半导体激光器驱动电路

半导体激光器驱动电路
半导体激光器驱动电路

查阅相关文献资料,设计半导体激光器驱动电路,说明设计思路和电路模块的功能

图1

在半导体激光器的设计中,为了便于对光功率进行自动控制,通常激光器内部是将LD 和背向光检测器PD集成在一起的,见图1。其中LD有两个输出面,主光输出面输出的光供用户使用,次光输出面输出的光被光电二极管PD接收,所产生的电流用于监控LD的工作状态。背光检测器对LD的功率具有可探测性,可设计适当的外围电路完成对LD的自动光功率控制。激光器电路的设计框图如图所示,将电源加在一个恒压电路上,得到恒定的电压,再通过一个恒流电路得到恒定的电流以驱动LD工作.

其中恒压电路如图2,由器件XC9226以及一个电感和两个电容组成。XC9226是同步整流型降压DC/DC转换器,工作时的消耗电流为15mA,典型工作效率高达92%,只需单个线圈和两个外部连接电容即可实现稳定的电源和高达500IllA的输出电流。其输出纹波为10mV,固定输出电压在0.9v到4.0V范围内,以loomv的步阶内部编程设定。该电路中,输出的恒定电压设定为2.6v。

图2

恒流电路如图3,主要由LMV358、三极管以及一些电阻和电容共同组成.LMv358是一个低电压低功耗满幅度输出的低电压运放,工作电压在2.7v到5.5v之间。从恒压电路输出的2.6V电压经过Rl、RZ分压后,在LMv35s的同相输入端得到恒定电压Up,Up加在一个电压串联负反馈电路上,得到一个输出电压Uo。Uo再通过一个电阻和电容组成的LR滤波

电路上,得到恒定的直流电压uol,将uol作用在由三极管8050组成的共射级放大电路上,得到恒定的集电极电流Ic,k又通过一个滤波电容得到恒定的直流工作电压。

图3

半导体激光器驱动电路设计(精)

第9卷第21期 2009年11月1671 1819(2009)21 6532 04 科学技术与工程 ScienceTechnologyandEngineering 2009 Sci Tech Engng 9 No 21 Nov.2009 Vol 通信技术 半导体激光器驱动电路设计 何成林 (中国空空导弹研究院,洛阳471009) 摘要半导体激光驱动电路是激光引信的重要组成部分。根据半导体激光器特点,指出设计驱动电路时应当注意的问题,并设计了一款低功耗、小体积的驱动电路。通过仿真和试验证明该电路能够满足设计需求,对类似电路设计有很好的借鉴作用。 关键词激光引信半导体激光器窄脉冲中图法分类号 TN242; 文献标志码 A 激光引信大部分采用主动探测式引信,主要由发射系统和接收系统组成。发射系统产生一定频率和能量的激光向弹轴周围辐射红外激光能量,而接收系统接收处理探测目标漫反射返回的激光信号,而后通过信号处理系统,最终给出满足最佳引爆输出信号。由此可见,激光引信的探测识别性能很大程度上取决于激光发射系统的总体性能,即发射激光脉冲质量。而光脉冲质量取决于激光器脉冲驱动电路的质量。因此,半导体激光器驱动电路设计是激光引信探测中十分重要的关键技术。 图1 驱动电路模型 放电,从而达到驱动激光器的目的。 由于激光引信为达到一定的探测性能,通常会要求激光脉冲脉宽窄,上升沿快,一般都是十几纳秒甚至几纳秒的时间。因此在选择开关器件时要求器件开关速度快。同时,由于激光器阈值电流、工作电流大 [1] 1 脉冲半导体激光器驱动电路模型分析 激光器驱动电路一般由时序产生电路、激励脉冲产生电路、开关器件和充电元件几个部分组成,如图1。 图1中,时序产生电路生成驱动所需时序信号,一般为周期信号。脉冲产生电路以时序信号为输入条件。根据其上升或下降沿生成能够打开开关器件的正激励脉冲或负激励脉冲。开关器件大体有三种选择:双极型高频大功率晶体管、晶体闸流管电路和场效应管。当激励脉冲到来时,开关器件导通,

半导体激光器原理

半导体激光器原理 一、半导体激光器的特征 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓:GaAs:、硫化镉:CdS:、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。 半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体激光器具有体积小、效率高等优点,广泛应用于激光通信、印刷制版、光信息处理等方面。 二、半导体激光器的结构与工作原理 现以砷化镓:GaAs:激光器为例,介绍注入式同质结激光器的工作原理。 1〃注入式同质结激光器的振荡原理。由于半导体材料本身具有特殊晶体结构和电子结构,故形成激光的机理有其特殊性。 :1:半导体的能带结构。半导体材料多是晶体结构。当大量原子规则而紧密地结合成晶体时,晶体中那些价电子都处在晶体能带上。价电子所处的能带称价带:对应较低能量:。与价带最近的高能带称导带,能带之间的空域称为禁带。当加外电场时,价带中电子跃迁到导带中去,在导带中可以自由运动而起导电作用。同时,价带中失掉一个电子,则相当于出现一个带正电的空穴,这种空穴在外电场的作用下,也能起导电作用。因此,价带中空穴和导带中的电子都有导电作用,统称为载流子。 :2:掺杂半导体与p-n结。没有杂质的纯净半导体,称为本征半导体。如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级:见图19,24:。

