1)如果侧基在高分子链上的分布不对称,则侧基极性增加,Tg升高。

(2)当极性基的数量超过一定量时,极性基团之间斥力大于引力,反而使Tg降低;若侧基能形成氢键,也使Tg升高。

(3)如果极性侧基在高分子链上分布对称,则极性基的静电场相互抵消,因而高聚物有较大的柔性,Tg较低。

3.1.2.2侧基的位阻效应

(1)刚性的大侧基,会使单键的内旋转受阻从而使Tg升高。

(2)季碳原子上一个甲基作不对称取代,空间位阻将增大,Tg将升高;季碳原子上一个甲基作对称取代,空间位阻减小,Tg将降低。

(3)长而柔的侧链反而会使Tg降低。因为侧基越大,柔性也越大,柔性的增加足以补偿体积效应,并且起了增塑作用,使大分子相互之间隔离,减小了分子间力。

3.1.3其他结构因素的影响

3.1.3.1共聚和共混

(1)无规共聚物:无规共聚物的Tg介于两种共聚物组分单体的均聚物的Tg之间,随着共聚物组成的变化,其Tg值在两均聚物Tg之间作线性的或非线性的变化。

(2)交替共聚物:交替共聚物可以看作由两种单体组成一个重复单元的均聚物,仍只有一个玻璃化温度。

(3)嵌段、接枝共聚物:嵌段、接枝共聚物与共混的情况相似,决定性因素是两种组分是否相容及相容的好坏。

3.1.3.2交联

随着化学交联点密度的增加,聚合物的自由体积减少,分子链的活动受到约束的程度也增加,相邻交联点之间的平均链长变小,柔顺性也减小,Tg升高。

3.1.3.3分子量

分子量低时,随着分子量的增加Tg升高;但是当分子量超过某一限度后,分子量对Tg 的影响就不明显了(见下图)。

3.1.3.4增塑剂或稀释剂

一般增塑剂分子与高分子具有较强的亲和力,会使链分子间作用减弱(屏蔽效应),同时,增塑剂分子小,活动能力强,可提供链段运动的空间,因此Tg下降,同时流动温度T f也会降低,因而加入增塑剂后可以降低成型温度,并可改善制品的耐寒性。

增塑剂对Tg的影响是相当显著的。玻璃化温度较高的聚合物,在加入增塑剂之后,可以使Tg明显的下降(见下图)。

通常,共聚作用在降低熔点方面比增塑作用更为有效,而增塑作用在降低玻璃化温度方面比共聚作用更为有效。

增塑剂分极性和非极性两种情况:

(1)非极性增塑剂对非极性聚合物的增塑作用机理:相当于形成了聚合物浓溶液,聚合物的分子链之间被增塑剂分子隔开了一定距离,削弱了聚合物分子间力。用量越多,隔离作用越大,Tg降低。

(2)极性增塑剂对聚合物的增塑作用机理:并非分子链间的隔离作用,而是增塑剂的极性基与聚合物分子链的极性基相互作用,取代聚合物分子链间极性基作用,削弱了聚合分子链的相互作用,使大分子之间形成的次价交联点的数量减少,Tg降低。

3.1.3.5结晶作用的影响

因为结晶聚合物中含有非结晶部分,因此仍有玻璃化温度,但是由于微晶的存在,使非晶部分链段的活动能力受到牵制,一般结晶聚合物的Tg要高于非晶态同种聚合物的Tg。3.1.4外界条件的影响

3.1.4.1升温速度

由于玻璃化转变不是热力学的平衡过程,测量Tg时,随着升温速度的减慢,所得数值偏低。在降温测量中,降温速度减慢,测得的Tg也向低温方向移动。

3.1.4.2外力

单向的外力促使链段运动,因而使Tg降低,外力越大,Tg降低越多。

3.1.4.3围压力

随着聚合物周围流体静压力的增加,许多聚合物的Tg线性地升高。

3.1.4.4测量的频率

由于玻璃化转变是一个松弛过程,外力作用的速度不同将引起转变点的移动。用动态方法测量的玻璃化温度Tg通常要比静态的膨胀计法测得的Tg高,而且Tg随着测量频率ν增加而升高。

4、玻璃化转变理论

对于玻璃化转变现象,至今尚无完整的理论可以作出完全符合实验事实的正确解释。已经提出理论很多,主要的有三种:自由体积理论、热力学理论和动力学理论。

4.1自由体积理论

自由体积理论认为,在玻璃化转变温度以下时,链段运动被冻结,空穴的尺寸和分布基本不变,即T g以下,聚合物的V f几乎是不变的。高聚物体积随温度升高而发生的膨胀是由于固有体积的膨胀。

在玻璃化转变温度以上时,链段运动被激发,高聚物体积随温度升高而发生的膨胀就包括两部分:固有体积的膨胀和自由体积的膨胀。因此,体积膨胀率比T g以下时要大。

当T = T g

V0–玻璃态聚合物在绝对零度时的已占体积

V g–在玻璃化温度时的总体积

V f–玻璃态下的自由体积Array

当 T > T g

V r–在玻璃化温度以上时的体积

在T g上下, 体积膨胀率的变化是由于自由体积在T g以上温度时也发生了膨胀

因此在T g

膨胀系数a - 单位体积的膨胀率

T g 以下的膨胀系数(

T g 以上的膨胀系数(

T g 上下膨胀系数之差

自由体积分数 f = V f /V T g 以下温度的自由体积分数: T g 以上温度的自由体积分数玻璃化温度是这样一个温度,在这个温度时聚合物的自由体积达到这样一个大小,以使高分子链段运动刚好可以发生

这个自由体积对所有聚合物材料来说,都是相等的, 占总体积的 2.5%。 f g = 0.025 或 f g = 2.5%

4.2玻璃化转变的热力学理论

一级相转变: 与自由能一阶导数有关的性质如体积、熵及焓等在相转变过程中发生突变,则该相转变称为一级相转变,如结晶的熔融过程、液体的蒸发过程都是一级相转变过程。

二级相转变:与自由能二阶导数有关的性质如压缩系数k 、膨胀系数a 及比热容C p 等在相转变过程中发生不连续变化,则该相转变称为二级相转变。

4.3玻璃化转变动力学理论

玻璃化转变是一个速率过程——松弛过程, 在玻璃化转变区, 试样体积不能立即达到平衡态体积, 而是与平衡态体积有偏差, 偏差的大小与时间有关(推迟时间)。

外力作用时间 分子运动时间尺度

(实验时间) 松弛时间)

(实验观察时间)

玻璃化转变

5、玻璃化转变温度的应用

玻璃化转变温度是高分子聚合物的特征温度之一。以玻璃化温度为界,高分子聚合物呈现不同的物理性质:在玻璃化温度以下,高分子材料为塑料;在玻璃化温度以上,高分子材

料为橡胶。从工程应用角度而言,玻璃化温度是工程塑料使用温度的上限,是橡胶或弹性体的使用下限。

参考文献:

[1] 何曼君,张红东,陈维孝,董西侠.高分子物理[M].复旦大学出版社,2006,10.

