2-2对偶的基本性质

圆锥曲线对偶的性质100条

椭圆与双曲线的对偶性质100条 杨志明 湖北省黄石二中 435003 椭 圆 1. 2.标准方程: 3. 4.点P处的切线PT平分△PF1F2在点P处的外角. 5.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ为直径的圆必与对应准线相离. 7.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 8.设A1、A2为椭圆的左、右顶点,则△PF1F2在边PF2(或PF1)上的旁切圆,必与A1A2所在的直线切于A2(或A1). 9.椭圆(a>b>o)的两个顶点为,,与y轴平行的直线交椭圆于 P1、P2时A1P1与A2P2交点的轨迹方程是. 10.若在椭圆上,则过的椭圆的切线方程是. 11.若在椭圆外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是. 12.AB是椭圆的不平行于对称轴且过原点的弦,M为AB的中点,则. 13.若在椭圆内,则被Po所平分的中点弦的方程是. 14.若在椭圆内,则过Po的弦中点的轨迹方程是. 15.若PQ是椭圆(a>b>0)上对中心张直角的弦,则. 16.若椭圆(a>b>0)上中心张直角的弦L所在直线方程为,则(1) ; (2) . 17.给定椭圆:(a>b>0), :,则(i)对上任意给定的点,它的任一直角弦必须经过上一定点M(. (ii)对上任一点在上存在唯一的点,使得的任一直角弦都经过点. 18.设为椭圆(或圆)C: (a>0,. b>0)上一点,P1P2为曲线C的动弦,且弦P0P1, P0P2斜率存在,记为k1, k2, 则直线P1P2通过定点的充要条件是. 19.过椭圆(a>0, b>0)上任一点任意作两条倾斜角互补的直线交椭

(完整)七年级数学平行线的性质与判定的证明练习题及答案

平行线的性质与判定的证明 温故而知新: 1.平行线的性质 (1)两直线平行,同位角相等; (2)两直线平行,内错角相等; (3)两直线平行,同旁内角互补. 2.平行线的判定 (1)同位角相等,两直线平行; (2)内错角相等,两直线平行; (3)同旁内角互补,两直线平行互补. 例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数; (2)探求∠DNQ与∠AMN,∠EPN的数量关系. 解析:根据两直线平行,内错角相等及角平分线定义求解. (标注∠MND=∠AMN,∠DNP=∠EPN) 答案:(标注∠MND=∠AMN=60°, ∠DNP=∠EPN=80°) 解:(1)∵AB∥CD∥EF, ∴∠MND=∠AMN=60°, ∠DNP=∠EPN=80°, ∴∠MNP=∠MND+∠DNP=60°+80°=140°, 又NQ平分∠MNP, ∴∠MNQ=1 2 ∠MNP= 1 2 ×140°=70°, ∴∠DNQ=∠MNQ-∠MND=70°-60°=10°,

∴∠MNP,∠DNQ的度数分别为140°,10°.(下一步) (2)(标注∠MND=∠AMN,∠DNP=∠EPN) 由(1)得∠MNP=∠MND+∠DNP=∠AMN+∠EPN, ∴∠MNQ=1 2 ∠MNP= 1 2 (∠AMN+∠EPN), ∴∠DNQ=∠MNQ-∠MND =1 2 (∠AMN+∠EPN)-∠AMN =1 2 (∠EPN-∠AMN), 即2∠DNQ=∠EPN-∠AMN. 小结: 在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补. 例2 如图,∠AGD=∠ACB,CD⊥AB,EF⊥AB,证明:∠1=∠2. 解析:(标注:∠1=∠2=∠DCB,DG∥BC,CD∥EF) 答案:(标注:∠1=∠2=∠DCB) 证明:因为∠AGD=∠ACB, 所以DG∥BC, 所以∠1=∠DCB, 又因为CD⊥AB,EF⊥AB, 所以CD∥EF, 所以∠2=∠DCB, 所以∠1=∠2.