图19,24 有施主能级的半导体称为n型半导体;有受主能级的半导体称这p型半导体。在常温下,热能使n型半导体的大部分施主原子被离化,其中电子被激发到导带上,成为自由电子。而p型半导体的大部分受主原子则俘获了价带中的电子,在价带中形成空穴。因此,n型半导体主要由导带中的电子导电;p型半导体主要由价带中的空穴导电。 半导体激光器中所用半导体材料,掺杂浓度较大,n型杂质原子数一般 为:2,5:×1018cm-1;p型为:1,3:×1019cm-1。 在一块半导体材料中,从p型区到n型区突然变化的区域称为p-n结。其交界面处将形成一空间电荷区。n型半导体带中电子要向p区扩散,而p型半导体价带中的空穴要向n区扩散。这样一来,结构附近的n型区由于是施主而带正电,结区附近的p型区由于是受主而带负电。在交界面处形成一个由n区指向p区的电场,称为自建电场。此电场会阻止电子和空穴的继续扩散:见图19,25:。 图19,25 :3:p-n结电注入激发机理。若在形成了p-n结的半导体材料上加上正向偏压,p 区接正极,n区接负极。显然,正向电压的电场与p-n结的自建电场方向相反,它削

半导体激光器驱动电源的控制系统

半导体激光器驱动电源的控制系统 使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。 1 总体结构框图 本系统原理,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件,如本系统中用到的ADC和DAC。这些外设部件的高度集成为设计小体积、低功耗、高可靠性、高性能的单片机应用系统提供了方便,也大大降低了系统的成本。光功率及温度采样模拟信号经放大后由单片机内部A/D 转换为数字信号,进行运算处理,反馈控制信号经内部D/A转换后再分别送往激光器电流源电路和温控电路,形成光功率和温度的闭环控制。光功率设定从键盘输入,并由LED数码管显示激光功率和电流等数据。 2 半导体激光器电源控制系统设计 目前,凡是高精密的恒流源,大多数都使用了集成运算放大器。其基本原理是通过负反作用,使加到比较放大器两个输入端的电压相等,从而保持输出电流恒定。并且影响恒流源输出电流稳定性的因素可归纳为两部分:一是构成恒流源的内部因素,包括:基准电压、采样电阻、放大器增益(包括调整环节)、零点漂移和噪声电压;二是恒流源所处的外部因素,包括:输入电源电压、负载电阻和环境温度的变化。 2.1 慢启动电路 半导体激光器往往会因为接在同一电网上的多种电器的突然开启或者关闭而受到损坏,这主要是由于开关的闭合和开启的瞬间会产生一个很大的冲击电流,就是该电流致使半导体激光器损坏,介于这种情况,必须加以克服。因此,驱动电源的输入应该设计成慢启动电路,以防损坏,:左边输入端接稳压后的直流电压,右边为输出端。整个电路的结构可看作是在射级输出器上添加了两个Ⅱ型滤波网络,分别由L1,C1,C2和L2,C6,C7组成。电容C5构成的C型滤波网络及一个时间延迟网络。慢启动输入电压V在开关和闭合的瞬间产生大量的高频成分,经过图中的两个Ⅱ型网络滤出大部分的高频分量,直流以及低频分量则可以顺利地经过。到达电阻R和C组成的时间延迟网络,C2和C4并联是为了减少电解电容对高频分量的电感效应。 2.2 恒流源电路的设计 为了使半导体激光器稳定工作,对流过激光器的电流要求非常严格,供电电路必须是低噪声的稳定恒流源驱动,具体电路。 使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。 1 总体结构框图 本系统原理,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件,如本系统中用到的ADC和DAC。

脉冲式激光驱动电源的研究与设计2

脉冲式激光驱动电源的研究与设计 1.1 引言 二十世纪后期到二十一世纪初,超短脉冲激光成为强有力的科学研究手段,使科研上升到一个新的层次。一些国家和部门重点实验室的科研项目,有很大比例围绕着超短脉冲激光及其应用。由于半导体激光器的增益带宽很宽适于产生超短脉冲激光,且体积小、能耗低、寿命长、价格低廉,操作控制简便,特别适用于军用、工业、交通、医学和科研应用[62]。因此,研究如何从LD获得超短脉冲激光就一直受到人们的高度重视,超短脉冲激光器以其自身的优点在激光领域里得到了广泛的应用。大电流超短脉冲半导体激光器可以直接作为仪器使用,它更可以作为系统的一个关键部件、一个激光光源。它将作为火花启动庞大的仪器装备制造业,因此研究如何从半导体激光器获得大电流超短脉冲激光备受重视,也是我国亟待解决的科技问题。目前,美、德、日等国在脉冲驱动源的发展走在了前列,已经达到很高的水平,据文献报道[62,63],他们目前已能获得电流达几十安培甚至上百安培,脉冲宽度达到纳秒,甚至皮秒级的半导体激光器驱动电源,但该电源还处于实验阶段,尚未商品化。一些半导体器件公司研制的LD驱动电源指标也已经很高,并且商品化。如专门生产小型化高速脉冲源著称的A VTECH 公司生产的型号为A VOZ-A1A-B、A V-1011-BDE驱动电源,其电流脉冲峰值可达2A,脉宽为100nS脉冲上升时间仅为10nS,重复频率可达1MHz。并带有通用的接口总线,通用性强,可用于驱动多种类型的半导体激光器。DEI公司的PCO-7210驱动电源脉宽小于50nS,重复频率也达到1MHz,峰值电流为十几安培,但这些产品价格昂贵,需要一到两万美金左右。在国内,对于脉冲式驱动电源的开发,大多用于光纤通信,其对输出电流的要求很低,只有几十毫安即可。由于半导体激光器的增益带宽很宽,适于产生超短脉冲激光,且体积小、能耗低、寿命长、价格低廉,操作控制简便,特别适用于军用、工业、交通、医学和科研应用。因此,研究如何从LD获得超短脉冲激光就一直受到人们的高度重视,超短脉冲激光器以其自身的优点在激光领域里得到了广泛的应用[64,65]。本章通过分析比对,选取快速开关器件VMOSFET作为半导体激光器脉冲驱动电路的核心元件,得到了大电流、窄脉冲输出。本设计具有结构简单、小型化、低电压供电、脉冲指标易于调整等优点。其主要设计指标如下: 1.脉冲宽度最小为30nS且连续可调; 2.脉冲频率在500Hz~50KHz连续可调; 3.最大输出电流峰值为5A。 1.2 超短脉冲驱动电源的设计 1.2.1超短脉冲驱动电源的整体设计 一、脉冲驱动电源的主要技术指标 从半导体激光器脉冲驱动电源的发展趋势来看,驱动技术是向着重复频率变高、功率输出增大、响应时间缩短,脉宽越来越窄的方向发展[66]。 (1)重复频率。重复频率是指电源向负载每秒中放电的次数,它是脉冲电源的一项重要指标。一般情况下,把每秒低于一次的电源叫低重复频率电源;而把