[2] 马德柱,何平笙,徐种德等.高聚物的结构与性能.第二版,北京:科学出版社,1995.

[3] 何平笙,朱平平,杨海洋.对聚合物玻璃化转变的几点新认识.化学通报,2006,2.

[4] 刘振海热分析仪器,2006.

玻璃化转变温度的测定

玻璃化转变温度的测定 玻璃化转变温度(T g)是高聚物的一个重要特性参数,是高聚物从玻璃态转变为高弹态的温度.在聚合物使用上,T g一般为塑料的使用湿度上限,橡胶使用温度的下限。从分子结构上讲,玻璃化转变是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不象相转变那样有相交热,所以其是一种二级相变(高分子动态力学内称主转变)。在玻璃化温度下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动,而在玻璃化温度时,分子链虽不能移动,但是链段开始运动,表现出高弹性质。温度再升高,就使整个分子链运动而表观出粘流性质。在玻璃化温度时,高聚物的比热客、热膨胀系数、粘度、折光率、自由体积以及弹性模量等都要发生一个突变.DSC测定玻璃化转变温度T g就是基于高聚物在玻璃化温度转变时,热容增加这一性质.在DSC曲线上,其表现为在通过玻璃化转变温度时,基线向吸热方向移动,如图1.35所示.图中A点是开始偏离基线的点。把转变前和转变后的基线延长,两线间的垂直距离△J叫阶差,在△J/2处可以找到C点。从C点作切线与前基线延长线相交于B点。ICTA建议用B点作为玻璃化转变温度T g,实际上,也有取C点或取D点作为T g的。在测定过程中,△J阶差除了与试样玻璃化转变前后的热容C p之差有关外.还与升温速率β有关,此外与DSC灵敏度也有关。 玻璃化转变温度T g除了取决于聚合物的结构之外,还与聚合物的分子星,增塑剂的用量,共聚物或共混物组分的比例,交联度的多少以及聚合物内相邻分子之间的作用力等部有关系. T g与聚合物的重均分子量之间的关系,如下式所示:

玻璃化温度

对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度形变曲线或热机械曲线。非晶聚物有三种力学状态,它们是玻璃态、高弹态和粘流态。在温度较低时,材料为刚性固体状,与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态:当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态,温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是玻璃化温度。 玻璃化温度是指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度。是无定型聚合物大分子链段自由运动的最低温度。 通常用Tg表示。没有很固定的数值,往往随着测定的方法和条件而改变。高聚物的一种重要的工艺指标。在此温度以上,高聚物表现出弹性;在此温度以下,高聚物表现出脆性,在用作塑料、橡胶、合成纤维等时必须加以考虑。如聚氯乙烯的玻璃化温度是80℃。 非晶态(无定形)高分于可以按其力学性质区分为玻璃态、高弹态和粘流态三种状态。高弹态的高分子材料随着温度的降低会发生由高弹态向玻璃态的转变,这个转变称为玻璃化转变。它的转变温度称为玻璃化温度Tg。如果高弹态材料温度升高,高分子将发生由高弹态向粘流态的转变,其转变温度称为粘流温度Tf。 当玻璃态高分子在Tg温度发生转变时,其模量降落达3个数量级,使材料从坚硬的固体突然变成柔软的弹性体,完全改变了材料的使用性能。高分子的其他很多物理性质,如体积(比体积)、热力学性质(比热容、焓)和电磁性质(介电常数和介电损耗、核磁共振吸收谱线宽度等)均有明显的变化。 作为塑料使用的高分子,当温度升高到玻璃化转变温度以上时,便失去了塑料的性能,变成了橡胶。平时我们所说的塑料和橡胶是按它们的Tg是在室温以上还是在室温以下而言的。Tg在室温以下的是橡胶,Tg在室温以上的是塑料。因此从工艺的角度来看,Tg是非晶态热塑性塑料使用的上限温度,是橡胶使用的下限温度Tg是高分子的特征温度之一,可以作为表征高分子的指标。 影响玻璃化转变温度的因素很多。因为玻璃化温度是高分子的链段从冻结到运动的一个转变

玻璃化转变温度和SBS

一、玻璃化转变温度定义 1.从实验现象角度定义玻璃化转变温度: 玻璃化转变温度是指由高弹态转变为玻璃态、玻璃态转变为高弹态所对应的温度。 2.从测试角度定义玻璃化转变温度 玻璃化转变温度是指高聚物的力学性质(模量、力学损耗)、热力学性质(比热容、热膨胀系数、焓)、电磁性质(介电性、导电性、内耗峰)、形变(膨胀系数)、光学性质(折光指数)等物理性质发生突变点所对应的温度。 如果把玻璃化转变温度看作是一个转变温区,不是一个定值,这样比较容易理解玻璃化转变现象 二、测定方法 1.膨胀计法在膨胀计内装入适量的受测聚合物,通过抽真空的方法在负压下将对受测聚合物没有溶解作用的惰性液体充入膨胀计内,然后在油浴中以一定的升温速率对膨胀计加热,记录惰性液体柱高度随温度的变化。由于高分子聚合物在玻璃化温度前后体积的突变,因此惰性液体柱高度-温度曲线上对应有折点。折点对应的温度即为受测聚合物的玻璃化温度。 2.折光率法利用高分子聚合物在玻璃化转变温度前后折光率的变化,找出导致这种变化的玻璃化转变温度。 3.热机械法(温度-变形法)在加热炉或环境箱内对高分子聚合物的试样施加恒定载荷;记录不同温度下的温度-变形曲线。类似于膨胀计法,找出曲线上的折点所对应的温度,即为:玻璃化转变温度。 三、结论 前人做过很多实验,都观察到同一个现象:玻璃化转变温度随升温速率升高(升温速率>5℃/min)而增大、降温速率(降温速率>5℃/min)增大而增大。 一、SBS的合成 SBS的合成:以苯乙烯,丁二烯为单体原料,环己烷为溶剂、n-BuLi为引发剂、THF为活化剂,无终止阴离子聚合反应,SiCl4为偶联剂最后加入适量,反应终止加入防老剂。产品为白色半透明的弹性体。 二、SBS的玻璃化温度

