abaqus帮助文档之地震相应计算分析

abaqus帮助文档之地震相应计算分析
abaqus帮助文档之地震相应计算分析

2.1.15 Seismic analysis of a concrete gravity dam

Products: Abaqus/Standard Abaqus/Explicit

In this example we consider an analysis of the Koyna dam, which was subjected to an earthquake of magnitude 6.5 on the Richter scale on December 11, 1967. The example illustrates a typical application of the concrete damaged plasticity material model for the assessment of the structural stability and damage of concrete structures subjected to arbitrary loading. This problem is chosen because it has been extensively analyzed by a number of investigators, including Chopra and Chakrabarti (1973), Bhattacharjee and

Léger (1993), Ghrib and Tinawi (1995), Cervera et al. (1996), and Lee and Fenves (1998). Problem description

The geometry of a typical non-overflow monolith of the Koyna dam is illustrated in Figure 2.1.15–1. The monolith is 103 m high and 71 m wide at its base. The upstream wall of the monolith is assumed to be straight and vertical, which is slightly different from the real configuration. The depth of the reservoir at the time of the earthquake is = 91.75 m. Following the work of other investigators, we consider a two-dimensional analysis of the non-overflow monolith assuming plane stress conditions. The finite element mesh used for the analysis is shown in Figure 2.1.15–2. It consists of 760 first-order, reduced-integration, plane stress elements (CPS4R). Nodal definitions are referred to a global rectangular coordinate system centered at the lower left corner of the dam, with the vertical y-axis pointing in the upward direction and the horizontal x-axis pointing in the downstream direction. The transverse and vertical components of the ground accelerations recorded during the Koyna earthquake are shown in Figure 2.1.15–3 (units of g = 9.81 m sec–2). Prior to the earthquake excitation, the dam is subjected to gravity loading due to its self-weight and to the hydrostatic pressure of the reservoir on the upstream wall.

For the purpose of this example we neglect the dam–foundation interactions by assuming that the foundation is rigid. The dam–reservoir dynamic interactions resulting from the transverse component of ground motion can be modeled in a simple form using the Westergaard added mass technique. According to Westergaard (1933), the hydrodynamic pressures that the water exerts on the dam during an earthquake are the same as if a certain body of water moves back and forth with the dam while the remainder of the reservoir is left inactive. The added mass per unit area of the

upstream wall is given in approximate form by the expression ,

with , where = 1000 kg/m3 is the density of water. In the Abaqus/Standard analysis the added mass approach is implemented using a simple 2-node user element that has been coded in user subroutine UEL. In the Abaqus/Explicit analysis the dynamic interactions between the dam and the reservoir are ignored.

The hydrodynamic pressures resulting from the vertical component of ground motion are assumed to be small and are neglected in all the simulations.

Material properties

The mechanical behavior of the concrete material is modeled using the concrete damaged plasticity constitutive model described in “Concrete damaged plasticity,” Section 23.6.3 of the Abaqus Analysis User's Manual, and “Damaged plasticity model for concrete and other quasi-brittle materials,” Section 4.5.2 of the Abaqus Theory Manual. The material properties used for the simulations are given in Table 2.1.15–1 and Figure 2.1.15–4. These properties are assumed to be representative of the concrete material in the Koyna dam and are based on the properties used by previous investigators. In obtaining some of these material properties, a number of assumptions are made. Of particular interest is the calibration of the concrete tensile behavior. The tensile strength is estimated to be 10% of the ultimate compressive strength ( = 24.1 MPa), multiplied by a dynamic amplification factor of 1.2 to account for rate effects; thus, = 2.9 MPa. To avoid unreasonable mesh-sensitive results due to the lack of reinforcement in the structure, the tensile postfailure behavior is given in terms of a fracture energy cracking criterion by specifying a stress/displacement curve instead of a stress-strain curve, as shown in Figure 2.1.15–4(a). This is accomplished with the postcracking stress/displacement curve. Similarly, tensile damage, , is specified in tabular form as a function of cracking displacement by using the postcracking damage displacement curve. This curve is shown in Figure 2.1.15–4(b). The stiffness degradation damage caused by compressive failure (crushing) of the concrete, , is assumed to be zero.