大功率半导体激光器驱动器的研究与设计

收稿日期:2003-03-18. 基金项目:教育部高等学校骨干教师资助计划项目(教技司2000962号)1 光电器件 大功率半导体激光器驱动器的研究与设计 邓 军,单江东,张 娜,田小建 (吉林大学电子科学与工程学院,吉林长春130023) 摘 要: 介绍了大功率半导体激光器恒流源的设计方法。该恒流源采用功率M OSFET 作电流控制元件,运用负反馈原理稳定输出电流。实际应用表明该恒流源对激光器安全可靠,输出电流 的短期稳定度达到1×10-5。 关键词: 半导体激光器;恒流源;驱动电路;功率M OSFET 中图分类号: T N245 文献标识码: A 文章编号: 1001-5868(2003)05-0319-02 R esearch and Design of H igh 2pow er Semiconductor Laser Diode Driver DE NGJun ,SH AN Jiang 2dong ,ZH ANG Na ,TI AN X iao 2jian (School of E lectronic Science and E ngineering ,Jilin U niversity ,Ch angchun 130023,CHN ) Abstract : The design of constant 2current supply power for a high 2power semiconductor laser diode is desribed.This constant 2current power supply uses a power M OSFET as the current control device ,and which uses the principle of negative feedback to adjust and stabilize the output current.The practical application indicates that the constant 2current power supply is safe and reliable to the laser diode ,with the short term stability of output current up to 1×10-5. K ey w ords : semiconductor laser diode ;constant 2current power supply ;drive circuit ;power M OSFET 1 引言 半导体激光器不仅具有一般激光器高单色性、 高相干性、高方向性和准直性的特点,还具有尺寸小、重量轻、低电压驱动、直接调制等优良特性,因而被越来越广泛地用于国防、科研、医疗、光通信等领域。然而,由于半导体激光器是一种高功率密度并具有极高量子效率的器件,对于电冲击的承受能力很差,微小的电流将导致光功率输出的极大变化和器件参数(如激射波长,噪声性能,模式跳动)的变化,这些变化直接危及器件的安全使用,因而在实际应用中对驱动电源的性能和安全保护有着很高的要求[1]。我们在恒流源的设计过程中,着重考虑了对激光器进行安全有效的保护,如限流问题,防止浪涌冲击问题,延时软启动问题等[2]。 2 驱动器的系统组成与工作原理 恒流源的系统组成框图如图1所示,整体设计方案采用深度负反馈控制原理,直接提供驱动电流电平的有效控制,由此获得最低的电流偏差和最高的激光器输出稳定性[3] 。 图1 系统方框图 整个恒流源由电压基准电路、电压电流转换电路、保护电路、末级电路和显示电路组成。在这里,我们采用2.5V 的电压基准,该电压基准产生一个稳定的基准电压,并经过适当地放大后送入运放的 《半导体光电》2003年第24卷第5期邓 军等: 大功率半导体激光器驱动器的研究与设计

大功率半导体激光器的发展介绍

大功率半导体激光器的发展介绍 激光打标机、激光切割机、激光焊接机等等激光设备中激光器起着举足轻重的地位,在激光器的发展历程中,半导体激光器的发展尤为重要,材料加工用激光器主要要满足高功率和高光束质量,所以为了提高大功率半导体激光器的输出功率,可以将十几个或几十个单管激光器芯片集成封装、形成激光器巴条,将多个巴条堆叠起来可形成激光器二维叠阵,激光器叠阵的光功率可以达到千瓦级甚至更高。但是随着半导体激光器条数的增加,其光束质量将会下降。

另外,半导体激光器结构的特殊性决定了其快、慢轴光束质量不一致:快轴的光束质量接近衍射极限,而慢轴的光束质量却比较差,这使得半导体激光器在工业应用中受到了很大的限制。要实现高质量、宽范围的激光加工,激光器必须同时满足高功率和高光束质

量。因此,现在发达国家均将研究开发新型高功率、高光束质量的大功率半导体激光器作为一个重要研究方向,以满足要求更高激光功率密度的激光材料加工应用的需求。 大功率半导体激光器的关键技术包括半导体激光芯片外延生长技术、半导体激光芯片的封装和光学准直、激光光束整形技术和激光器集成技术。 (1)半导体激光芯片外延生长技术 大功率半导体激光器的发展与其外延芯片结构的研究设计紧密相关。近年来,美、德等国家在此方面投入巨大,并取得了重大进展,处于世界领先地位。首先,应变量子阱结构的采用,提高了大功率半导体激光器的光电性能,降低了器件的阈值电流密度,并扩展了GaAs基材料系的发射波长覆盖范围。其次,采用无铝有源区提高了激光芯片端面光学灾变损伤光功率密度,从而提高了器件的输出功率,并增加了器件的使用寿命。再者,采用宽波导大光腔结构增加了光束近场模式的尺寸,减小了输出光功率密度,从而增加了输出功率,并延长了器件寿命。目前,商品化的半导体激光芯片的电光转换效率已达到60%,实验室中的电光转换效率已超过70%,预计在不久的将来,半导体激光器芯片的电光转换效率能达到85%以上。 (2)半导体激光芯片的封装和光学准直 激光芯片的冷却和封装是制造大功率半导体激光器的重要环节,由于大功率半导体激光器的输出功率高、发光面积小,其工作时产生的热量密度很高,这对芯片的封装结构和工艺提出了更高要求。目前,国际上多采用铜热沉、主动冷却方式、硬钎焊技术来实现大功率半导体激光器阵列的封装,根据封装结构的不同,又可分为微通道热沉封装和传导热沉封装。