椭圆与双曲线的对偶性质92条

椭圆与双曲线的对偶性质92条 椭 圆 1.12||||2PF PF a += 2.标准方程:22 221x y a b += 3.11 || 1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆切. 8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 9.椭圆22 221x y a b +=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭 圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b -=. 10.若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦 P 1P 2的直线方程是00221x x y y a b +=. 12.AB 是椭圆22 221x y a b +=的不平行于对称轴且过原点的弦,M 为AB 的中点,则 2 2OM AB b k k a ?=-. 13.若000(,)P x y 在椭圆22 221x y a b +=,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 14.若000(,)P x y 在椭圆22 221x y a b +=,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 15.若PQ 是椭圆22 221x y a b +=(a >b >0)上对中心直角的弦,则 122222 121111(||,||)r OP r OQ r r a b +=+==. 16.若椭圆22 221x y a b +=(a >b >0)上中心直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,

圆锥曲线经典性质总结材料及证明

圆锥曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆切.(第二定义) 4. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求 导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上 根据第8条,证毕 10. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。(点差法)

完整版七年级数学平行线的有关证明及答案

平行线的性质与判定的证明练习题 温故而知新: 1.平行线的性质 (1)两直线平行,同位角相等; (2)两直线平行,内错角相等; (3)两直线平行,同旁内角互补. 2.平行线的判定 (1)同位角相等,两直线平行; (2)内错角相等,两直线平行; (3)同旁内角互补,两直线平行互补. 例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数; (2)探求∠DNQ与∠AMN,∠EPN的数量关 系. 解析 在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补. 1 2. 1=∠AB,⊥AB,EF⊥证明:∠2 例如图,∠AGD=∠ACB,CD

解析:在完成证明的问题时,我们可以由角的关系可以得到直线之. 间的关系,由直线之间的关系也可得到角的关系 BCD;∠ED,求证:∠ABC+∠CDE=①,直线(例3 1)已知:如图2-4AB存在什么等量关系?并证明与BC,位于如)当2-②所示时,ABCD ( . 解析:在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化 2 °,第二次拐的是120如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A例4 ,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C°,第三次拐的角是∠B是150角∠应为多少度?C

. 把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答解析: 举一反三:)则∠FG∥HI,x的度数为(,如图1.2-9 D. 100 C. 90 B. 72A.60°°°°3 °,求∠D=24∠D=192°,∠B-,∠EG平分∠BEFB+∠BED+∠,∥2. 已知如图所示,ABEF∥CD. 的度数GEF .GDEABEDBCEFAB2-103.已知:如图,∥,∥,,交于点求证:∠EB=∠.4

高考数学圆锥曲线的经典性质50条

For pers onal use only in study and research; not for commercial use 1. 2. 3. 4. 5. 6. 7. 8 . For pers onal use only in study and research; not for commercial use 椭圆与双曲线的对偶性质--(必背的经典结论) 椭圆 点P处的切线PT平分△ PF1F2在点P处的外角. PT平分△ PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点 以焦点弦PQ为直径的圆必与对应准线相离. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 若 F0(X 若 P0(X0 2 x ,y0)在椭圆一亍 a 2 、x ,y0)在椭圆一2 a 2 2 2 2 y - b y - b =1上,则过P0的椭圆的切线方程是一0厂?辔=1. a b =1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦 2 x 椭圆 一2 a 2 x 椭圆一 2 a 2 2 2 2 y b y - b =1 (a>b> 0)的左右焦点分别为F1, F2,点P为椭圆上任意一点一RPF2 - =1 ( a > b> 0)的焦半径公式: P1P2的直线方程是°2 - =1. a b 戈,则椭圆的焦点角形的面积为S A:1PF2 = b2 tan—