Damping

It is generally accepted that dams have damping ratios of about 2–5%. In this example we tune the material damping properties to provide approximately 3% fraction of critical damping for the first mode of vibration of the dam. Assuming Rayleigh stiffness proportional damping, the factor required to provide a fraction of critical damping for the first mode is given

as . From a natural frequency extraction analysis of the dam the first

eigenfrequency is found to be = 18.61 rad sec–1 (see Table 2.1.15–2). Based on this, is chosen to be 3.23 × 10–3 sec.

Loading and solution control

Loading conditions and solution controls are discussed for each analysis.

Abaqus/Standard analysis

Prior to the dynamic simulation of the earthquake, the dam is subjected to gravity loading and hydrostatic pressure. In the Abaqus/Standard analysis these loads are specified in two consecutive static steps, using a distributed load with the load type labels GRA V (for the gravity load) in the first step and HP (for the hydrostatic pressure) in the second step. For the dynamic analysis in the third step the transverse and vertical components of the ground accelerations shown in Figure 2.1.15–3 are applied to all nodes at the base of the dam.

Since considerable nonlinearity is expected in the response, including the possibility of unstable regimes as the concrete cracks, the overall convergence of the solution in the Abaqus/Standard analysis is expected to be non-monotonic. In such cases automatically setting the time incrementation parameters is generally recommended to prevent premature termination of the equilibrium iteration process because the solution may appear to be diverging. The unsymmetric matrix storage and solution scheme is activated by specifying an unsymmetric equation solver for the step. This is essential for obtaining an acceptable rate of convergence with the concrete damaged plasticity model since plastic flow is nonassociated. Automatic time incrementation is

used for the dynamic analysis of the earthquake, with the half-increment residual tolerance set to 107 and a maximum time increment of 0.02 sec.

Abaqus/Explicit analysis

While it is possible to perform the analysis of the pre-seismic state in Abaqus/Explicit, Abaqus/Standard is much more efficient at solving quasi-static analyses. Therefore, we apply the gravity and hydrostatic loads in an Abaqus/Standard analysis. These results are then imported into Abaqus/Explicit to continue with the seismic analysis of the dam subjected to the earthquake accelerogram. We still need to continue to apply the gravity and hydrostatic pressure loads during the explicit dynamic step. In Abaqus/Explicit gravity loading is specified in exactly the same way as in Abaqus/Standard. The specification of the hydrostatic pressure, however, requires some extra consideration because this load type is not currently supported by Abaqus/Explicit. Here we apply the hydrostatic pressure using user subroutine VDLOAD.

The Abaqus/Explicit simulation requires a very large number of increments since the stable time increment (6 × 10–6 sec) is much smaller than the total duration of the earthquake (10 sec). The analysis is run in double precision to prevent the accumulation of round-off errors. The stability limit could be increased by using mass scaling; however, this may affect the dynamic response of the structure.

For this particular problem Abaqus/Standard is computationally more effective than Abaqus/Explicit because the earthquake is a relatively long event that requires a very large number of increments in Abaqus/Explicit. In addition, the size of the finite element model is small, and the cost of each solution of the global equilibrium equations in Abaqus/Standard is quite inexpensive.

Results and discussion

The results for each analysis are discussed in the following sections.

Abaqus/Standard results

The results from a frequency extraction analysis of the dam without the reservoir are summarized in Table 2.1.15–2. The first four natural frequencies of the finite element model are in good agreement with the values reported by Chopra and Chakrabarti (1973). As discussed above, the frequency extraction analysis is useful for the calibration of the material damping to be used during the dynamic simulation of the earthquake.

Figure 2.1.15–5 shows the horizontal displacement at the left corner of the crest of the dam relative to the ground motion. In this figure positive values represent displacement in the downstream direction. The crest displacement remains less than 30 mm during the first 4 seconds of the earthquake. After 4 seconds, the amplitude of the oscillations of the crest increases substantially. As discussed below, severe damage to the structure develops during these oscillations.