半导体激光器驱动电路

查阅相关文献资料,设计半导体激光器驱动电路,说明设计思路和电路模块的功能 图1 在半导体激光器的设计中,为了便于对光功率进行自动控制,通常激光器内部是将LD 和背向光检测器PD集成在一起的,见图1。其中LD有两个输出面,主光输出面输出的光供用户使用,次光输出面输出的光被光电二极管PD接收,所产生的电流用于监控LD的工作状态。背光检测器对LD的功率具有可探测性,可设计适当的外围电路完成对LD的自动光功率控制。激光器电路的设计框图如图所示,将电源加在一个恒压电路上,得到恒定的电压,再通过一个恒流电路得到恒定的电流以驱动LD工作. 其中恒压电路如图2,由器件XC9226以及一个电感和两个电容组成。XC9226是同步整流型降压DC/DC转换器,工作时的消耗电流为15mA,典型工作效率高达92%,只需单个线圈和两个外部连接电容即可实现稳定的电源和高达500IllA的输出电流。其输出纹波为10mV,固定输出电压在0.9v到4.0V范围内,以loomv的步阶内部编程设定。该电路中,输出的恒定电压设定为2.6v。 图2 恒流电路如图3,主要由LMV358、三极管以及一些电阻和电容共同组成.LMv358是一个低电压低功耗满幅度输出的低电压运放,工作电压在2.7v到5.5v之间。从恒压电路输出的2.6V电压经过Rl、RZ分压后,在LMv35s的同相输入端得到恒定电压Up,Up加在一个电压串联负反馈电路上,得到一个输出电压Uo。Uo再通过一个电阻和电容组成的LR滤波

电路上,得到恒定的直流电压uol,将uol作用在由三极管8050组成的共射级放大电路上,得到恒定的集电极电流Ic,k又通过一个滤波电容得到恒定的直流工作电压。 图3

半导体激光器的发展与运用

半导体激光器的发展与运用 0 引言激光器的结构从同质结发展成单异质结、双异质结、量子 阱 (单、多量子阱)等多种形式, 制作方法从扩散法发展到液相外延(LP日、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE 以及它们的各种结合型等多种工艺[5].半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点, 使它已经成为当今光电子科学的核心技术,受到了世界各国的高度 重视。 1 半导体激光器的历史 半导体激光器又称激光二极管(LD)。随着半导体物理的发展,人们早在20 世纪50 年代就设想发明半导体激光器。 20 世纪60 年代初期的半导体激光器是同质结型激光器, 是一种只能以脉冲形式工作的半导体激光器。在1962 年7 月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(KeyeS和奎斯特(Quist、报告了砷化镓材料的光发射现象。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAIAs所组成的激光器。单异质结注人型激光器(SHLD,它是利用异质结提供的势垒把注入电子限制在GaAsP 一N 结的P 区之内,以此来降低阀值电流密度的激光

器。 1970 年,人们又发明了激光波长为9 000? 在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器. 在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs 二极管激光器. 从20 世纪70 年代末开始, 半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。在泵浦固体激光器等应用的推动下, 高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W 以上, 均可称之谓高功率半导体激光器)在20 世纪90 年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出 已达到600W另外,还有高功率无铝激光器、红外半导体激光器和量子级联激光器等等。其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出 光束进行调制。 20 世纪90 年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展。 目前,垂直腔面发射激光器已用于千兆位以太网的高速网络,为了满足21 世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要是向高速宽带LD大功率LD短波长LD盆子线和量子点激光器、中红外LD

脉冲激光电源电路原理图

脉冲激光电源电路原理图 脉冲激光电源的原理方框图如图1所示。它由触发电路、主变换器电路和高压充放电电路等三大部分组成。其电路原理图如图2所示。 图1 脉冲激光电源的原理方框图 图2 脉冲激光电源电路原理图 3 电路的工作原理 3.1 触发电路的工作原理 从图2可以看出,触发电路部分主要是由触发指示电路和触发电路组成,具体由IC1的LBI和LBO端,V1、LED、VD1以及K1和K2来完成,当变换器通过变压器T1、二极管VD2和VD3向电容器充电时,取样电路(由R10、R9、W1、W2、W3、R1组成)将其充电电压值反馈给IC1的LBI与VFB端,一旦电压充到所需的电压值时(大约为1kV左右),这时LBI 端的电压值将大于1.3V,LBO端就会变为高电平,V1导通,LED变亮,指示出电压已充到可以触发的状态。另外取样电路将反馈信号还送入IC1的VFB端,若反馈信号的电压值≥1.3V

