线性常微分方程的级数解法

线性常微分方程的级数解法
线性常微分方程的级数解法

第四章

线性常微分方程的级数解法

4.1 常点邻域之级数解法 ① 常点邻域的级数解概念

---- (二阶线性常微分方程的一般形式)

0)()(=+'+''w z q w z p w (4.1)

----(常点概念) 对于式(4.1)中,若)(z p 与

)(z q 在某点及其邻域内解析,则称此点为常点;

反之,若)(z p 与)(z q 至少一个在该点不解析,则称此点为奇点。

----(常点邻域内解的存在定理) 若)(z p 与

)

(z q 在

R

z z <-0内单值解析,则方程(4.1)在

R z z <-0内存在单值唯一的解析解。

----(常点0z 邻域内之级数解的一般形式) 若

)(z p 与)(z q 在R z z <-0内单值解析,则对于式

(4.1),可设级数解∑∞

=-=0

0)(n n n z z a w ,再将

)

(z p 与

)(z q 在R z z <-0内展为泰勒级数,代入式(4.1)以

确定级数解之待定系数。

② 勒让德方程之级数解

----(勒让德方程形式)

0)1(2)1(2=++'-''-y l l y x y x (4.2) ----(在常点0=x 邻域内的级数解) 分析: 由1

2)(2-=

x x x p 及2

1)

1()(x

l l x q -+=,可知0=x 为常点;故可设:∑∞

==0

n n n x a y ,

相应:∑∞

=-='1

1

n n n x

na y ,∑∞

=--=''2

2)1(n n n x a n n y ,

代入方程(4.2),得:

)1(2)1()1)(2(0

2=++---

++∑∑∑∑∞

=∞

=∞

=∞

=+n n n n n

n n n

n n n

n x a l l x na x

a n n x

a n n ,即:

n n a l l n n a n n )()1)(2(222--+=+++,或

n n a n n l n l n a )

1)(2()

1)((2++++-=+;显然有:

02!2)1)((a l l a +-=

,13!3)

2)(1(a l l a +-=, 04!

4)12)(2)(1)((a l l l l a ++-+-=,

15!

5)4)(3)(2)(1(a l l l l a +-+-=,即

02)!

2()

12)(22()1)((a k l k l k l l a k +---+-=

012)!

12()

2)(12()2)(1(a k l k l k l l a k ++--+-=

+ ;相应级

数解为两个线性无关解的迭加:

∑∑∑∑∞

=++∞

=∞

=++∞

=+=+

=

1

21210

220

1

2120

22k k k k k

k k k k k k

k x A a x

A a x

a x

a y

(4.3)

其中

a 、

1

a 为任意常数;进一步由

1lim

2

=+∞→n n

n a a 及高斯判别法,

可求得级数解之收敛域为1

----(n 阶勒让德多项式)若勒让德方程(4.2)中n l =(n 为非负整数),则原方程的两个迭加的级数解中,必有一个可化为n 次多项式;即若

m

n l 2==,则

∑==m

k k k x A a y 0

220

1;若12+==m n l ,则

∑=++=m

k k k x A a y 0

121212,该解在]1,1[-上有界,其性质

将另加讨论。

4.2 正则奇点邻域之级数解法

① 奇点邻域级数解的存在定理与一般形式

----(奇点邻域级数解的存在定理) 设0z 为方程(4.1)的奇点,若)(z p 与)(z q 在R z z <-<00内

单值解析,则方程(4.1)在R z z <-<00内存在单

值唯一的解析解。

(0)()(=+'+''w z q w z p w (4.1)) ----(奇点邻域级数解的一般形式)方程(4.1)在奇点0z 的某个去心邻域的两个线性无关之级数解形式为:

∑∞

-∞

=--=n n n z z a z z w )()

(0011

ρ (4.4)

∑∞

-∞

=--=n n n z z b z z w )()

(0022

ρ (≠-21ρρ整数) (4.5)

∑∞

-∞

=--+-=n n n z z b z z z z z Aw w )()

()ln()(000122

ρ

(=-21ρρ整数) (4.6)

对于形式简单的)(1z w ,也可按刘维尔公式计算,即:dz e z w z w w dz

z p ?