The concrete material remains elastic with no damage at the end of the second step, after the dam has been subjected to the gravity and hydrostatic pressure loads. Damage to the dam initiates during the seismic analysis in the third step. The evolution of damage in the concrete dam at six different times during the earthquake is illustrated in Figure 2.1.15–6, Figure 2.1.15–7, and Figure 2.1.15–8. Times = 3.96 sec, = 4.315 sec, and = 4.687 sec correspond to the first three large excursions of the crest in the upstream direction, as shown in Figure 2.1.15–5. Times = 4.163 sec and = 4.526 sec correspond to the first two large excursions of the crest in the downstream direction. Time = 10 sec corresponds to the end of the earthquake. The figures

show the contour plots of the tensile damage variable, DAMAGET (or ), on the left, and the stiffness degradation variable, SDEG (or d), on the right. The tensile damage variable is a nondecreasing quantity associated with tensile failure of the material. On the other hand, the stiffness degradation variable can increase or decrease, reflecting the stiffness recovery effects associated with the opening/closing of cracks. Thus, assuming that there is no compressive damage (), the combination and at a given material point represents an open crack, whereas and represents a closed crack.

At time , damage has initiated at two locations: at the base of the dam on the upstream face and in the region near the stress concentration where the slope on the downstream face changes. When the dam displaces toward the downstream direction at time , the damage at the base leads to the formation of a localized crack-like band of damaged elements. This crack propagates into the dam along the dam–foundation boundary. The nucleation of this crack is induced by the stress concentration in this area due to the infinitely rigid foundation. At this time, some partial tensile damage is also observed on several elements along the upstream face.

During the next large excursion in the upstream direction, at time , a localized band of damaged elements forms near the downstream change of slope. As this downstream crack propagates toward the upstream direction, it curves down due to the rocking motion of the top block of the dam. The crack at the base of the dam is closed at time by the compressive stresses in this region. This is easily verified by looking at the contour plot of SDEG at time , which clearly shows that the stiffness is recovered on this region, indicating that the crack is closed.

When the load is reversed, corresponding to the next excursion in the downstream direction at time , the downstream crack closes and the stiffness is recovered on that region. At this time tensile damage localizes on several elements along the upstream face, leading to the formation of a horizontal crack that propagates toward the downstream crack.

As the upper block of the dam oscillates back and forth during the remainder of the earthquake, the upstream and downstream cracks close and open in an alternate fashion. The dam retains its overall structural stability since both cracks are never under tensile stress during the earthquake. The distribution of tensile damage at the end of the earthquake is shown in Figure 2.1.15–8, at time . The contour plot of the stiffness degradation variable indicates that, except at the vicinity of the crack tips, all cracks are closed under compressive stresses and most of the stiffness is recovered. No compressive failure is observed during the simulation. The damage patterns predicted by Abaqus are consistent with those reported by other investigators.

Abaqus/Explicit results

Figure 2.1.15–9 shows the distribution of tensile damage at the end of the Abaqus/Explicit simulation. Two major cracks develop during the earthquake, one at the base of the dam and the other at the downstream change of slope. If we compare these results with those from the analysis in Abaqus/Standard (see Figure 2.1.15–8 at time ), we find that Abaqus/Standard predicted additional damage localization zones on the upstream face of the dam. The differences between the results are due to the effect of the dam–reservoir hydrodynamic interactions, which are included in the Abaqus/Standard simulation via an added-mass user element and are ignored in Abaqus/Explicit. This is easily verified by running an Abaqus/Standard analysis without the added-mass user element. The results from this analysis, shown in Figure 2.1.15–10, are consistent with the Abaqus/Explicit results in Figure 2.1.15–9 and confirm that additional damage to the upstream wall occurs when the hydrodynamic interactions are taken into account.

Input files

Abaqus/Standard input files

1、Frequency analysis of the Koyna dam.