时,即刻关断变换器,使高压维持到所需的值上,触发器件由高耐压、大电流的汽车级的晶闸管BT151/800R来担任。 3.2 主变换器的工作原理 主变换器电路主要是由IC1(MAX641/642/643)、变压器T1以及V2等元器件组成的单端反激式升压电路。其电路的核心部分为MAX641/642/643,所以这部分电路的工作原理分析以及MAX641/642/643的技术参数及其应用请查阅文献[1]。这里只给出高频自耦升压变压器的技术资料,以供同行们在制作时参考。铁芯选用4kBEE型铁氧体,骨架选用与铁芯对应配套的EE19型立式骨架,其技术参数如图3所示。 图3 T1变压器的技术参数 3.3 充放电电路的工作原理 充放电电路主要是由电容C7∥C10、C8∥C11、C9∥C12、C13、R14、升压变压器T2等组成。当电容C7∥C10、C8∥C11、C9∥C12被充到所设定的高压值时,电容C13中的电压也同时被充到所要求的电压值(300V左右),这时闭合K1或K2,晶闸管V3被触发导通,电容C13中所储存的能量通过变压器T2的初级绕组放电,使次级绕组感应出约10kV左右的高压,将激光器中的气体电离。在电离的同时,电容器C7∥C10、C8∥C11、C9∥C12中所储存的能量将这个电离的过程维持到一定的时间,从而就得了所需的激光脉冲。 4 重要元器件的选择及技术要求 1)储能电容由于储能电容C7∥C10、C8∥C11、C9∥C12要在很短的时间内为激光器提供足够大的能量,所以在选择该电容时,除了要求其具有足够高的耐压值(≥350V)以外,还必须要求其具有快速充电和放电的特性,即应选择印有“PHOTOFLASH”的光闪电容。 2)升压变压器升压变压器除了其初级绕组供电容C13放电,以使次级电压升高到10kV 以上外,还要满足当气体被电离以后,通过次级绕组将电容C7∥C10、C8∥C11、C9∥C12 中的能量全部释放给激光器,以便能够激发出很强的激光束来。所以次级绕组既要匝数多,又要电阻很小,同时还要满足耐高压的要求。变压器磁芯选择环形3kB的铁氧体材料,初级绕组选用?1.0的聚四氟乙烯镀银高压线绕制,次级绕组选用?0.32的聚四氟乙烯镀银高压线绕制,铁芯磁环选用外径35,内径12,厚度10的软磁铁氧体。其技术参数如图4所示。

半导体激光器LD脉冲驱动电路的设计与实验

半导体激光器LD脉冲驱动电路的设计与实验 进行脉冲驱动电路的设计主要是由于,半导体激光器在脉冲驱动电路驱动时,其结温会在半导体激光器不工作的时刻进行散热,因此半导体激光器在脉冲电源驱动下,对半导体激光器的散热要求不高。在设计半导体激光器的脉冲驱动电源时,也是先仿真后设计的思想,在电路选型上也是力求简单。 1 脉冲电源的仿真 在进行脉冲电源仿真时,同样选用的NI公司的这款Multisim10这款电路仿真软件。选用的器件是IRF530,信号源是5V,占款比为50%,频率为50Hz的方波信号源;用电阻1R代替半导体激光器、且将1R的阻值设置为1Ω,用Multisim10的自带示波器对电阻1R两端的电信号进行测量。 脉冲电源仿真 在仿真电路设计的过程中,选用了功率管IRF530作为主开关,对电阻1R上的电压进行采样,信号源选取的是输出5V方波的、频率是50Hz、占款比是50%的信号源。在进行仿真前、将示波器的A通道接在电阻1R的两端,对整个电路的电流信号进行监测。将示波器的B通道接在信号源的两端,对信号源的输出

电信号进行采样,这样通过A、B两通道的电信号进行对比,看脉冲驱动电路能否满设计要求。 根据仿真示波器监测到的数据显示,电阻1R两端的电信号完全是跟信号源的电信号同步变化的,而且波形完全一致。仿真结果显示电阻1R的峰值电压是为1.145V,说明电路的峰值电流也是1.145A。 在仿真过程中,通过不断的调整信号源的特性,发现电阻1R两端的电压值的大小只与信号源的电压值大小有关系,而与信号源的频率和占空比关系不大,这说明此脉冲仿真电路输出电流值的大小只与信号源输出的电压值大小有关。出现这样的结果主要是选取的信号源的频率过低,功率管IRF530完全可以做到对电路的开断控制。 以上仿真结果显示,当信号源的峰值电压是5V的时候,所对应的流过IRF530的峰值电流是1.145A。根据IRF530的输出特性,通过调节信号源的加载在IRF530GS V的电压就可以改变功率管IRF530的输出电流值,从而改变整个脉冲电源输出电流的值。 2 脉冲电源的设计 从上面的电路仿真可以看出,脉冲电源的设计主要是脉冲信号源的设计、电路的主体部分还是用IRF530来实现的,通过控制信号源的加载在GS V的电压来控制流通IRF530的电流。要调整输出电流信号的频率得通过信号源进行控制。 图 3-25 基于单片机脉冲电源