|MF i |=a ex o ,|MF 2p a-( Fj-c,0) , F 2(c,0) M (心 y °)). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和AQ 分别交相应于焦点 F 的椭圆准线于 M 、N 两点,贝U MF 丄NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点 P 、Q, A i 、A 2为椭圆长轴上的顶点, A i P 和A 2Q 交于点M , A 2P 和A i Q 交于点N ,则MF 丄NF. 2 2 2 2 -2 y ^ = 1内,则过Po 的弦中点的轨迹方程是一2 y^ - ―02 - a b a b a b 双曲线 1. 点P 处的切线PT 平分△ PF 1F 2在点P 处的内角. 2. PT 平分△ PF 1F 2在点P 处的内角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点 3. 以焦点弦PQ 为直径的圆必与对应准线 相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆 相切.(内切:P 在右支;外切:P 在左支) 2 2 5. 若F 0(x 0, y 0)在双曲线 令-占=1( a > 0,b > 0)上,则过F 0的双曲线的切线方程是 彎一呼 =1. a b a b 2 2 6. 若i =0(x 0, y 0)在双曲线—~2 ^2 -1(a >0,b >0)外,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦 P 1P 2的直线方程是■X 0,__y°y = 11. AB 是椭圆 即 K AB 2 2 a 2 b 2 b 2X 0 —2 。 a y ° =1的不平行于对称轴的弦, M (x 0, y 0)为AB 的中点,_则k OM k AB = b 2 ~2 , a 12. F 0(X o , y o )在椭圆 2 2 7占=1内,则被Po 所平分的中点弦的方程是翠晋色 止 a 2 b 2 13. F 0(x 0,y °)在椭圆

平行线的性质练习(含答案)

平行线的性质 (检测时间50分钟 满分100分) 班级_________________ 姓名_____________ 得分_____ 一、选择题:(每小题3分,共21分) 1.如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( ) 个 个 个 个 D C B A 1 E D B A O F E D C B A (1) (2) (3) 2.如图2所示,已知DE ∥BC,CD 是∠ACB 的平分线,∠B=72°,∠ACB=40°,?那么∠BDC 等于( ) ° ° ° ° 3.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;?③内错角相 等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( ) A.① B.②和③ C.④ D.①和④ 4.若两条平行线被第三条直线所截,则一组同位角的平分线互相( ) A.垂直 B.平行 C.重合 D.相交 5.如图3所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) ° ° ° ° 6.如图4所示,AB ∥CD,则∠A+∠E+∠F+∠C 等于( ) ° ° ° °

F E D C B A G F E D C B A 1 F E D C B A (4) (5) (6) 7.如图5所示,AB ∥EF ∥CD,EG ∥BD,则图中与∠1相等的角(∠1除外)共有( )? 个 个 个 个 二、填空题:(每小题3分,共9分) 1.如图6所示,如果DE ∥AB,那么∠A+______=180°,或∠B+_____=180°,根据是______; 如果∠CED=∠FDE,那么________∥_________.根据是________. 2.如图7所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、?后的两条路平行, 若第一次拐角是150°,则第二次拐角为________. D C B A D C B A 1 2 (7) (8) (9) 3.如图8所示,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠ ACD=?_______. 三、训练平台:(每小题8分,共32分) 1. 如图9所示,AD ∥BC,∠1=78°,∠2=40°,求∠ADC 的度数.

高考数学圆锥曲线的经典性质50条

椭圆与双曲线的对偶性质--(必背的经典结论) 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是002 21x x y y a b +=. 6. 若000 (,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为12 2 tan 2F PF S b γ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2 OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。

傅里叶变换的性质

§3–4傅里叶变换的性质 设f(t) ←→F(jω),f1(t) ←→F1(jω),f2(t) ←→F2(jω);α、α1、α2为实数, 则有如下性质: 一、线性:α1 f1(t) + α2 f2(t)←→α1F1(jω) + α2 F2(jω) 二、对称性:F(jt)←→2πf(-ω) 证明: 将上式中的t换为ω,将原有的ω换为t, 或: , 即:F(jt)←→2π f(-ω) P.67例3-3:已知 , 再令 ==> ←→2πG(-ω) 三、尺度变换: (α≠0的实数) 可见信号持续时间与占有频带成反比(此性质易由积分变量代换证得)。 推论(折叠性):f(-t) ←→F(-jω) 四、时移性: (此性质易由傅氏变换的定义证得) 推论(同时具有尺度变换与时移): P.69-70例3-4请大家浏览。