*HEADING

KOYNA DAM: NA TURAL FREQUENCY EXTRACTION Units - n, m, sec

*PREPRINT, MODEL=YES

*NODE

1 , 0.00, 0.00

21, 70.00, 0.00

2401, 0.00, 66.50

2421, 19.25, 66.50

3601, 0.00, 91.75

3621, 16.17, 91.75

3801, 0.00, 103.00

3821, 14.80, 103.00

*NGEN, NSET=NBASE

1, 21

*NGEN, NSET=NMID

2401, 2421

*NGEN, NSET=NWL

3601, 3621

*NGEN, NSET=NTOP

3801, 3821

*NFILL, BIAS=1.05

NBASE, NMID, 24, 100

*NFILL, BIAS=0.92

NMID, NWL, 12, 100

*NFILL

NWL, NTOP, 2, 100

*ELEMENT, TYPE=CPS4R

1, 1, 2, 102, 101

*ELGEN, ELSET=DAM

1, 20, 1, 1, 38, 100, 100

*ELSET, ELSET=WDAM, GENERATE

1, 3501, 100

*SOLID SECTION, ELSET=DAM, MA TERIAL=CONCRETE 1.0,

*MATERIAL, NAME=CONCRETE

*ELASTIC

3.1027E+10, 0.2

*DENSITY

2643.0

*CONCRETE DAMAGED PLASTICITY

36.31

*CONCRETE COMPRESSION HARDENING

13.0E+6, 0.0

24.1E+6, 0.001

*CONCRETE TENSION STIFFENING, TYPE=DISPLACEMENT

2.9E+6 ,0

1.94393E+6 ,0.000066185

1.30305E+6 ,0.00012286

0.873463E+6 ,0.000173427

0.5855E+6 ,0.00022019

0.392472E+6 ,0.000264718

0.263082E+6 ,0.000308088

0.176349E+6 ,0.00035105

0.11821E+6 ,0.000394138

0.0792388E+6 ,0.000437744

0.0531154E+6 ,0.000482165

*CONCRETE TENSION DAMAGE, TYPE=DISPLACEMENT

0 ,0

0.381217 ,0.000066185

0.617107 ,0.00012286

0.763072 ,0.000173427

0.853393 ,0.00022019

0.909282 ,0.000264718

0.943865 ,0.000308088

0.965265 ,0.00035105

0.978506 ,0.000394138

0.9867 ,0.000437744

0.99177 ,0.000482165

*BOUNDARY

NBASE, 1,2

*STEP, NLGEOM

STEP 1 - GRA VITY LOAD

*STATIC

1.0E-10, 1.0E-10

*DLOAD

DAM, GRA V, 9.81, 0, -1

*END STEP

*STEP

STEP 2 - FREQUENCY EXTRACTION

*FREQUENCY

4,

*END STEP

2、Seismic analysis of the Koyna dam, including hydrodynamic interactions. *HEADING