?=-)(2112)

(1

)(,其中1ρ、2ρ、A 、n a 及

n b 均为待定系数

② 正则奇点邻域的级数解概念

----(正则解与正则奇点定义)设0z 为方程(4.1)之奇点,若方程的两个线性无关解式(4.4)-(4.6)中涉及级数之部分不含负幂次项,则称此解为正则解,称相应的奇点为正则奇点。

(0)()(=+'+''w z q w z p w (4.1)) ----(正则解存在的充必条件)0z 至多为)(z p 的一级极点和)(z q 的二级极点。

----(正则解的一般形式和求解步骤) 设0z 为方程(4.1)之正则奇点,用20)(z z -同乘方程(4.1)两边,再将

)

()(0z p z z -与

)

()(20z q z z -在

R

z z <-0内展为泰勒级数,设级数解为

∑∞

=--=0

00)()

(n n n z z a z z w ρ

,代入式(4.1),即可得到

关于参数ρ的指标方程,进而得到级数解各待定系数的求解方程。

③ υ阶贝塞尔方程之级数解 ----(υ阶贝塞尔方程形式)

0)(222=-+'+''y x y x y x υ (4.7)

----(正则奇点0=x 去心邻域内之级数解)

分析:由

x x p 1)(=及2

2

2)(x x x q υ-=

,即0=x 为正

则奇点,故可设:∑∞

==0

n n n x a x y ρ

,相应:

∑∞

=-++=

'0

1)(n n n x n a y ρρ,0)(222=-+'+''y x y x y x υ ∑∞

=-+-++=

''0

2)1)((n n n x n n a y ρρρ,代入方程得:

])()1)(([0

2

2

=-+

++

-++∑∑∑∑∞

=∞

=+∞

=∞

=n n n n n n n n

n n n

n x a x

a x

n a x n n a x υ

ρρρρ

,即:

0x :0)(220=-υρa ,由00≠a ,故有:0

22=-υρ(指标方程),得:υρ=1,υρ-=2;

1x :0])1()1([21=-+++υρρρa ,即0])1[(221=-+υρa ,

得:01=a ;

n x (2≥n ):0])()1)([(22=+-++-++-n n a n n n a υρρρ,

即:

222])[(--=-+n n a a n υρ 或 22

2

)(1--+-

=n n a n a υ

ρ

(4.8)

讨论: (1) ≠=-υρρ221整数 a) 当

υ

ρρ==1时,由式(10.8)可得:

2

22

)(1

--+-

==n n n c n c a υ

υ )2(≥n ,其中: 012=+k c 及

4

22

2

222

2)

1)(1(21

)(21

)(21----++=

+-

=k k k c k k k k c k

k c υυυ,进一步有:

2022)

1(!2)1()1()

1()1)((!21

)1(c k k c k k k c k

k

k

k

k ++Γ+Γ-=+-++-=υυυυυ ,相应的级数解为:

)

()2

()1(!1)1(2

)1(020

01x J C x

k k c y k k k

υυυ

υυ=++Γ-+Γ=+∞

=∑,其

中)(x J υ称为υ阶贝塞尔函数,其收敛域为

+∞

b)同理当υρρ-==2时,有:

22

2

)(1----

==n n n d n d a υ

υ )2(≥n ,即012=+k d

2022)

1(!2)1()1()

1()1)((!21

)1(c k k c k k k d k

k

k

k

k +-Γ-Γ-=-----=υυυυυ ,相应的级数解为:

)()2()1(!1)1(2

)1(020

02x J D x

k k d y k k k υυυ

υυ--∞

=-=+-Γ--Γ=∑。

(2) ==-υρρ221整数,仍有)(01x J C y υ=,进一步:

a) 若

12221

N ρρυ-==+,则仍有

)(02x J D y υ-=;

b) 若N 2221==-υρρ,则2y 待定,下一章

将说明2y 为第二类贝塞尔函数)(x Y υ。

(N =υ时,由式(4.8)有:222])[(--=--n n a a n υυ,即222)(4--=-k k a a N k k ,故004222====--a a a N N ,