五、频移性:

(此性质易由傅氏变换的定义证得) π.70例3-5请大家浏览。 频移性的重要应用——调制定理: 欧拉公式 ? 例如门信号的调制:

显然,当ω0足够大时,就可使原频谱密度函数被向左、右复制时几乎不失真。 六、时域卷积: f1(t)* f2(t) ←→F1(jω)F2(jω) 证明: 时域卷积的重要应用——求零状态响应的频域法: 时域:yf(t) = f(t)* h(t) ==> 频域:Y f(jω) = F(jω)H(jω) 七、频域卷积:f1(t). f2(t) ←→1/2π[F1(jω)*F2(jω)] 八、时域微分性:df(t)/dt←→ jωF(jω) (其证明请自学P.72-73有关内容) 推论: 条件: 例如:d(t) ←→1 ==>δ'(t) ←→jω 九、时域积分性:

圆锥曲线经典性质总结及证明!!!

Gandongle 椭圆双曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

对偶性质

对偶理论的性质及证明 性质1(对称性) 对偶问题的对偶问题是原问题 证明 设原问题为 max z ..0CX AX b s t X =≤??≥? (1) 对偶问题为 min ..0w Yb YA C s t X =≥??≥? (2) 对偶问题的对偶问题为 max ..0CU AU b s t U ?=≤??≥? (3) 比较式(1)和式(3), 显然二者是等价的, 命题得证. 性质2(弱对偶性) 设原问题为式(1),对偶问题为式(2),X 是原问题的任意一个可 行解,Y 是对偶问题的任意一个可行解,那么总有 CX Yb ≤ (4) 证明 根据式(1), 由于AX b ≤, 又由于0Y ≥, 从而必有 YAX Yb ≤ (5) 根据式(2), 由于YA c ≥, 又由于0X ≥, 从而必有 YAX CX ≥ (6) 结合式(5)和式(6), 立即可得CX Yb ≤,命题得证. 性质3(最优性) 设*X 原问题式(1)的可行解,*Y 是对偶问题式(2)的可行解,当是 **CX Y b =时,*X 是原问题式(1)的最优解,*Y 是对偶问题式(2)的最优解. 证明 设X 是式(1)的最优解, 那么有 *CX CX ≥ (7) 由于**CX Y b =,那么 *CX Y b ≥ (8) 根据弱对偶性质, 又有 *CX Y b ≤ (9)