KOYNA DAM: SEISMIC ANAL YSIS

Units - n, m, sec

********************************************* ** Step 1: Gravity load

** Step 2: Hydrostatic pressure load

** Step 3: Earthquake including hydrodynamic

** interactions

**

** Requires FORTRAN subroutine addedmass_uel,

** and amplitude curves koyna_haccel.inp and

** koyna_vaccel.inp

**

** Execution command:

** abaqus job=koyna_std user=addedmass_uel

********************************************* *PREPRINT, MODEL=YES

*NODE

1 , 0.00, 0.00

21, 70.00, 0.00

2401, 0.00, 66.50

2421, 19.25, 66.50

3601, 0.00, 91.75

3621, 16.17, 91.75

3801, 0.00, 103.00

3821, 14.80, 103.00

*NGEN, NSET=NBASE

1, 21

*NGEN, NSET=NMID

2401, 2421

*NGEN, NSET=NWL

3601, 3621

*NGEN, NSET=NTOP

3801, 3821

*NFILL, BIAS=1.05

NBASE, NMID, 24, 100

*NFILL, BIAS=0.92

NMID, NWL, 12, 100

*NFILL

NWL, NTOP, 2, 100

*NSET, NSET=NOUT

1, 3801

*ELSET, ELSET=EOUT

2320, 2420

*ELEMENT, TYPE=CPS4R

1, 1, 2, 102, 101

*ELGEN, ELSET=DAM

1, 20, 1, 1, 38, 100, 100

*ELSET, ELSET=WDAM, GENERATE

1, 3501, 100

*USER ELEMENT, NODES=2, TYPE=U1, PROP=3, COORD=2 1, 2

*ELEMENT, TYPE=U1

10001, 1, 101

*ELGEN, ELSET=ADDED_MASS

10001, 36, 100, 1

*UEL PROPERTY, ELSET=ADDED_MASS

91.75, 91.75, 1000.0

*SOLID SECTION, ELSET=DAM, MA TERIAL=CONCRETE 1.0,

*MATERIAL, NAME=CONCRETE

*ELASTIC

3.1027E+10, 0.2

*DENSITY

2643.0

*DAMPING, BETA=0.00323

*CONCRETE DAMAGED PLASTICITY

36.31

*CONCRETE COMPRESSION HARDENING

13.0E+6, 0.0

24.1E+6, 0.001

*CONCRETE TENSION STIFFENING, TYPE=DISPLACEMENT 2.9E+6 ,0

1.94393E+6 ,0.000066185

1.30305E+6 ,0.00012286

0.873463E+6 ,0.000173427

0.5855E+6 ,0.00022019

0.392472E+6 ,0.000264718

0.263082E+6 ,0.000308088

0.176349E+6 ,0.00035105

0.11821E+6 ,0.000394138

0.0792388E+6 ,0.000437744

0.0531154E+6 ,0.000482165

*CONCRETE TENSION DAMAGE, TYPE=DISPLACEMENT

0 ,0

0.381217 ,0.000066185

0.617107 ,0.00012286

0.763072 ,0.000173427

0.853393 ,0.00022019

0.909282 ,0.000264718

0.943865 ,0.000308088

0.965265 ,0.00035105

0.978506 ,0.000394138

0.9867 ,0.000437744

0.99177 ,0.000482165

*BOUNDARY

NBASE, 1,2

*AMPLITUDE, NAME=HAMP, INPUT=koyna_haccel.inp

*AMPLITUDE, NAME=V AMP, INPUT=koyna_vaccel.inp

**

*STEP, NLGEOM, UNSYMM=YES

STEP 1 - GRA VITY LOAD

*STATIC

1.0E-10, 1.0E-10

*DLOAD

DAM, GRA V, 9.81, 0, -1

*OUTPUT, FIELD, V ARIABLE=PRESELECT, FREQ=10

*ELEMENT OUTPUT

S,PE,LE,PEEQ,PEEQT,DAMAGEC,DAMAGET,SDEG

*OUTPUT, HISTORY, V ARIABLE=PRESELECT, FREQ=1

*ELEMENT OUTPUT, ELSET=EOUT

SP1

*NODE OUTPUT, NSET=NOUT

U

*END STEP

**

*STEP, NLGEOM, UNSYMM=YES

STEP 2 - HYDROSTA TIC LOAD

*STATIC

1.0E-10, 1.0E-10

*DLOAD

WDAM, HP4, 900067.6, 91.75, 0

*END STEP

**

*STEP, INC=2000, NLGEOM, UNSYMM=YES

STEP 3 - EARTHQUAKE

*DYNAMIC, HAFTOL=1.0E7

0.02, 10.0, 1E-15,0.02

*CONTROLS,PARAMETERS=FIELD

1.E-5

*BOUNDARY,TYPE=ACCELERATION,AMPLITUDE=HAMP NBASE,1,1,9.81

*BOUNDARY,TYPE=ACCELERATION,AMPLITUDE=V AMP

NBASE,2,2,9.81

***CONTROLS, ANAL YSIS=DISCONTINUOUS

*END STEP

3、Seismic analysis of the Koyna dam, not including hydrodynamic interactions. *HEADING

KOYNA DAM: SEISMIC ANAL YSIS

(without hydrodynamic interactions)