如何测定玻璃化转变温度Tg

如何测定玻璃化转变温度Tg 2008-04-06 10:53 1.膨胀计法在膨胀计内装入适量的受测聚合物,通过抽真空的方法在负压下将对受测聚合物没有溶解作用的惰性液体充入膨胀计内,然后在油浴中以一定的升温速率对膨胀计加热,记录惰性液体柱高度随温度的变化。由于高分子聚合物在玻璃化温度前后体积的突变,因此惰性液体柱高度-温度曲线上对应有折点。折点对应的温度即为受测聚合物的玻璃化温度。 2.折光率法利用高分子聚合物在玻璃化转变温度前后折光率的变化,找出导致这种变化的玻璃化转变温度。3.热机械法(温度-变形法)在加热炉或环境箱内对高分子聚合物的试样施加恒定载荷;记录不同温度下的温度-变形曲线。类似于膨胀计法,找出曲线上的折点所对应的温度,即为:玻璃化转变温度。 4.DTA法(DSC)以玻璃化温度为界,高分子聚合物的物理性质随高分子链段运动自由度的变化而呈现显著的变化,其中,热容的变化使热分析方法成为测定高分子材料玻璃花温度的一种有效手段。目前用于玻璃化温度测定的热分析方法主要为差热分析(DTA和差示扫描量热分析法(DSC)。以DSC为例,当温度逐渐升高,通过高分子聚合物的玻璃化转变温度时,DSC曲线上的基线向吸热方向移动(见图)。图中A点是开始偏离基线的点。将转变前后的基线延长,两线之间的垂直距离为阶差ΔJ,在ΔJ/2 处可以找到C点,从C点作切线与前基线相交于B点,B点所对应的温度值即为玻璃化转变温度Tg。 5.动态力学性能分析(DMA)法高分子材料的动态性能分析(DMA)通过在受测高分子聚合物上施加正弦交变载荷获取聚合物材料的动态力学响应。对于弹性材料(材料无粘弹性质),动态载荷与其引起的变形之间无相位差(ε=ζ0sin(ωt)/E)。当材料具有粘弹性质时,材料的变形滞后于施加的载荷,载荷与变形之间出现相位差δ:ε=ζ0sin(ωt+δ)/E。将含相位角的应力应变关系按三角函数关系展开,定义出对应与弹性性质的储能模量 G’=Ecos(δ)和对应于粘弹性的损耗模量G”=Esin(δ) E因此称为绝对模量E=sqrt(G’2+G”2) 由于相位角差δ的存在,外部载荷在对粘弹性材料加载时出现能量的损耗。粘弹性材料的这一性质成为其对于外力的阻尼。阻尼系数γ=tan(δ)=G’’/G’ 由此可见,高分子聚合物的粘弹性大小体现在应变滞后相位角上。当温度由低向高发展并通过玻璃化转变温度时,材料内部高分子的结构形态发生变化,与分子结构形态相关的粘弹性随之的变化。这一变化同时反映在储能模量,损耗模量和阻尼系数上。下图是聚乙酰胺的DMA曲线。振动频率为1Hz。在-60和-30°C之间,贮能模量的下降,阻尼系数的峰值对应着材料内部结构的变化。相应的温度即为玻璃化转变温度Tg。 6.核磁共振法(NMR)温度升高后,分子运动加快,质子环境被平均化(处于高能量的带磁矩质子与处于低能量的的带磁矩质子在数量上开始接近;N-/N+=exp(-E/kT)),共振谱线变窄。到玻璃化转变温度,Tg时谱线的宽度有很大的改变。利用这一现象,可以用核磁共振仪,通过分析其谱线的方法获取高分子材料的玻璃化转变温度。 玻璃化温度Tg--冬天“塑料”为什么容易裂? 非晶态(无定形)高分子可以按其力学性质区分为玻璃态、高弹态和粘流态三种状态。高弹态的高分子材料随着温度的降低会发生由高弹态向玻璃态的转变,这个转变称为玻璃化转变。它的转变温度称为玻璃化温度Tg。如果高弹态材料温度升高,高分子将发生由高弹态向粘流态的转变,其转变温度称为粘流温度Tf。 当玻璃态高分子在Tg温度发生转变时,其模量降落达3个数量级,使材料从坚硬的固体突

聚合物的玻璃化转变温度

聚合物的玻璃化转变温度 姓名:罗新杰学号:班级:高分子材料与工程一班 摘要:在高分子科学中,聚合物的玻璃化转变是一个非常重要的现象,玻璃化转变是非晶 态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。本文主要简单地介绍玻璃化转变温度的相关知识和理论。 前言:玻璃化转变温度(Tg)是非晶态聚合物的一个重要的物理性质,也是凝聚态物理基础理论中的一个重要问题和难题,是涉及动力学和热力学的众多前沿问题。玻璃转变的理论一直在不断的发展和更新。从20世纪50年代出现的到现在还在不断完善的模态祸合理论及其他众多理论,都只能解决玻璃转变中的某些问题。一个完整的玻璃转变理论仍需要人们作艰苦的努力。 对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度-形变或热机械曲线。非晶聚物有四种力学状态,它们是玻璃态、粘弹态、高弹态和粘流态。在温度较低时,材料为刚性固体状,与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态,当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态,温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是。 高分子材料玻璃化转变的表征可提供丰富的信息,例如固化程度、热历史、材料的最高服役温度,共聚、共混物组分的相容性和相分离,组分的定性和定量等等,因此长期以来它都是高分子物理研究的主要内容。所以我们得研究和掌握不同高分子玻璃化转变温度的测试方法,并比较不同测试方法的优缺点。 通过对玻璃化转变温度的不断研究,人们逐渐了解了影响玻璃化转变温度的不同因素,从而能更加灵活的处理和运用聚合物的玻璃化转变温度。让玻璃化转变温度得到更加广泛的应用。 1、玻璃化转变 玻璃化转变是指无定形或半结晶的聚合物材料中的无定形区域在降温过程中从橡胶态或高弹态转变为玻璃态的一种可逆变化。在橡胶态/高弹态时,分子能发生相对移动(即分子重排);在玻璃态,分子重排被冻结。从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不像相转变那样有相变热,所以它是一种二级相变(高分子动态力学中称主转变)。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,如果温度再升高,进一步达到粘流温度,就使整个分子链运动而表现出粘流性质。所以在聚合物使用上,玻璃化转变温度一般为塑料的使用湿度上限,橡胶使用温度的下限。 2、玻璃化转变温度的测定方法 2.1热分析法