从而*CX CX =, 也就是*X 是原问题式(1)的最优解。 同理,也可证明*Y 是对偶问题式(2)的最优解。 性质4(无界性) 设原问题为无界解,则对偶问题无解。 证明 用反证法证明。 设原问题为式(1),对偶问题为式(2)。 假定对偶问题有解,那么存在一个可行解为Y 。这时对偶问题的目标函数值为Yb T =。 由于原问题为无界解,那么一定存在一个可行解X 满足CX T >,因此CX Yb >。 而根据弱对偶性,又有CX Yb ≤,发生矛盾。从而对偶问题没有可行解。 性质5(强对偶性、对偶性定理) 若原问题有最优解,那么对偶问题也有最优解,且最优目标函数值相等。(复习矩阵算法) 证明 设B 为原问题式(1)的最优基,那么当基(1)实地访谈。选择不同地区、不同行业、不同发展规模、不同历史、不同风 格的企业高层管理人员或技术部门负责人,进行半结构化的访谈,进一步收集信息 并完善研究思路。 (2)协同学方法。运用协同学方法对装备制造业突破性创新系统的演进进行仿 真研究,通过对系统演化的轨迹及过程进行分析,从产业生命周期的四阶段提出装 备制造业突破性创新机制系统根据生命周期发展过程的不同策略。 (3)结构方程模型。通过规范的问卷调查程序和数据处理方法,建立起合乎研 究要求的数据库,再通过对获得的数据采用结构方程模型(SEM)等统计分析方法, 以验证提出的概念模型与假设是否成立。为B 时的检验数为1B C C B A --,其中B C 为由基变量的价值系数组成的价值向量。 既然B 为原问题式(1)的最优基,那么有10B C C B A --≤。 令1B Y C B -=,那么有0C YA YA C -≤?≥,从而1B Y C B -=是对偶问题式(2)的可行解。 这样一来,1B Y C B -=是对偶问题的可行解,1B X B b -=是原问题的最优基可行解。 由于1B B N N B CX C X C X C B b -=+=,而1B Y b C B b -=,从而有CX Yb =。根据性质3,命 题得证。 性质6(对偶松弛定理、松弛性) 若??, X Y 分别是原问题和对偶问题的可行解,那么?0s YX =和?0s Y X =,当且仅当??, X Y 为最优解。 证明 设原问题和对偶问题的标准型是 原问题 对偶问题

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常 需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。 因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若-'1 ' 一 1 一八 餐丄I 则 嗽(0 +罰⑷ G 迅(j 由)+ 碍(Jtu ) (3-55) 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数 ,; 「" 由式(3-55)得 =侔7(/)}=-屛1} + - (sgn( /)}=丄 K 刼罠珂 + 丄用2 二足飢也)+ — 2 2 2 2 JtD J QJ 、对称性 (3-56) 则」 将上式中变量少换为x ,积分结果不变,即 证明因为 fC )二丄「EQ 讣叫田 N J 2^(i) = f F(J 噪叫 a 2^(-1)=「F(j 嫌小咕 J —TO

」一 再将t用夕代之,上述关系依然成立,即 2戒(―型)-[ Jr-CD 最后再将x用t代替,则得—Lm—? ” 所以,fl- —■-'■ ■■* 证毕 若八」是一个偶函数,即-'二丿■,相应有-,:"J,则式(3-56) 尺〔血—2对'(创)C3-57) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数二丁。式中的-兰表示频谱函数坐标轴必须正负对调。例如:/(0 =郭)一S)=l FS)= 1一2才㈣=2斶眄 例3-7若信号;二的傅里叶变换为 < r 72 G3> r <2 试求。 解将中的"换成t,并考虑;-";1为兰的实函数,有 M |r|G 戈 0 |t|>r/2 该信号的傅里叶变换由式(3-54)可知为 頁恥)卜2氓旳(号)

江苏高考数学圆锥曲线性质总结

高考数学圆锥曲线性质总结 椭圆与双曲线的对偶性质 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为 122tan 2 F PF S b γ ?=.

8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线 于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N , 则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的角.

平行线的判定和性质练习题

平行线的判定定理和性质定理 [一]、平行线的判定 一、填空 1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ . 2.若a⊥c,b⊥c,则a b . 3.如图2,写出一个能判定直线l 1∥l 2的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。 6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由: (1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( ); (3)由∠CBA +∠BAD = 180°得 ∥ ( ) 8.如图6,尽可能多地写出直线l 1∥l 2的条件: . 9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空: (1)∵∠A =∠ (已知), ∴AC∥ED( ); (2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ); 二、解答下列各题 11.如图9,∠D =∠A,∠B =∠FCB,求证:E D∥CF. A C B 4 1 2 3 5 图4 a b c d 1 2 3 图3 A B C E D 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3 A F C D B E 图8 E B A F D C 图9 A D C B O 图5 图6 5 1 2 4 3 l 1 l 2 图7 5 4 3 2 1 A D C B