Units - n, m, sec

*************************************************

** Step 1: Gravity load

** Step 2: Hydrostatic pressure load

** Step 3: Earthquake

** (without hydrodynamic interactions)

**

** Requires amplitude curves koyna_haccel.inp

** and koyna_vaccel.inp

*************************************************

*PREPRINT, MODEL=YES

*NODE

1 , 0.00, 0.00

21, 70.00, 0.00

2401, 0.00, 66.50

2421, 19.25, 66.50

3601, 0.00, 91.75

3621, 16.17, 91.75

3801, 0.00, 103.00

3821, 14.80, 103.00

*NGEN, NSET=NBASE

1, 21

*NGEN, NSET=NMID

2401, 2421

*NGEN, NSET=NWL

3601, 3621

*NGEN, NSET=NTOP

3801, 3821

*NFILL, BIAS=1.05

NBASE, NMID, 24, 100

*NFILL, BIAS=0.92

NMID, NWL, 12, 100

*NFILL

NWL, NTOP, 2, 100

*NSET, NSET=NOUT

1, 3801

*ELSET, ELSET=EOUT

2320, 2420

*ELEMENT, TYPE=CPS4R

1, 1, 2, 102, 101

*ELGEN, ELSET=DAM

1, 20, 1, 1, 38, 100, 100

*ELSET, ELSET=WDAM, GENERATE

1, 3501, 100

*SOLID SECTION, ELSET=DAM, MA TERIAL=CONCRETE 1.0,

*MATERIAL, NAME=CONCRETE

*ELASTIC

3.1027E+10, 0.2

*DENSITY

2643.0

*DAMPING, BETA=0.00323

*CONCRETE DAMAGED PLASTICITY

36.31

*CONCRETE COMPRESSION HARDENING

13.0E+6, 0.0

24.1E+6, 0.001

*CONCRETE TENSION STIFFENING, TYPE=DISPLACEMENT 2.9E+6 ,0

1.94393E+6 ,0.000066185

1.30305E+6 ,0.00012286

0.873463E+6 ,0.000173427

0.5855E+6 ,0.00022019

0.392472E+6 ,0.000264718

0.263082E+6 ,0.000308088

0.176349E+6 ,0.00035105

0.11821E+6 ,0.000394138

0.0792388E+6 ,0.000437744

0.0531154E+6 ,0.000482165

*CONCRETE TENSION DAMAGE, TYPE=DISPLACEMENT

0 ,0

0.381217 ,0.000066185

0.617107 ,0.00012286

0.763072 ,0.000173427

0.853393 ,0.00022019

0.909282 ,0.000264718

0.943865 ,0.000308088

0.965265 ,0.00035105

0.978506 ,0.000394138

0.9867 ,0.000437744

0.99177 ,0.000482165

*BOUNDARY

NBASE, 1,2

*AMPLITUDE, NAME=HAMP, INPUT=koyna_haccel.inp

*AMPLITUDE, NAME=V AMP, INPUT=koyna_vaccel.inp

**

*STEP, NLGEOM, UNSYMM=YES

STEP 1 - GRA VITY LOAD

*STATIC

1.0E-10, 1.0E-10

*DLOAD

DAM, GRA V, 9.81, 0, -1

*OUTPUT, FIELD, V ARIABLE=PRESELECT, FREQ=10

*ELEMENT OUTPUT

S,PE,LE,PEEQ,PEEQT,DAMAGEC,DAMAGET,SDEG

*OUTPUT, HISTORY, V ARIABLE=PRESELECT, FREQ=1

*ELEMENT OUTPUT, ELSET=EOUT

SP1

*NODE OUTPUT, NSET=NOUT

U

*END STEP

**

*STEP, NLGEOM, UNSYMM=YES

STEP 2 - HYDROSTA TIC LOAD

*STATIC

1.0E-10, 1.0E-10

*DLOAD

WDAM, HP4, 900067.6, 91.75, 0

*END STEP

**

*STEP, INC=2000, NLGEOM, UNSYMM=YES

STEP 3 - EARTHQUAKE

*DYNAMIC, HAFTOL=1.0E7

0.02, 10.0, 1E-15,0.02

*CONTROLS,PARAMETERS=FIELD

1.E-5

*BOUNDARY,TYPE=ACCELERATION,AMPLITUDE=HAMP NBASE,1,1,9.81

*BOUNDARY,TYPE=ACCELERATION,AMPLITUDE=V AMP NBASE,2,2,9.81

***CONTROLS, ANAL YSIS=DISCONTINUOUS

*END STEP

4、Transverse ground acceleration record.