聚合物的玻璃化转变

聚合物的玻璃化转变 高宇 (华东理工大学材料科学与工程学院,200237) 【摘要】玻璃化转变是高聚物的一种普遍现象,研究玻璃化转变现象,有着重要的理论和实际意义。本文先综述了玻璃化转变过程中的一些现象,然后简要介绍了玻璃化转变的三种主要理论:自由体积理论、热力学理论和动力学理论。 【关键词】玻璃化转变自由体积理论热力学理论动力学理论 聚合物试样上施加恒定载荷,在一定范围内改变温度,试样的形变将随温度变化,以形变或相对形变对温度作图,所得到的曲线,通常称为温度-形变曲线或热机械曲线。根据试样的力学性质随温度变化的特征,可以把非晶态聚合物按温度区域不同划为三种力学状态——玻璃态、高弹态和粘流态。玻璃态与高弹态之间的转变,称为玻璃化转变,对应的转变温度即玻璃化转变温度。 1. 玻璃化转变现象 玻璃化转变是聚合物的玻璃态与高弹态之间的转变,对应于含20~50个链节的链段的微布朗运动的“冻结”和“解冻”的临界状态。由于非晶态结构在聚合物中是普遍存在的,因此玻璃化转变是聚合物的一种普遍现象。在玻璃化转变前后,聚合物的体积性质、热力学性质、力学性质、电学性质等都将发生明显变化。跟踪这些性质随温度的变化,可确定玻璃化转变温度。 聚合物的玻璃化转变是链段运动随温度的升高被激发或随温度的降低被冻结造成的现象。也可以从另一个角度来理解玻璃化转变行为,分子运动具有时间依赖性,在较低温度下,链段的运动速度十分缓慢,在实验限定的观察时间尺度下觉察不到它的运动现象,随着温度的升高,运动速度加快,当链段的运动速度同检测时间标尺相匹配时,玻璃化转变行为就表现出来了。 玻璃化转变本质上讲是分子运动方式的改变。通过改变温度可以改变分子的运动方式,在温度恒定的前提下,也可改变其他因素以实现分子运动方式的变化,使材料处于不同的力学状态。这种可通过多种因素导致玻璃化转变的现象称为玻璃化转变的多维性。 在玻璃化转变时,聚合物材料的力学性质的变化相当显著。在只有几度的转变温度区前后,材料的模量可改变三到四个数量级。在玻璃态,材料是坚硬的固体,而在橡胶态,材料为具有较大变形性的柔软的弹性体。作为塑料使用的无定形聚合物,当温度升高到发生玻璃化转变时,便失去了塑料的性能,变成了橡胶;反之,橡胶材料在温度降低到Tg以下时,便失去了橡胶弹性,变成了坚硬的塑料。因此,玻璃化温度是非晶态热塑性塑料使用温度的上限,是橡胶使用温度的下限。因此,玻璃化转变是高聚物的一个非常重要的性质。研究玻璃化转变现象,有着重要的理论和实际意义。 2. 玻璃化转变理论 玻璃化转变有多种理论,主要有三种:Fox和Flory提出的自由体积理论;根据玻璃态的熵函数的热力学理论和根据与玻璃化转变同时发生的松弛现象的动力学理论。 2.1 自由体积理论 自由体积理论最初由Fox和Flory提出,认为液体乃至固体的宏观体积可分成两个部分:其主要部分是分子的占有体积,另一部分时分子堆砌形成的空隙,称为自由体积,它以“空穴”的形式分散在物质中。自由体积的存在提供了分子运动的余地,使分子能够进行构象重排和移动。在玻璃态,链段的运动被冻结,自由体积也处于冻结状态,自由体积的“空穴”尺寸和分布基本上保持固定。聚合物的玻璃化温度为自由体积降至最低值的临界温度,在此温度以下,自由体积提供的空间已不足够允许聚合物分子链发生构象调整。在玻璃态时聚合

PET玻璃化转变温度的测定试验课程PET玻璃化转变温度的测定

一、实验课程: PET玻璃化转变温度的测定二、实验项目: 三、实验教材: 四、主要仪器设备: PE公司的Diamond DSC 五、实验教学课件

1 实验目的 (1) 了解功率补偿型DSC的基本结构和工作原理。 (2) 掌握玻璃化转变温度测定的实验方法及其表征。 2 实验用具和材料 Diamond DSC,铝坩埚及坩埚盖,压片机,吸力笔,镊子,PET材料。 3 基本知识 差示扫描量热法(differential scanning calorimetry,DSC)其原理是检测程序升降温过程中为保持样品和参比物温度始终相等所补偿的热流率dH/dt随温度或时间的变化。DSC是研究物质玻璃化转变过程的强有力工具,它的表征是通过跟踪转变过程中的比热变化实现的,在升温或降温扫描中出现在DSC热流曲线上的台阶状变化就是玻璃化转变过程。 4 实验步骤 (1) 打开气源(气氛为N2),打开仪器电源和制冷机电源。 (2) 打开电脑,启动Pyris Manager操作软件,点击Diamond DSC取得联机后进入软件测试控制界面。 (3) 打开炉盖加热开关和设备吹扫气体开关。注意:实验过程中,一直保持炉盖加热状态,以免炉盖结霜。DSC 在执行实验之前至少预热30分钟。 (4) 装样品,DSC仪用铝坩埚装样,并用压片机封好,谨防实验过程中样品溢出。 (5) 在室温下,打开炉盖,左侧位置装入待测样品,盖上铂金盘后关闭炉盖。注意:铂金盘一定要放置到位,标准是用吸力笔吸住后能够在炉里自由转动。 (6) 设置实验参数,编辑测试程序,包括初始温度、扫描温度和速率等。DSC仪的实验温度必须控制在-60℃~熔融温度内,不能用于分解实验。 (7) 开始测试。在数据采集过程中应避免仪器周围有明显震动,严禁打开上盖,也不能调整样品净化气体的流量,以避免对DSC热流曲线的影响。 (8) 测试结束后,依次关闭电脑、仪器电源、制冷机电源和气源。