慢启动半导体激光器驱动电源的设计

慢启动半导体激光器驱动电源的设计 毛海涛,林咏海,张锦龙,冯 伟,柴秀丽,牛金星,李方正 (河南大学物理与信息光电子学院,河南,开封,475001) 摘 要:根据半导体激光器的光功率与电流的关系,通过慢启动电路、纹波调零电路、功率稳恒电路等解决了使用中的电源在工作温度范围内其输出功率不稳定的问题。设计的电路稳定度达到4 10-4。关键词:半导体激光器;功率增益自动控制电路;驱动电源 中图分类号:T N248 44 文献标识码:A 文章编号:1008 7613(2005)05 0021 03 0 引言 半导体激光器(LD)具有体积小、重量轻、价格低、驱动电源简单且不需要高电压(2.5V )等独特优点。目前,广泛应用于光纤通讯、集成光学、激光印刷、激光束扫描等技术领域。在实际应用中,遇到的问题之一是激光器在发光时阻值不断上升,造成输出光功率的下降。这可能导致激光器永久性的破坏或使发光强度达不到作为光源时的参量要求。因此,研制性能可靠、经济、耐用的半导体激光器具有广泛的应用价值。 1 L D 的驱动电流与输出光功率的特性 半导体激光器的结构如图1所示,对一般的半导体激光器来说,激光二极管(L D )是正向接法,光电二极管(P D )是反向接法。P D 受光后转换出的光电流I m 在串联电阻R 2上以电压信号反映出射光功率的大小,如图2所示,因此添加控制电路即可达到 稳定发光功率的目的。 半导体激光器的发光功率与通过的电流关系如图3所示,为便于分辨,图中底部的近似直线有所抬高。从图3中可以看出,在某一温度下,当驱动电流低于阈值电流时,激光器输出光功率P 近似为零,半导体激光器只能发出荧光,当驱动电流高于阈值时输出激光,并且光输出功率随着驱动电流的增大而迅速增加并近似呈线性上升关系。2 半导体激光器驱动电路设计 本例以H TL670T5为例,介绍一种半导体激光器稳功率驱动电路。该管输出波长为650nm,额定功率30mW,其工作特性曲线与图3 所示接近。 2.1 慢启动电路 半导体激光器往往会由于接在同一电网上的日光灯等电器的关闭或开启而损坏,这是因为在开关闭合和开启的瞬间会产生一个很大的冲击电流,该电流足以使半导体激光器损坏,必须避免。为此,驱 21 第19卷 第5期新乡师范高等专科学校学报 Vol.19,No.5 2005年9月 JO U RNAL OF X IN XIAN G T EACHERS COL LEGE Sep.2005 收稿日期:2005 04 05. 作者简介:毛海涛(1953 ),男,河南开封市人,河南大学物理与信息电子学院教授,硕士研究生导师,主要从事激光理论 及应用技术方面的研究工作。

半导体激光器驱动及温度控制电路

电路设计报告 (姓名:_________学号:________) 一、半导体激光器驱动电路 激光二极管广泛用作于光纤通信中的光源,采用恒流驱动方式。电路中,VT 1和VT 2构成恒流源,稳压二极管VD Z 为恒流源提供稳定的基准电压,RP 1限制该电路的电流,RP 2调节最佳工作点。当电流很小时,激光二极管VD 1不发光,光电二极管VD 2检测不到光功率。这时,比较器A 1输出高电平,监视发光二级管LED 不发光显示。调节电路中电流使其超过激光二极管的阈值电平时,激光二极管获得足够大的功率而发光,VD 2中有光电流流过,LED 发光显示。 1 2 3 4 5 6 A B C D 6 5 4 3 2 1 D C B A Tit le N u mb er Rev isio n Size B D ate: 5-A p r-2012Sh eet o f Fil e: E:\ED A\半导体激光器驱动电路.d d b D raw n By 0.1μF 0.1μF 100K Ω 2K Ω 10K Ω 820Ω 200Ω 10K Ω 22Ω 10Ω RP2500Ω RP11K Ω LED 9013 V T1V T2 25C3039 A 1LM339 A 2LM339 V D2 PH OTO 3.6V V Dz V D1 LD V CC V CC TTL 输入 二、半导体激光器温度控制电路 这种驱动电路也可作为热电冷却器TEC 中温度控制电路,如下图。TEC 控制电路是基于比较器A 1的反馈系统。若温度高于设定值,

A 1反相输入端电压低于其低阈值电平,A 1输出高电平,通过R 1、VT 1和VT 2驱动TEC 。TEC 电流由VD 1进行限制。当TEC 被驱动导通时,它使激光制冷,A 1反相输入端电压增大到超过其高阈值电平,A 2输出低电平TEC 截止不工作。RP 用于设定温度值。 1 2 3 4 5 6 A B C D 6 5 4 3 2 1 D C B A Tit le N u mb er Rev isio n Size B D ate: 5-A p r-2012Sh eet o f Fil e: E:\ED A\半导体激光器温度控制电路.d d b D raw n By 0.1μF V T2 25C3039V T1 9013 A 1 LM339 20K Ω RP 2.2KΩ R1 10K Ω 12Ω 10K Ω 1MΩ V D 2.7V TEC 热电冷却器 参考书目 [1]何希才.常用电子电路应用365例.电子工业出版社,2006. 其他什么的大家自己写点吧O(∩_∩)O~

光模块驱动电路原理与核心电路设计

摘要:本文描述了激光器及其驱动、APC及消光比温度补偿电路原理与光模块核心电路设计技术,并简单介绍了半导体激光器的基本结构类型和各自应用特性,着重论述了激光器驱动电路、APC电路、消光比温度补偿电路原理与应用技术,对激光器调制输出接口电路信号与系统也进行了详细的分析计算。 关键词:半导体激光器,驱动,调制电路,APC,温度补偿,阻抗匹配,信号分析,系统 1. 引言 随着全球信息化的高速发展,人们的工作、学习和生活越来越离不开承载着大量信息的网络,对网络带宽的要求还在不断提高,光载波拥有无比巨大的通信容量,预计光通信的容量可以达到40Tb/s,并且和其他通信手段相比,具有无与伦比的优越性,未来有线传输一定会更多的采用光纤进行信息传递。近几年以来,干线传输、城域网、接入网、以太网、局域网等越来越多的采用了光纤进行传输,光纤到路边FTTC、光纤到大楼FTTB、光纤到户FTTH、光纤到桌面FTTD正在不断的发展,光接点离我们越来越近。在每个光接点上,都需要一个光纤收发模块,模块的接收端用来将接收到的光信号转化为电信号,以便作进一步的处理和识别。模块的发射端将需要发送的高速电信号转化为光信号,并耦合到光纤中进行传输,发射端需要一个高速驱动电路和一个发射光器件,发射光器件主要有发光二极管(LED)和半导体激光器(LD)。LED和LD的驱动电路有很大的区别,常用的半导体激光器有FP、DFB 和VCSEL三种。WTD光模块通常所用发射光器件为FP和DFB激光器。