N

k N

k k x

N k k D y -∞

=+-Γ+Γ-=∑

20

2)2

()1()1(1)1(,令:

N

k m -=,

)

()1()2

(!)1(1)1()1(020

2x J D x

m N m D y N N N m m m

N

-=++Γ--=+∞

=∑,因而1y 与2y 线性相关,2y 需重新确定。

常微分方程的初等解法与求解技巧

师大学本科毕业论文(设计) 常微分方程的初等解法与求解技巧 姓名娟 院系数学与计算机科学学院 专业信息与计算科学 班级12510201 学号1251020126 指导教师王晓锋 答辩日期 成绩

常微分方程的初等解法与求解技巧 容摘要 常微分方程在数学中发挥着举足轻重的作用,同时它的应用在日常生活里随处可见,因此掌握常微分方程的初等解法与求解技巧是非常必要的.本论文主要论述了其发展、初等解法与求解技巧,前者主要有变量分离、积分因子、一阶隐式微分方程的参数表示,通过举例从中总结出其求解技巧,目的是掌握其求解技巧. 【关键词】变量分离一阶隐式微分方程积分因子求解技巧

Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations take up significant position in mathematics, and at the same time, the application of it can be seen everywhere in our daily life, therefore, it’s necessary to grasp the elementary solution of ordinary differential equations and solving skills. This paper mainly introduced the definition of ordinary differential equations, elementary solution method and solving skills, the former mainly included the separation of variables, integral factor, a parameter-order differential equations implicit representation, by way of examples to sum up their solving skills, the purpose is to master the skills to solve. 【Key Words】the separation of variables the first order implicit differential equation integrating factor solution techniques

常微分方程的初等解法_论文

(此文档为word格式,下载后您可任意编辑修改!) 1.常微分方程的基本概况 1.1.定义: 自变量﹑未知函数及函数的导数(或微分)组成的关系式,得到的便是微分方程,通过求解微分方程求出未知函数,自变量只有一个的微分方程称为常微分方程。 1.2.研究对象: 常微分方程是研究自然科学和社会科学中的事物、物体和现象运动﹑演化和变化规律的最为基本的数学理论和方法。物理﹑化学﹑生物﹑工程﹑航空﹑航天﹑医学﹑经济和金融领域中的许多原理和规律都可以描述成适当的常微分方程。如牛顿运动规律、万有引力﹑能量守恒﹑人口发展规律﹑生态总群竞争﹑疾病传染﹑遗传基因变异﹑股票的涨伏趋势﹑利率的浮动﹑市场均衡价格的变化等。对这些规律的描述﹑认识和分析就归结为对相应的常微分方程的理论和方法不仅广泛应用于自然科学,而且越来越多的应用于社会科学各个领域。 1.3.特点: 常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。下面就方程解的有关几点简述一下,以了解常微分方程的特点。求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。 1.4.应用: 现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。

常微分方程的初等解法

常微分方程的初等解法

1.常微分方程的基本概况 1.1.定义: 自变量﹑未知函数及函数的导数(或微分)组成的关系式,得到的便是微分方程,通过求解微分方程求出未知函数,自变量只有一个的微分方程称为常微分方程。 1.2.研究对象: 常微分方程是研究自然科学和社会科学中的事物、物体和现象运动﹑演化和变化规律的最为基本的数学理论和方法。物理﹑化学﹑生物﹑工程﹑航空﹑航天﹑医学﹑经济和金融领域中的许多原理和规律都可以描述成适当的常微分方程。如牛顿运动规律、万有引力﹑能量守恒﹑人口发展规律﹑生态总群竞争﹑疾病传染﹑遗传基因变异﹑股票的涨伏趋势﹑利率的浮动﹑市场均衡价格的变化等。对这些规律的描述﹑认识和分析就归结为对相应的常微分方程的理论和方法不仅广泛应用于自然科学,而且越来越多的应用于社会科学各个领域。 1.3.特点: 常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。下面就方程解的有关几点简述一下,以了解常微分方程的特点。求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。 1.4.应用: 现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 2.一阶的常微分方程的初等解法