玻璃化转变温度

玻璃化转变温度 科技名词定义 中文名称: 玻璃化转变温度 英文名称: glass transition temperature 定义: 非晶态聚合物或部分结晶聚合物中非晶相发生玻璃化转变所对应的温度。其值依赖于温度变化速率和测量频率,常有一定的分布宽度。 应用学科: 材料科学技术(一级学科);高分子材料(二级学科);高分子科学(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 目录 玻璃化转变概述 玻璃化转变温度的测定方法 用途 编辑本段玻璃化转变概述 玻璃化转变是非晶态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。由于高分子结构要比低分子结构复杂,其分子运动也就更为复杂和多样化。根据高分子的运动力形式不同,绝大多数聚合物材料通常可处于以下四种物理状态(或称力学状态):玻璃态、粘弹态、高弹态(橡胶态)和粘流态。而玻璃化转变则是高弹态和玻璃态之间的转变,从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不象相转变那样有相变热,所以它是一种二级相变(高分子动态力学中称主转变)。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,温度再升高,就使整个分子链运动而表现出粘流性质。玻璃化转变温度(Tg)是非晶态聚合物的一个重要的物理性质,也是凝聚态物理基础理论中的一个重要问题和难题,是涉及动力学和热力学的众多前沿问题.玻璃转变的理论一直在不断的发展和更新.从20世纪50年代出现的自由体积理论到现在还在不断完善的模态涡合理论及其他众多理论,都只能解决玻璃转变中的某些问题.一个完整的玻璃转变理论仍需要人们作艰苦的努力. 对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度形变曲线或热机械曲线。非晶聚物有四种力学状态,它们是玻璃态、粘弹态、高弹态和粘流态。

玻璃化转变温度Tg

玻璃化转变温度Tg <<高分子物理>> 姓名:刘玉萍 学号:51140606194 专业:高分子化学与物理

一、概述 对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度形变曲线或热机械曲线。非晶聚物有四种力学状态,它们是玻璃态、粘弹态、高弹态和粘流态。 玻璃化转变是高弹态和玻璃态之间的转变,从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,温度再升高,就使整个分子链运动而表现出粘流性质。

二、Tg的主要影响因素 Tg是表征聚合物性能的一个重要指标,从分子运动的角度看,它是链段开始“冻结”的温度,因此: 凡是导致链段的活动能力增加的因素均使Tg下降, 而导致链段活动能力下降的因素均使Tg上升。 ①:主链结构为-C-C-、-C-N-、-Si-O-、-C-O-等单键的非晶态聚合物的Tg依次降低。 ②:侧基为极性取代基时,取代基极性越大则Tg越高:为非极性取代基时,取代基的体积越大则Tg越高。 ③:当分子量较低时,Tg随分子量增加而增加;当分子量达到某一临界值时,Tg→Tg(∞),不再随分子量改变。 ④:升温速率(降温速率):升温(降温)速率越快,测得的Tg越高。 ⑤:此外,增塑剂、共聚、交联、结晶等都对聚合物的Tg 产生影响。 三、测试方法 原理:利用高聚物在发生玻璃化转变的同时各种物理参数均发生变化的特性进行测定。主要的测试方法有:①热-机械曲线法②膨胀法③电性能法④DTA法⑤DSC法值得注意的是对同一样品来说不同的测试方法会产生不同的测试结果[1]

玻璃化温度的定义及其测量

玻璃化温度 玻璃化转变温度,glass transition temperature,T g:非晶态聚合物或部分结晶聚合物中非晶相发生玻璃化转变所对应的温度。其值依赖于温度变化速率和测量频率,常有一定的分布宽度。 一、玻璃化转变 玻璃化转变是非晶态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。由于高分子结构要比低分子结构复杂,其分子运动也就更为复杂和多样化。 根据高分子的运动力形式不同,非晶聚合物有四种物理状态(或称力学状态):玻璃态、粘弹态、高弹态(橡胶态)和粘流态。我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变;它所对应的转变温度即是玻璃化转变温度(玻璃化温度)。 在温度较低时,材料为刚性固体状;与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态。当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态。温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。 从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不象相转变那样有相变热,所以它是一种二级相变(高分子动态力学中称主转变)。 在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,温度再升高,就使整个分子链运动而表现出粘流性质。 对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度形变曲线或热机械曲线。 玻璃化转变温度(T g)是非晶态聚合物的一个重要的物理性质,也是凝聚态物理基础理论中的一个重要问题和难题,是涉及动力学和热力学的众多前沿问

常见聚合物玻璃化转化温度

Names, Constitutional Repeating Units, Melting Points and Glass-transition Temperatures of Common High Polymers 序号(No.) 名称(Name) 重复结构单元(Constitutional repeating unit) 熔点Tm/℃玻璃化转变温度Tg/℃ 1 聚甲醛182.5 -30.0 2 聚乙烯140.0, 95.0 -125.0, -20.0 3 聚乙烯基甲醚150.0 -13.0 4 聚乙烯基乙醚- -42.0 5 乙烯丙烯共聚物,乙丙橡胶,- -60.0 6 聚乙烯醇258.0 99.0 7 聚乙烯基咔唑- 200.0 8 聚醋酸乙烯酯- 30.0 9 聚氟乙烯200.0 - 10 聚四氟乙烯(Teflon) 327.0 130.0 11 聚偏二氟乙烯171.0 39.0 12 偏二氟乙烯与六氟丙烯共聚物(Viton) ,- -55.0 13 聚氯乙烯(PVC) - 78.0-81.0 14 聚偏二氯乙烯210.0 -18.0 15 聚丙烯183.0,130.0 26.0,-35.0 16 聚丙烯酸- 106.0 17 聚甲基丙烯酸甲酯,有机玻璃160.0 105.0 18 聚丙烯酸乙酯- -22.0 19 聚(α-腈基丙烯酸丁酯)- 85.0 20 聚丙烯酰胺- 165.0 21 聚丙烯腈317.0 85.0 22 聚异丁烯基橡胶1.5 -70.0 23 聚氯代丁二烯,氯丁橡胶43.0 -45.0 24 聚顺式-1,4-异戊二烯,天然橡胶36.0 -70.0