** Horizontal accelerogram of Koyna earthquake

0.00000E+00, 0.00000E+00, 0.10000E-01, 0.12650E-01, 0.20000E-01, 0.11990E-01, 0.30000E-01, 0.11330E-01, 0.40000E-01, 0.10670E-01, 0.50000E-01, 0.98100E-02, 0.60000E-01, 0.23900E-02, 0.70000E-01,-0.50200E-02, 0.80000E-01,-0.12430E-01, 0.90000E-01,-0.18890E-01, 0.10000E+00,-0.10440E-01, 0.11000E+00,-0.19800E-02, 0.12000E+00, 0.64700E-02, 0.13000E+00, 0.88000E-03, 0.14000E+00,-0.14880E-01, 0.15000E+00,-0.28860E-01, 0.16000E+00,-0.24910E-01, 0.17000E+00,-0.20970E-01, 0.18000E+00,-0.17020E-01, 0.19000E+00,-0.13070E-01, 0.20000E+00,-0.91200E-02, 0.21000E+00,-0.51700E-02, 0.22000E+00,-0.12200E-02, 0.23000E+00,-0.17500E-02, 0.24000E+00,-0.47800E-02, 0.25000E+00,-0.78200E-02, 0.26000E+00,-0.10860E-01, 0.27000E+00,-0.13900E-01, 0.28000E+00,-0.16940E-01, 0.29000E+00,-0.17770E-01, 0.30000E+00,-0.85700E-02, 0.31000E+00, 0.64000E-03, 0.32000E+00, 0.98500E-02, 0.33000E+00, 0.19060E-01, 0.34000E+00, 0.24360E-01, 0.35000E+00, 0.14960E-01, 0.36000E+00, 0.55600E-02, 0.37000E+00,-0.38300E-02, 0.38000E+00,-0.12000E-02, 0.39000E+00, 0.58800E-02, 0.40000E+00, 0.12970E-01, 0.41000E+00, 0.55300E-02, 0.42000E+00,-0.16410E-01, 0.43000E+00,-0.38360E-01, 0.44000E+00,-0.37050E-01, 0.45000E+00,-0.14260E-01, 0.46000E+00, 0.85300E-02, 0.47000E+00, 0.31320E-01, 0.48000E+00, 0.31950E-01, 0.49000E+00, 0.26700E-01, 0.50000E+00, 0.25790E-01, 0.51000E+00, 0.35010E-01, 0.52000E+00, 0.44240E-01, 0.53000E+00, 0.34400E-01, 0.54000E+00, 0.20370E-01, 0.55000E+00, 0.63400E-02, 0.56000E+00,-0.60100E-02, 0.57000E+00,-0.13100E-02, 0.58000E+00, 0.33800E-02, 0.59000E+00, 0.80800E-02, 0.60000E+00, 0.64700E-02, 0.61000E+00, 0.82000E-03, 0.62000E+00, 0.11550E-01, 0.63000E+00, 0.24730E-01, 0.64000E+00, 0.37900E-01, 0.65000E+00, 0.51080E-01, 0.66000E+00, 0.50240E-01, 0.67000E+00, 0.47850E-01, 0.68000E+00, 0.39170E-01, 0.69000E+00,-0.25300E-02, 0.70000E+00,-0.44230E-01, 0.71000E+00,-0.75110E-01, 0.72000E+00,-0.56710E-01, 0.73000E+00,-0.38300E-01, 0.74000E+00,-0.19900E-01, 0.75000E+00,-0.10370E-01, 0.76000E+00,-0.11690E-01, 0.77000E+00,-0.13010E-01, 0.78000E+00, 0.94780E-01, 0.79000E+00, 0.71310E-01, 0.80000E+00, 0.43670E-01, 0.81000E+00, 0.16030E-01, 0.82000E+00,-0.11600E-01, 0.83000E+00,-0.39240E-01, 0.84000E+00,-0.18150E-01, 0.85000E+00, 0.29400E-02, 0.86000E+00, 0.24030E-01, 0.87000E+00, 0.31490E-01, 0.88000E+00, 0.39100E-02, 0.89000E+00,-0.23670E-01, 0.90000E+00,-0.20300E-02, 0.91000E+00, 0.32700E-01, 0.92000E+00, 0.63640E-01, 0.93000E+00, 0.35200E-01, 0.94000E+00, 0.67600E-02, 0.95000E+00,-0.19350E-01, 0.96000E+00,-0.14620E-01, 0.97000E+00,-0.98900E-02, 0.98000E+00,-0.51500E-02, 0.99000E+00,-0.42000E-03, 0.10000E+01, 0.43100E-02, 0.10100E+01, 0.90400E-02, 0.10200E+01, 0.34000E-02, 0.10300E+01,-0.39400E-02, 0.10400E+01, 0.10820E-01, 0.10500E+01, 0.38540E-01, 0.10600E+01, 0.43160E-01, 0.10700E+01, 0.11640E-01, 0.10800E+01,-0.19880E-01, 0.10900E+01,-0.40000E-03, 0.11000E+01, 0.24740E-01, 0.11100E+01, 0.42490E-01, 0.11200E+01, 0.24100E-01, 0.11300E+01, 0.57100E-02, 0.11400E+01, 0.16100E-02, 0.11500E+01, 0.42400E-02, 0.11600E+01, 0.37100E-02, 0.11700E+01,-0.94600E-02, 0.11800E+01,-0.22640E-01, 0.11900E+01,-0.26450E-01, 0.12000E+01, 0.29000E-02, 0.12100E+01, 0.32250E-01, 0.12200E+01, 0.61600E-01, 0.12300E+01, 0.48040E-01, 0.12400E+01, 0.34050E-01, 0.12500E+01, 0.20060E-01, 0.12600E+01, 0.60700E-02, 0.12700E+01,-0.79200E-02, 0.12800E+01,-0.21910E-01, 0.12900E+01,-0.16220E-01, 0.13000E+01,-0.46500E-02, 0.13100E+01, 0.69300E-02, 0.13200E+01, 0.18500E-01, 0.13300E+01, 0.30070E-01, 0.13400E+01, 0.30620E-01, 0.13500E+01, 0.29910E-01, 0.13600E+01, 0.32540E-01, 0.13700E+01, 0.35170E-01, 0.13800E+01, 0.20130E-01, 0.13900E+01, 0.14700E-02, 0.14000E+01,-0.17190E-01, 0.14100E+01,-0.68100E-02, 0.14200E+01, 0.86900E-02, 0.14300E+01, 0.21460E-01, 0.14400E+01, 0.12060E-01, 0.14500E+01, 0.10380E-01, 0.14600E+01, 0.21880E-01, 0.14700E+01, 0.27750E-01, 0.14800E+01, 0.24450E-01, 0.14900E+01, 0.21150E-01, 0.15000E+01, 0.26130E-01, 0.15100E+01, 0.43530E-01, 0.15200E+01, 0.60940E-01, 0.15300E+01, 0.72470E-01, 0.15400E+01, 0.55300E-01, 0.15500E+01, 0.38140E-01, 0.15600E+01, 0.20980E-01, 0.15700E+01, 0.38200E-02, 0.15800E+01,-0.13340E-01, 0.15900E+01,-0.30510E-01, 0.16000E+01,-0.30440E-01, 0.16100E+01,-0.10160E-01, 0.16200E+01, 0.10130E-01, 0.16300E+01, 0.30420E-01, 0.16400E+01, 0.28080E-01, 0.16500E+01, 0.25280E-01, 0.16600E+01, 0.22480E-01, 0.16700E+01, 0.19680E-01, 0.16800E+01, 0.81130E-01, 0.16900E+01, 0.16287E+00, 0.17000E+01, 0.15773E+00, 0.17100E+01, 0.72390E-01, 0.17200E+01,-0.12940E-01, 0.17300E+01,-0.98280E-01, 0.17400E+01,-0.18361E+00, 0.17500E+01,-0.26895E+00,