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy ΛΛΛΛΛ (3.1) 的方程组,(其中n y y y ,,,21Λ是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n Λ使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ΛΛ==成立,则 )(,),(),(21x y x y x y n Λ称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21Λ的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ΛΛΛΛΛ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x ΛΛΛΛΛΛΛΛ 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y ===Λ的解,叫做初值问题的解。

常微分方程的初等解法与求解技巧

山西师范大学本科毕业论文(设计) 常微分方程的初等解法与求解技巧 姓名张娟 院系数学与计算机科学学院 专业信息与计算科学 班级12510201 学号1251020126 指导教师王晓锋 答辩日期 成绩

常微分方程的初等解法与求解技巧 内容摘要 常微分方程在数学中发挥着举足轻重的作用,同时它的应用在日常生活里随处可见,因此掌握常微分方程的初等解法与求解技巧是非常必要的.本论文主要论述了其发展、初等解法与求解技巧,前者主要有变量分离、积分因子、一阶隐式微分方程的参数表示,通过举例从中总结出其求解技巧,目的是掌握其求解技巧. 【关键词】变量分离一阶隐式微分方程积分因子求解技巧

Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations take up significant position in mathematics, and at the same time, the application of it can be seen everywhere in our daily life, therefore, it’s necessary to grasp the elementary solution of ordinary differential equations and solving skills. This paper mainly introduced the definition of ordinary differential equations, elementary solution method and solving skills, the former mainly included the separation of variables, integral factor, a parameter-order differential equations implicit representation, by way of examples to sum up their solving skills, the purpose is to master the skills to solve. 【Key Words】the separation of variables the first order implicit differential equation integrating factor solution techniques

变系数线性常微分方程的求解

变系数线性常微分方程的求解 张慧敏,数学计算机科学学院 摘要:众所周知,所有的常系数一阶、二阶微分方程都是可解的,而变系数 二阶线性微分方程却很难解,至今还没有一个普遍方法。幂级数解法是一个非常有效的方法,本文重点讨论二阶变系数线性常微分方程的解法,从幂级数解法、降阶法、特殊函数法等方面探究了二阶微分方程的解法,简单的介绍了几种高阶微分方程的解法,并讨论了悬链线方程等历史名题。 关键词:变系数线性常微分方程;特殊函数;悬链线方程;幂级数解法 Solving linear ordinary differential equations with variable coefficients Huimin Zhang , School of Mathematics and Computer Science Abstract:As we know, all of ordinary differential equations of first, second order differential equations with constant coefficients are solvable. However, the linear differential equations of second order with variable coefficients are very difficult to solve. So far there is not a universal method. The method of power-series solution is a very efficient method. This article focuses on solving linear ordinary differential equations of second order with variable coefficients, and exploring the solution of in terms of power-series solution, the method of reducing orders, the method of special functions. Also, this paper applies the above methods to solve several linear differential equations of higher order and especially discusses the famous catenary equation. Key words:Linear ordinary differential equations with variable coefficients; Special Functions; catenary equation; Power Series Solution.

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

常微分方程初等解法的研究

2015届本科毕业论文(设计) 论文题目:常微分方程初等解法的研究 学院:数学科学学院 专业班级:数学与应用数学11-1班 学生姓名:汤鹏 指导老师:张新东副教授 答辩日期:2015年5月5日 新疆师范大学教务处

目录 引言 (1) 1 常微分方程的定义及分类 (2) 1.1 定义 (2) 1.2 一阶线性微分方程 (2) 1.3 一阶线性微分方程组 (2) 2 一阶线性微分方程的解法 (4) 2.1 分离变量法 (4) 2.2 常数变易法 (5) 2.3 全微分法 (6) 2.4 参数法 (7) 3 n阶常系数线性微分方程的解法 (9) 3.1 单根的情形 (9) 3.2 重根的情形 (10) 4 常微分方程的应用 (11) 4.1 人口动力学问题 (11) 4.2 简谐运动 (11) 4.3 电路理论 (12) 4.4 MATLAB解常微分方程 (13) 5 总结 (15) 参考文献 (16) 致谢 (17)