常见聚合物的玻璃化转变温度和表面张力

常见高聚物的名称、重复结构单元、熔点与玻璃化转变温度Names, Constitutional Repeating Units, Melting Points and Glass-transition Temperatures of Common High Polymers 序号(No.) , 名称(Name) , 重复结构单元 (Constitutional repeating unit) , 熔点 T m/℃, 玻璃化转变温度T g/℃ 1 , 聚甲醛, , 182.5 , -30.0 2 , 聚乙烯, , 140.0,95.0 , -125.0,-20.0 3 , 聚乙烯基甲醚, , 150.0 , -13.0 4 , 聚乙烯基乙醚, , - , -42.0 5 , 乙烯丙烯共聚物,乙丙橡胶, ,, - , -60.0 6 , 聚乙烯醇, , 258.0 , 99.0 7 , 聚乙烯基咔唑, , - , 200.0 8 , 聚醋酸乙烯酯, , - , 30.0

9 , 聚氟乙烯, , 200.0 , - 10 , 聚四氟乙烯(Teflon) , , 327.0 , 130.0 11 , 聚偏二氟乙烯, , 171.0 , 39.0 12 , 偏二氟乙烯与六氟丙烯共聚物(Viton) , , , - , -55.0 13 , 聚氯乙烯(PVC) , , - , 78.0-81.0 14 , 聚偏二氯乙烯, , 210.0 , -18.0 15 , 聚丙烯, , 183.0,130.0 , 26.0,-35.0 16 , 聚丙烯酸, , - , 106.0 17 , 聚甲基丙烯酸甲酯,有机玻璃, , 160.0 , 105.0 18 , 聚丙烯酸乙酯, , - , -22.0

(完整版)DSC法测定PS的玻璃化转变温度

DSC法测定聚苯乙烯的玻璃化转变温度 聚合物的玻璃化转变是指非晶态聚合物从玻璃态到高弹态的转变,是高分子链段开始自由运动的转变。在发生转变时,与高分子链段运动有关的物理量,如比热、比容、介电常数、折光率等都表示出急剧的变化,玻璃化转变温度(T g)是表示玻璃化转变的非常重要的指标。由于高聚物在高于或低于T g时,其物理力学性质有巨大差别,所以,测定高聚物的一具有重大的实用意义。现有许多测定聚合物玻璃化转变温度的方法,如膨胀计、扭摆、扭辫、振簧、声波传播、介电松弛、核磁共振、示差扫描量热法(DSC)等。本实验是利用DSC来测定聚合物的玻璃化转变温度T g。 一、目的与要求 1、掌握DSC测定聚合物T g的实验技术; 2、了解升温速度对玻璃化转变温度的影响; 3、测定聚苯乙烯的玻璃化转变温度。 二、实验原理 以玻璃化温度为界,高分子聚合物的物理性质随高分子链段运动自由度的变化而呈现显著的变化,在玻璃化转变时,虽然没有吸热和放热现象,但其比热容发生了突变,在DSC曲线上表现为基线向吸热方向偏移,产生了一个台阶。热容的变化使热分析方法成为测定高分子材料玻璃化温度的一种有效手段。当温度逐渐升高,通过高分子聚合物的玻璃化转变温度时,DSC曲线上的基线向吸热方向移动(见图)。图中A点是开始偏离基线的点。将转变前后的基线延长,两线之间的垂直距离为阶差ΔJ,在ΔJ/2 处可以找到C点,从C点作切线与前基线相交于B点,B点所对应的温度值即为玻璃化转变温度T g。 三、仪器与药品 1、仪器 DSC Q1000(美国TA公司);Al盘。 2、药品

聚苯乙烯(颗粒状)约10mg,工业级。 四、实验步骤 1、开计算机,开高纯氮气, 出口压力小于0.1MPa,开DSC电源,运行桌面Instrument Explorer然后双击explorer里面的DSCQ1000图标。 2、启动制冷RCS,在control---Event---On,可听到压缩机启动的声音,大约7分钟左右,RCS90面板上右上角的制冷指示灯亮表示RCS开始给仪器制冷。 3、样品制备。取样并称好重量,选择铝盘,压好。高分子聚合物一般选择10mg,样品尽量薄尽量覆盖样品底部。 4、等炉内温度达到室温时,点击lid open,把同类型的参比(空坩埚)放到远离测试者的加热炉上,密封试样的铝坩埚放在近测试者的加热炉上。点击lid close,再检查一下以上操作有无问题。 5、设置软件如下:

玻璃化温度测量方法

1,体积的变化 用膨胀计测定玻璃化温度是最常用的方法。一般是测定高聚物的比体积对温度的关系.把曲线两端的直线部分外推至交点作为T g(如图1) 从图可以看出,玻璃化转变同冷却 速率有关:冷却的快。得出的T g高; 冷却的慢,T g就较低。同样,加热速 率或快或慢,T g也或高或低。产生这 种现象的原因是体系没有达到平衡。 但要达到平衡,需要很长的时间(无限 长),这在实验上做不到。通常采用的 标准是每分钟3℃。 测量时.常把试样在封闭体系中 加热或冷却,体积的变化通过填充液 体的液面升降而读出、这种液体不能 和高聚物发生反应或溶解、溶胀,最 常用的是水银、也有人用空气作测量的流体,达时可测定压力的变化。 其它与体积有关的性质也可用于测定,加试样的折射系数、X射线的吸收等。 2,热力学方法 量热方法也是测定玻璃化温度的常用方法。在T g时,热焓有明显变化,热容有—个突变。自从有了差热分析(DTA)和差示扫描量热计后,量热方法变得更为重要。 象体积变化一样,热焓和热容的变化也和速率有关:图2表示比体积(V)和焓(H)对温度的关系,图3表示体膨胀系数和热容对温度的关系,都出现行“滞后”现象。图中曲线1是缓慢冷却,曲线2是正常冷却和升温,曲线3是快速冷却;曲线1、3是正常升温。 3,核磁共振法(NMR) 利用电磁性质的变化研究高聚物玻璃化转变的方法是核磁共振法(NMR)。 在分子运动开始前,分子中的质子处于各种不同的状态,因而反映质子状态的NMR谱线很宽。当湿度升高,分子运动加速后,质子的环境被平均化,共振谱线变窄,到了T g时谱线的宽度有了很大改变。图5给出了聚氯乙烯的NNR线宽(ΔH)的变化。由图5可得Tg 为82℃。