2. 半导体激光器 半导体激光器作为常用的光发射器件,其体积小、高频响应好、调制效率高、调谐方便,且大部分激光器无需制冷,是光纤通信系统理想的光源。激光器有两种基本结构类型:(1)边缘发射激光器,有FP(Fabry-Perot)激光器和分布反馈式(DFB)激光器。FP 激光器是应用最广的一种激光器,但是其噪声大,高频响应较慢,出光功率小,因此FP 激光器多用于短距离光纤通信。而DFB 激光器则具有较好的信噪比,更窄的光谱线宽,更高的工作速率,出光功率大,因此DFB 激光器多用在长距离、高速率光传输网络中。(2)垂直腔面发射激光器(VCSEL),是近几年才成熟起来的新型商用激光器,有很高的调制效率和很低的制造成本,特别是短波长850nm 的VCSEL,在短距离多模光纤传输系统中现在已经得到非常广泛的应用。 2.1 光电特性 半导体激光器是电流驱动发光器件,只有当激光器驱动电流在门限(阈值)电流以上时,半导体激光器二极管才能产生并持续保持连续的光功率输出,对于高速电流信号的切换操作,一般是将激光器二极管稍微偏置在门限(阈值)电流以上,以避免激光器二极管因开启和关闭所造成的响应时间延迟,从而影响激光器光输出特性。激光器光功率输出依赖于其驱动电流的幅度和将电流信号转换为光信号的效率(激光器斜效率)。激光器是一个温度敏感器件,其阈值电流th I 随温度的升高而增大,激光器的调制效率(单位调制电流下激光器的出光功率,量纲为mW/mA)随温度的升高而减小。同时激光器的阈值电流th I 还随器件的老化时间而变大,随器件的使用时间而变大。 激光器二极管的阈值电流和斜效率与激光器的结构,制作工艺,制造材料以及工作温度密切相关,随着温度的增加。 激光器二极管的阈值电流th I 定义为激光器发射激光的最小电流,th I 随着温度的升高呈现指数形式增大,下面的等式是th I 关于温度的函数,通过此等式可对激光器阈值电流进行估算: 1 01()*t t th I t I K e =+ (2.1.1) 其中,0I 、1K 和1t 是激光器特定常数,例如,DFB 激光器0I =1.8mA, 1K =3.85mA, 1t =40℃。 激光器斜效率Se (Slope efficiency)定义为激光器输出光功率与输入电流的比值, Se 随着温度的升高呈现指数形式减小,下面的等式是Se 关于温度的函数,通过此等式可对激光器斜效率进行估算: 0()*s t t Se t Se Ks e =? (2.1.2) 同样,以DFB 激光器为例,其典型温度s t ≈40℃,其它两个激光器常数为0Se =0.485mW/mA, Ks =0.033mW/mA。

慢启动半导体激光器驱动电源的设计

慢启动半导体激光器驱动电源的设计毛海涛 ,林咏海 ,张锦龙 ,冯伟 ,柴秀丽 ,牛金星 ,李方正 ()河南大学物理与信息光电子学院 ,河南 ,开封 ,475001 摘要 :根据半导体激光器的光功率与电流的关系 ,通过慢启动电路、纹波调零电路、功率稳恒电路等解决了使 - 4 用中的电源在工作温度范围内其输出功率不稳定的问题。设计的电路稳定度达到4 ×10 。 关键词 :半导体激光器 ;功率增益自动控制电路 ;驱动电源 () 文章编号:1008Ο7613 200505Ο0021Ο03 中图分类号 : TN2484?4 文献标识码 :A 0 引言半导体激光器的发光功率与通过的电流关系如 3 所示 ,为便于分辨 ,图中底部的近似直线有所抬图 () 半导体激光器 L D 具有体积小、重量轻、价格高。从图 3 中可以看出 ,在某一温度下 ,当驱动电流 ( ) 低、驱动电源简单且不需要高电压 2 . 5 V 等独特低于阈值电流时 ,激光器输出光功率 P 近似为零 , 优点。目前 ,广泛应用于光纤通讯、集成光学、激光半导体激光器只能发出荧光 ,当驱动电流高于阈值印刷、激光束扫描等技术领域。在实际应用中 ,遇到时输出激光 ,并且光输出功率随着驱动电流的增大 而迅速增加并近似呈线性上升关系。的问题之一是激光器在发光时阻值不断上升 ,造成 输出光功率的下降。这可能导致激光器永久性的破 2 半导体激光器驱动电路设计坏或使发光强度达不到作为光源时的参量要求。因本例以 H TL 670 T5 为例 ,介绍一种半导体激光

器稳功率驱动电路。该管输出波长为 650 nm ,额定此 ,研制性能可靠、经济、耐用的半导体激光器具有 广泛的应用价值。功率 30 mW ,其工作特性曲线与图 3 所示接近。 1 L 的驱动电流与输出光功率的特性 D 半导体激光器的结构如图 1 所示 ,对一般的半 () 导体激光器来说 , 激光二极管 L 是正向接法 , 光 D ( ) 电二极管 P是反向接法。P受光后转换出的光 D D 电流 I 在串联电阻 R 上以电压信号反映出射光功 m 2 率的大小 ,如图 2 所示 ,因此添加控制电路即可达到 稳定发光功率的目的。