人教版数学七年级下册平行线的判定和性质练习题 非常经典的题型 值得给学生测试

(第1页,共3页) 一、填空 1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ . 2.若a⊥c,b⊥c,则a b . 3.如图2,写出一个能判定直线l 1∥l 2的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。 6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由: (1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( ); (3)由∠CBA +∠BAD = 180°得 ∥ ( ) 8.如图6,尽可能多地写出直线l 1∥l 2的条件: . 9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空: (1)∵∠A =∠ (已知), ∴AC∥ED( ); (2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ) 二、解答下列各题 11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF. 12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并 说明理由. 13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ. [二]、平行线的性质 1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = . 2.如图2,直线AB 、CD 被EF 所截,若∠1 =∠2,则∠AEF +∠CFE = . 3.如图3所示 (1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°( ). (2)若∠2 =∠ ,则AE∥BF. (3)若∠A +∠ = 180°,则AE∥BF. 4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = . 5.如图5,AB∥CD,EG⊥AB 于G ,∠1 = 50°,则∠E = . 6.如图6,直线l 1∥l 2,AB⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB 互余的角有 . 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有 个. A C B 4 1 2 3 5 图4 a b c d 1 2 3 图3 A B C E D 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3 A F C D B E 图8 E B A F D C 图9 1 3 2 A E C D B F 图10 F 2 A B C D Q E 1 P M N 图11 A D C B O 图5 图6 5 1 2 4 3 l 1 l 2 图7 5 4 3 2 1 A D C B 图1 2 4 3 1 A B C D E 1 2 A B D C E F 图2 1 2 3 4 5 A B C D F E 图3 1 2 A B C D E F 图4 图5 1 A B C D E F G H 图7 1 2 D A C B l 1 l 2 图8 1 A F C D E G 图6 C D F E B A

傅里叶变换的基本性质 (2)

3-5 傅里叶变换的基本性质 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需 要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、 线性 傅里叶变换是一种线性运算。若 则 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6 利用傅里叶变换的线性性质求单位阶跃信号的频谱函数)(ωj F 。 解 因 由式(3-55)得 二、对称性 若 证明 因为 有 将上式中变量ω换为x ,积分结果不变,即 再将t 用ω代之,上述关系依然成立,即 最后再将x 用t 代替,则得 所以 证毕 若)(t f 是一个偶函数,即)()(t f t f =-,相应有)()(ωωf f =-,则式(3-56)成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数π2。式中的ω-表示频谱函数坐标轴必须正负对调。例如

例3-7 若信号)(t f 的傅里叶变换为 试求)(t f 。 解 将)(ωj F 中的ω换成t ,并考虑)(ωj F 为ω的实函数,有 该信号的傅里叶变换由式(3-54)可知为 根据对称性 故 再将)(ω-f 中的ω-换成t ,则得 )(t f 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 观看动画 若 则 证明 因a >0,由 令at x =,则adt dx =,代入前式,可得 函数)(at f 表示)(t f 沿时间轴压缩(或时间尺度扩展) a 倍,而 ) (a j F ω 则表示 )(ωj F 沿频率轴扩展(或频率尺度压缩) a 倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8 已知 ,求频谱函数)(ωj F 。 解 前面已讨论了

50条圆锥曲线性质和结论

椭圆与双曲线的对偶性质(必背的经典结论) 1. 2. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 设过椭圆焦点F 作直线与椭圆椭 圆 3. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 4. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 5. 以焦点弦PQ 为直径的圆必与对应准线相离. 6. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 7. 若000(,)P x y 在椭圆 2 2 22 1x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 8. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. 9. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.相交 P 、Q 两点,A 为椭圆 长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11.AB 是椭圆 2 2 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 12.若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 13.若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是 00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切 线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任 意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.

圆锥曲线的经典性质总结

椭圆 必背的经典结论 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆, 除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2 的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=, 则椭圆的焦点角形的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分 别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于 点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ?=-, 即0202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+.

相关文档
最新文档