玻璃化温度(整理)

玻璃化温度 玻璃化转变是高聚物的一种普遍现象,因为即使是结晶高聚物,也难以形成100%的结晶,总有非晶区存在。在高聚物发生玻璃化转变时,许多物理性能发生了急剧的变化特别是力学性能。在只有几度范围的转变温度区间前后,模量将改变三到四个数量级,使材料从坚硬的固体,突然变成柔软的弹性体,完全改变了材料的使用性能。作为塑料使用的高聚物,当温度升高到发生玻璃化转变时,失去了塑料的性能,变成了橡胶;而作为橡胶使用的材料,当温度降低到发生玻璃化转变时,便丧失橡胶的高弹性,变成硬而脆的塑科。因此,玻璃化转变是高聚物的一个非常重要的性质。研究玻璃化转变现象,有着重要的理论和实际意义。 而玻璃化温度是在决定应用一个非晶高聚物之前需要知道的一个最重要的参数,如何测量这一参数自然也是很重要的。另一方面对玻璃化转变现象的研究,也必须解决实际测量的问题。测量玻璃化温度的方法很多,原则上说,所有在玻璃化转变过程中发生显著变化或突变的物理性质,都可以利用来测量玻璃化温度。这些方法大致可以分成下面四类:1)利用体积变化的方法,2)利用热力学性质变化的方法,3)利用力学性质变化的方法,4)利用电磁性质变化的方法。 一、玻璃化转变的理论 对于玻璃化转变现象,至今尚无完善的理论可以做出完全符合实验事实的正确解释。已经提出的理论很多,主要的有三种:自由体积理论、热力学理论和动力学理论。 1、自由体积理论 自由体积理论认为,在玻璃化转变温度Tg以下,玻璃态中的分子链段运动和自由体积是被冻结的;玻璃化转变动力学理论认为,大分子局域链构象重排涉及到主链上单键的旋转,存在位垒,当温度在Tg以上时,分子运动有足够的能量去克服位垒,但当温度降至Tg以下时,分子热运动不足以克服位垒,于是便发生了分子运动的冻结。因此,高分子链在以下的运动一般被认为是冻结的。 自由体积理论最初是由Fox和Flory提出来的。他们认为液体或固体物质,其体积由两部分组成:一部分是被分子占据的体积,称为已占体积;另一部分是

玻璃化转变温度

玻璃化转变是非晶态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。由于高分子结构要比低分子结构复杂,其分子运动也就更为复杂和多样化。根据高分子的运动力形式不同,绝大多数聚合物材料通常可处于以下四种物理状态(或称力学状态):玻璃态、粘弹态、高弹态(橡胶态)和粘流态。而玻璃化转变则是高弹态和玻璃态之间的转变,从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不象相转变那样有相变热,所以它既不是一级相变也不是二级相变(高分子动态力学中称主转变)。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,温度再升高,就使整个分子链运动而表现出粘流性质。玻璃化转变温度(Tg)是非晶态聚合物的一个重要的物理性质,也是凝聚态物理基础理论中的一个重要问题和难题,是涉及动力学和热力学的众多前沿问题.玻璃转变的理论一直在不断的发展和更新.从20世纪50年代出现的自由体积理论到现在还在不断完善的模态涡合理论及其他众多理论,都只能解决玻璃转变中的某些问题.一个完整的玻璃转变理论仍需要人们作艰苦的努力. 对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度形变曲线或热机械曲线。非晶聚物有四种力学状态,它们是玻璃态、粘弹态、高弹态和粘流态。在温度较低时,材料为刚性固体状,与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态:当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态,温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是玻璃化温度。 2玻璃化转变温度的测定方法 1.膨胀计法在膨胀计内装入适量的受测聚合物,通过抽真空的方法在负压下将对受测聚合物没有溶解作用的惰性液体充入膨胀计内,然后在油浴中以一定的升温速率对膨胀计加热,记录惰性液体柱高度随温度的变化。由于高分子聚合物在玻璃化温度前后体积的突变,因此惰性液体柱高度-温度曲线上对应有折点。折点对应的温度即为受测聚合物的玻璃化温度。 2.折光率法利用高分子聚合物在玻璃化转变温度前后折光率的变化,找出导致这种变化的玻璃化转变温度。 3.热机械法(温度-变形法)在加热炉或环境箱内对高分子聚合物的试样施加恒定载荷;记录不同温度下的温度-变形曲线。类似于膨胀计法,找出曲线上的折点所对应的温度,即为:玻璃化转变温度。 4.DTA法(DSC)[1]以玻璃化温度为界,高分子聚合物的物理性质随高分子链段运动自

玻璃化转变温度(Tg值)