常微分方程初等解法的研究 摘要:本文主要对常微分方程的初等解法进行研究,使大家更深一步地了解常微分方程的分类、解法及其在其他领域的应用。首先总结阐述常微分方程的定义和几种常见的类型,然后讲解了常微分方程的解法及方程组解的情况,最后讲述了常微分方程在以下四个方面的应用:动力学问题、简谐运动、电路理论及用MATLAB解常微分方程。 关键词:常微分方程;初等解法;方程组;动力学;MATLAB

Research elementary solution of ordinary differential equations Abstract: This paper mainly elementary solution of ordinary differential equation is studied,make you a deeper understanding of classification,the ordinary differential equation solution and its application in other fields.Firstly summarizes the type describes the definition of ordinary differential equations and several common,then explain the ordinary differential equation solution and the solution of equations,and finally describes the application of ordinary differential equations in the following four aspects:dynamics,simple harmonic motion,boundary value problem and the solution of ordinary differential equation with MATLAB. Key words: Ordinary differential equations; The primary solution; Equations; Dynamics; MATLAB

各类微分方程的解法大全

各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u]=dx/x 两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1 y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程

令y ’=p 则y ”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C 1) 即dy/dx=φ(y,C 1),即dy/φ(y,C 1)=dx,所以∫dy/φ(y,C 1)=x+C 2 5.二阶常系数齐次线性微分方程解法 一般形式:y ”+py ’+qy=0,特征方程r 2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y ”+py ’+qy=f(x) 先求y ”+py ’+qy=0的通解y 0(x),再求y ”+py ’+qy=f(x)的一个特解y*(x) 则y(x)=y 0(x)+y*(x)即为微分方程y ”+py ’+qy=f(x)的通解 求y ”+py ’+qy=f(x)特解的方法: ① f(x)=P m (x)e λx 型 令y*=x k Q m (x)e λx [k 按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m (x)的m+1个系数 ② f(x)=e λx [P l(x)cos ωx+P n (x)sin ωx ]型 令y*=x k e λx [Q m (x)cos ωx+R m (x)sin ωx ][m=max ﹛l,n ﹜,k 按λ+i ω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Q m (x)和R m (x)的m+1个系数

常微分方程初等解法和求解技巧毕业论文

目 录 摘 要 .............................................................. I 关键词 ............................................................. I Abstract ........................................................... I Key words .......................................................... I 1.前 言 (1) 2.常微分方程的求解方法 (1) 2.1常微分方程变量可分离类型解法 (1) 2.1.1直接可分离变量的微分方程 (2) 2.1.2可化为变量分离方程 (2) 2.2常数变易法 (9) 2.2.1一阶线性非齐次微分方程的常数变易法 (9) 2.2.2一阶非线性微分方程的常数变易法 (10) 2.3积分因子法 (16) 3.实例分析说明这几类方法间的联系及优劣 (17) 3.1几个重要的变换技巧及实例 (18) 3.1.1变dx dy 为dy dx ............................................... 18 3.1.2分项组合法组合原则 (19) 3.1.3积分因子选择 (20) 参考文献 (21) 致 (22)

常微分方程初等解法及其求解技巧 摘要 常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中.求解常微分的问题,常常通过变量分离、两边积分,如果是高阶的则通过适当的变量代换,达到降阶的目的来解决问题.本文就是对不同类型的常微分方程的解法及其求解技巧的系统总结:先介绍求解常微分方程的几种初等解法,如变量分离法,常数变易法,积分因子法等,在学习过程中,通过对不同类型的方程求解,揭示常微分方程的求解规律.然后介绍几类方程求解中的变换技巧及规律,并通过实例来分析这几类方法之间的联系及优劣,从而能快速的找到最佳解法. 关键词 变量分离法常数变易法积分因子变换技巧 Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations are important components of calculus and used extensively for the studies on specific issues. Ordinary differential equations are often resolved by the means of variable separation and both sides integral. If they are higher-order ones, we can reduce their order by proper variable substitution to solve this problem. This essay aims at concluding systematically the methods of different types of differential equations and its resoling skills. First of all, I’d would like to introduce several basic resolutions of differential equations, such as variable separation, constant threats, points factor, etc. In the process of learning, I’d like to reduce the law of resolving ordinary differential equations by resolving different types of equations. Then, we describe several equations resolutions and for transformation techniques and its laws, and we also analyze the advantages and disadvantages and connections by using the examples of these methods to be able to find the best solution quickly. Key words