高精度半导体激光器驱动电源系统的设计

高精度半导体激光器驱动电源系统的设计 0 引言 半导体激光器(LD)是一种固体光源,由于其具有单色性好,体积小,重量轻,价格低廉,功耗小等一系列优点,已被广泛应用。LD是理想的电子-光子直接转换器件,有很高的量子效率,微小的电流和温度变化都将导致其输出光功率的很大变化。因此,LD的驱动电流要求非常高,必须是低噪声、稳定度高的恒流源,一般电源很难满足要求。此外,瞬态的电流或电压尖峰脉冲,以及过流、过压都会损坏半导体激光器。这里将以TI公司的DSP芯片TMS320F2812为控制核心,实现带有多种保护的双闭环高精度半导体激光驱动电源系统。 1 系统总体设计 恒流源一般采用集成运算放大器和一些分立元器件及单片机构成的“压控恒流源”方法实现,与纯模拟元件构成的恒流源相比,这种方法在恒流精度和线性度上都有明显的提高。但是该方法中单片机是用作显示与控制电压的给定,并未对输出电流实时检测和控制,属于开环控制系统,影响了恒流源的稳定性及精度。该系统由“压控恒流”电路、信号采样和调理电路、保护电路、键盘、LCD显示、RS 232通信接口以及DSP处理器等环节组成,系统结构框图如图1所示。 图1 系统结构框图 通过键盘输入给定,并在LCD上显示,同时经F2812运算处理后输出相应占空比的PWM 信号。PWM经低通滤波器、放大调理后实现D/A变换并作为“压控恒流”模块(V-I Constant Current)的控制电压实现“压控恒流”。F2812实时对输出的电流采样,采样数据经数字滤波、分析处理后与给定电流值相比较,得到差值作为PI调节算法表达式中的输入量,通过PI运算得到控制量Uk来调整PWM的输出实现恒流。 2 系统硬件设计 2.1 直流电源模块实现

一种半导体激光器的驱动电路源

第24卷 第2期 2007年4月 黑龙江大学自然科学学报J OURNAL OF NATURAL SC IENCE O F HE I LONG JI ANG UN IVERS I TY V o l 24N o 2Apr i,l 2007 一种半导体激光器的驱动电路源 李若明1, 刘盛春2, 余有龙1,2, 刘 浩1, 孟凡斌3, 胡 亮 1(1.暨南大学光电工程研究所,广东广州510632;2.黑龙江大学光纤技术研究所,黑龙江哈尔滨150080;3. 东北电子技术研究所,辽宁锦州121000)摘 要:根据半导体激光器对注入电流的稳定性要求高和对电冲击的承受能力差等特性,对 其驱动电路进行了设计。针对具体的980n m 泵浦激光器,采用负电源模拟电路方案,研制了包含 慢启动和功率稳定功能的驱动电路,其输出驱动电流稳定度达到2 10-4,应用于激光器后得到了 小于4 的光功率稳定度。 关键词:驱动电源;半导体激光器;慢启动;低噪声 中图分类号:TN 248 4文献标识码:A 文章编号:1001-7011(2007)02-0203-04 收稿日期:2006-10-19 基金项目:教育部 新世纪优秀人才支持计划 (NCET-04-0828);广东省自然科学基金重点项目(04105843) 作者简介:李若明(1982-),男,硕士研究生,主要研究方向:光纤传感网络 通讯作者:余有龙(1965-),男,教授,博士生导师,主要研究方向:光纤通信、传感、光纤激光器,E -m ai:l youlongyu @163.co m 1 引 言 掺铒光纤(EDF)作为增益介质已广泛应用于光纤通信、光纤传感和光纤激光器等领域,其输出功率大小和功率的稳定性往往取决于泵源功率的稳定性,而泵源一般由半导体激光器(LD)充当,LD 又受驱动电路驱动,因此,研制高性能的驱动电路就显得尤为重要。对于实际使用的LD,只有为其提供稳定的工作电流,才有可能获得稳定的激光输出。另外,谐振腔的形变和P N 结的老化与温度相关,温度不仅影响到LD 输出功率的稳定,而且还将影响泵源的寿命,因此有必要控制LD 的工作温度。作为结型器件,LD 承受电冲击的 能力很差,因此其驱动电源中应有保护电路[1],借以缓解浪涌电流的冲击。 目前,LD 驱动电路的实现方案可以分为模拟电路和数字电路两类。早期的驱动电路多采用模拟分立元件构成电路,这样的电路常常存在体积庞大,操作繁琐的缺点[2] 。近年来有学者在大功率LD 的驱动电路中引入数字电路技术,以模/数和数/模转换芯片转换信号,再用单片机、数字信号处理芯片(DSP)或复杂可编程逻辑器件(FPGA )处理信号,这样实现了电路操作的简化并完善了电路功能,与此同时,电路中高频部分对实现系统的电磁兼容性增加了困难。对于只需要稳定的光功率输出的小功率的半导体激光器驱动电源,这种电路结构复杂、成本高,而采用模拟集成电路元件实现的小功率的半导体驱动电路在成本,和电磁兼容能力上都有优势。 本文基于负电源,采用模拟集成电路元件,针对小功率LD,围绕降低电压源输出噪声、提高驱动电流稳定性、简化操作开展了研究,实现了一种低电压源输出噪声、高驱动电流稳定度、操作简单且成本低廉的驱动电路。2 原 理 考虑到稳定输出的LD 需要驱动电路包含有高精度恒流源,且避免强浪涌脉冲存在,设计的电路由电压调整、电流源、光功率控制、温度调整和电流显示等部分组成。 电压调整电路为后续电路提供低噪声的直流电压,这个电压通过电流源转换为电流,电流再经调整后驱动LD 发出激光。光功率稳定电路通过反馈控制实现稳定输出功率的目标。温度调整电路通过控制流过半

相关文档
最新文档