在材料学中,Tg指的就是玻璃化转变温度,其英文名字为glass transition temperature。学过高分子物理的人都知道,非晶态聚合物在一定应力下,由于温度的改变,可呈现三种物理状态:玻璃态、高弹态(橡胶态)、粘流态。(感兴趣的朋友可找《高分子物理》书详细研究下) 非晶态聚合物的温度形变曲线 玻璃化转变温度指的就是非晶态聚合物(也包括晶态聚合物中的非晶态部分)在玻璃态向高弹态之间转变时的温度,是无定型聚合物大分子链段自由运动的最低温度。 从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不像相转变那样有相变热,所以它不是一级相变。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,温度再升高,就使整个分子链运动而表现出粘流性质。 目前Tg的测试方法主要有:热机械分析法(TMA)、差热分析法(DTA)和示差扫描量热法(DSC)三种。其中最方便的方法是用DSC测量比热容随温度的变化。此外,还可以用核磁共振谱仪(NMR)来测定。其原理主要是聚合物的许多物理性能如热容、密度、热膨胀系数、电导率等都在该温度范围发生急剧变化,从而可以通过检测这些变化来测定其Tg。由于它们的测试方法原理不同,因而测试结果相差较大,不能相比。 玻璃化转变温度(Tg)是非晶态聚合物的一个非常重要的物理参数,那在实际应用中有什么指导作用呢?由于热固性树脂的固化物都属于非晶态聚合物,而产品都是在玻璃态使用,因此Tg越高,也就意味着产品的耐温性能越好。因此,Tg是衡量树脂耐温性能一个非常重要的指标。 既然聊起了温度,除了玻璃化转变温度,长弓侠还想跟大家再聊一个,那就是热变形温度。 热变形温度(全称负荷热变形温度,英文缩写:HDT)指的是对高分子材料或聚合物施加一定的负荷,以一定的速度升温,当达到规定形变时所对应的温度。是表达被测物的受热与变形之间关系的参数,用来衡量聚合物或高分子材料耐热性优劣的一种量度。 负荷不同,测出来的热变形温度的数值肯定也不一样,因此在说明热变形温度的时候一定要指明所施加的负荷,也就是相对应的标准。测量热变形温度的标准有很多,目前国内比较通用的有:国标(GB/T 1634.2)、国际标准化组织标准(ISO 75-2)、美国材料试验学会标准(ASTM D648)以及欧共体标准等。 一般热变形温度通过热变形维卡温度测定仪来测定。 Tg和HDT的异同:

膨胀计法测定聚合物的玻璃化温度实验报告

实验五膨胀计法测定聚合物的玻璃化温度 聚合物的玻璃化转变是指非晶态聚合物从玻璃态到高弹态的转变, 是高分子链段开始自 由运动的转变。在发生转变时,与高分子链段运动有关的多种物理量(例如比热、比容、介 电常数、折光率等)都将发生急剧变化。显而易见,玻璃化转变是聚合物非常重要的指标, 测定高聚物玻璃化温度具有重要的实际意义。目前测定聚合物玻璃化转变温度的主要有扭 摆、扭辫、振簧、声波转播、介电松弛、核磁共振和膨胀计等方法。本实验则是利用膨胀计 测定聚合物的玻璃化转变温度, 即利用高聚物的比容一温度曲线上的转折点确定高聚物的玻 璃化温度(T g )。 一、 实验目的与要求 1掌握膨胀计法测定聚合物 T g 的实验基本原理和方法。 2、了解升温速度对玻璃化温度的影响。 3、测定聚苯乙烯的玻璃化转变温度。 二、 实验原理 当玻璃化转变时,高聚物从一种粘性液体或橡胶态转变成脆性固体。根据热力学观点, 这一转变不是热力学平衡态,而是一个松弛过程,因而玻璃态与转变的过程有关。 描述玻璃 化转变的理论主要有自由体积理论、 热力学理论、动力学理论等。本实验的基本原理来源于 应用最为广泛的自由体积理论。 根据自由体积理论可知:高聚物的体积由大分子己占体积和分子间的空隙,即自由体积 组成。自由体积是分子运动时必需空间。 温度越高,自由体积越大,越有利于链段中的短链 作扩散运动而不断地进行构象重排。当温度降低,自由体积减小,降至玻璃化温度以下时, 自由体积减小到一临界值以下, 链段的短链扩散运动受阻不能发生 (即被冻结)时,就发生 玻璃化转变。图5-1高聚物的比容一温度关系曲线能够反映自由体积的变化。 图中上方的实线部分为聚合物的总体积, 下方阴影区部分则是聚合物己占体积。 当温度大于 T g 时,高聚物体积的膨胀率就会增加, 可以认为是自由体积被释放的结果, 图中〉r 段部分。 当T

关于玻璃化转移温度

玻璃化温度 简介 品名:玻璃化温度 英文名称:glass transition temperature 说明:高聚物由高弹态转变为玻璃态的温度,指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度,是无定型聚合物大分子链段自由运动的最低温度,通常用Tg表示。没有很 固定的数值,往往随着测定的方法和条件而改变。高聚物的一种重要的工艺指标。在此温度以上,高聚物表现出弹性;在此温度以下,高聚物表现出脆性,在用作塑料、橡胶、合成纤维等时必须加以考虑。如聚氯乙烯的玻璃化温度是80℃。但是,他不是制品工作温度的上限。比如,橡胶的工作温度必须在玻璃化温度以上,否则就失去高弹性。 测量玻璃化温度的方法 1、利用体积变化的方法 2、利用热力学性质变化的方法 3、利用力学性质变化的方法 4、利用电磁性质变化的方法 玻璃化转变温度(TG) 玻璃化转变温度Tg是材料的一个重要特性参数,材料的许多特性都在玻璃化转变温度附近发生急剧的变化。以玻璃为例,在玻璃化转变温度,由于玻璃的结构发生变化,玻璃的许多物理性能如热容、密度、热膨胀系数、电

导率等都在该温度范围发生急剧变化。根据玻璃化转变温度可以准确制定玻璃的热处理温度制度。对高聚物而言,它是高聚物从玻璃态转变为高弹态的温度,在玻璃化转变温度时,高聚物的比热容、热膨胀系数、粘度、折光率、自由体积以及弹性模量等都要发生一个突变。从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不像相转变那样有相变热,所以它是一种二级相变(高分子动态力学中称主转变)。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,温度再升高,就使整个分子链运动而表现出粘流性质。 测量玻璃化转变温度的方法 1.膨胀计法在膨胀计内装入适量的受测聚合物,通过抽真空的方法在负压下将对受测聚合物没有溶解作用的惰性液体充入膨胀计内,然后在油浴中以一定的升温速率对膨胀计加热,记录惰性液体柱高度随温度的变化。由于高分子聚合物在玻璃化温度前后体积的突变,因此惰性液体柱高度-温度曲线上对应有折点。折点对应的温度即为受测聚合物的玻璃化温度。 2.折光率法利用高分子聚合物在玻璃化转变温度前后折光率的变化,找出导致这种变化的玻璃化转变温度。 3.热机械法(温度-变形法)在加热炉或环境箱内对高分子聚合物的试样施加恒定载荷;记录不同温度下的温度-变形曲线。类似于膨胀计法,找出曲线上的折点所对应的温度,即为:玻璃化转变温度。

相关文档
最新文档