(整理)常系数线性微分方程的解法

常系数线性微分方程的解法 摘要:本文对常系数线性方程的各种解法进行分析和综合,举出了每个方法的例题,以便更好的掌握对常系数线性微分方程的求解. 关键词:特征根法;常数变易法;待定系数法 Method for solving the system of differential equation with Constant Coefficients Linear Abstract: Based on the linear equations with constant coefficients of analysis and synthesis method, the method of each sample name, in order to better grasp of the linear differential equation with constant coefficients of the solution. Key Words: Characteristic root ;Variation law ;The undetermined coefficient method 前言:常系数性微分方程因形式简单,应用广泛,解的性质及结构已研究的十分清楚,在常微分方程中占有十分突出的地位。它的求解是我们必须掌握的重要内容之一,只是由于各种教材涉及的解法较多,较杂,我们一般不易掌握,即使掌握了各种解法,在具体应用时应采用哪种方法比较适宜,我们往往感到困难。本文通过对一般教材中涉及的常系数线性微分方程的主要解法进行分析和比较,让我们能更好的解常系数线性微分方程。 1.预备知识 复值函数与复值解 如果对于区间a t b ≤≤中的每一实数t ,有复值()()()z t t i t ?ψ=+与它对应,其中()t ?和()t ψ是在区间a t b ≤≤上定义的实函数,1i =-是虚数单位,我们就说在区间a t b ≤≤上给定了一个复值函数()z t .如果实函数()t ?,()t ψ当t 趋于 0t 时有极限,我们就称复值函数()z t 当t 趋于0t 时有极限,并且定义

常微分方程数值解法

第八章 常微分方程的数值解法 一.内容要点 考虑一阶常微分方程初值问题:?????==0 0)() ,(y x y y x f dx dy 微分方程的数值解:设微分方程的解y (x )的存在区间是[a,b ],在[a,b ]内取一系列节 点a= x 0< x 1<…< x n =b ,其中h k =x k+1-x k ;(一般采用等距节点,h=(b-a)/n 称为步长)。在每个节点x k 求解函数y(x)的近似值:y k ≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。 用数值方法,求得f(x k )的近似值y k ,再用插值或拟合方法就求得y(x)的近似函数。 (一)常微分方程处置问题解得存在唯一性定理 对于常微分方程初值问题:?????==0 0)() ,(y x y y x f dx dy 如果: (1) 在B y y A x x 00≤-≤≤,的矩形内),(y x f 是一个二元连续函数。 (2) ),(y x f 对于y 满足利普希茨条件,即 2121y y L y x f y x f -≤-),(),(则在C x x 0≤≤上方程?????==0 0)() ,(y x y y x f dx dy 的解存在且唯一,这里C=min((A-x 0),x 0+B/L),L 是利普希茨常数。 定义:任何一个一步方法可以写为),,(h y x h y y k k k 1k Φ+=+,其中),,(h y x k k Φ称为算法的增量函数。 收敛性定理:若一步方法满足: (1)是p 解的. (2) 增量函数),,(h y x k k Φ对于y 满足利普希茨条件. (3) 初始值y 0是精确的。则),()()(p h O x y kh y =-kh =x -x 0,也就是有 0x y y lim k x x kh 0h 0 =--=→)( (一)、主要算法 1.局部截断误差 局部截断误差:当y(x k )是精确解时,由y(x k )按照数值方法计算出来的1~ +k y 的误差y (x k+1)- 1~ +k y 称为局部截断误差。 注意:y k+1和1~ +k y 的区别。因而局部截断误差与误差e k +1=y (x k +1) -y k +1不同。 如果局部截断误差是O (h p+1),我们就说该数值方法具有p 阶精度。

常微分方程数值解法

常微分方程数值解法 【作用】微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。把形形色色的实际问题化成微分方程的定解问题,大体上可以按以下几步: 1. 根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系。 2. 找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等)。 3. 运用这些规律列出方程和定解条件。基本模型 1. 发射卫星为什么用三级火箭 2. 人口模型 3. 战争模型 4. 放射性废料的处理通常需要求出方程的解来说明实际现象,并加以检验。如果能得到解析形式的解固然是便于分析和应用的,但是我们知道,只有线性常系数微分方程,并且自由项是某些特殊类型的函数时,才可以得到这样的解,而绝大多数变系数方程、非线性方程都是所谓“解不出来” 的于是对于用微分方程解决实际问题来说,数值解法就是一个十分重要的手段。 1. 改进Euler 法: 2. 龙格—库塔( Runge—Kutta )方法: 【源程序】 1. 改进Euler 法: function [x,y]=eulerpro(fun,x0,x1,y0,n);%fun 为函数,(xO, x1)为x 区间,yO 为初始值,n 为子 区间个数 if nargin<5,n=5O;end h=(x1-xO)/n; x(1)=xO;y(1)=yO; for i=1:n x(i+1)=x(i)+h; y1=y(i)+h*feval(fun,x(i),y(i)); y2=y(i)+h*feval(fun,x(i+1),y1); y(i+1)=(y1+y2)/2; end 调用command 窗口 f=i nlin e('-2*y+2*x A2+2*x') [x,y]=eulerpro(f,O,,1,1O) 2 x +2x , (0 < x < , y(0) = 1 求解函数y'=-2y+2 2. 龙格—库塔( Runge—Kutta )方法: [t,y]=solver('F',tspan ,y0) 这里solver为ode45, ode23, ode113,输入参数F是用M文件定义的微分方程y'= f (x, y)右端的函数。tspan=[t0,tfinal]是求解区间,y0是初值。 注:ode45和ode23变步长的,采用Runge-Kutta算法。 ode45表示采用四阶-五阶Runge-Kutta算法,它用4阶方法提供候选解,5阶方法控制误差,是一种自适应步长(变步长)的常微分方程数值解法,其整体截断误差为(△ 口人5解 决的是Nonstiff(非刚性)常微分方程。

(完整版)一阶常微分方程初等解法毕业设计46doc

目录 ? ? ? 1 关键 词…… (1) Abstract.................................... . (1) Keywords.................................... ..……… ..1 0 前 ..1 识 (1)

1 预备知 识 (1)

1. 1 变量分离方程........................................................ .2 1. 2 恰当微分方程........................................................ .2 1. 3 积分因子................................................. .... (2) 2 基本方法.................................................... ■■ (2) 2. 1 一般变量分离……………………………………………………………………… .3 2. 2 齐次微分方程 (3) 2. 2 .1 齐次微分方程类型一………………………………………………………… .3 2. 2. 2齐次微分方程类型二........................ ........ (4) 2. 3 常数变易法.............................. .................... (5) 2.3.1常数变易法一 (5) 2.3.2常数变易法二……………………… .………………………… ..…………… ..6 2.4 积分因子求解法....................................... .. (7)

线性常系数微分方程的求解公式

五邑大学学报 JOURNAL OF WUYI UNIVERSITY 1999年 第13卷 第1期 Vol.13 No.1 1999 线性常系数微分方程的求解公式 陈新明 杨逢建 摘要 利用微分算子法给出了n阶线性常系数非齐次方程的求解公式。 关键词 微分方程线性;非齐次 中图分类号 O175.1 Formulas for solving the Linear Differential Equations with constants coefficients CHENXin-mingYANGFeng-jian (1.Dept.ofMath&Phys.,WuyiUniv,Jiangmen529020,China 2.Dept.ofMath.&Phys.,ZhongkaiAgric.&Technol.Inst.,Guangzhou510225,China) Abstract In this paper, using differential operater, we present five formulas for solving the n-th-order inhomogeneous linear differential equation with constant coefficients so~lution. Keywords differential equation;linear;inhomogeneouss 对n阶常系数线性非齐次方程 (1)记,并记A(D)=D n+P1D n-1++P n-1D+P n,则方程(1)可记成 A(D)y=f(x) (1')求方程(1)的通解的关键是求出其特解y*,为得出求特解y*的公式,先给出如下引理。 引理1

相关文档
最新文档