0.17600E+01,-0.18618E+00, 0.17700E+01,-0.63990E-01, 0.17800E+01, 0.58200E-01, 0.17900E+01, 0.16639E+00, 0.18000E+01, 0.11351E+00, 0.18100E+01, 0.60620E-01, 0.18200E+01, 0.77400E-02, 0.18300E+01,-0.45150E-01, 0.18400E+01,-0.34850E-01, 0.18500E+01,-0.13400E-01, 0.18600E+01, 0.80600E-02, 0.18700E+01,-0.26710E-01, 0.18800E+01,-0.95930E-01, 0.18900E+01,-0.11861E+00, 0.19000E+01,-0.68500E-01, 0.19100E+01,-0.18390E-01, 0.19200E+01,-0.37100E-02, 0.19300E+01,-0.26700E-02, 0.19400E+01, 0.26890E-01, 0.19500E+01, 0.49190E-01, 0.19600E+01, 0.36010E-01, 0.19700E+01, 0.30160E-01, 0.19800E+01, 0.27750E-01, 0.19900E+01, 0.25350E-01, 0.20000E+01,-0.46900E-01, 0.20100E+01,-0.12281E+00, 0.20200E+01,-0.98920E-01, 0.20300E+01,-0.34250E-01, 0.20400E+01, 0.30420E-01, 0.20500E+01, 0.95080E-01, 0.20600E+01, 0.15975E+00, 0.20700E+01, 0.18416E+00, 0.20800E+01, 0.87810E-01, 0.20900E+01,-0.85500E-02, 0.21000E+01,-0.10490E+00, 0.21100E+01,-0.20126E+00, 0.21200E+01,-0.17064E+00, 0.21300E+01,-0.10209E+00, 0.21400E+01,-0.66120E-01, 0.21500E+01,-0.10992E+00, 0.21600E+01,-0.14704E+00, 0.21700E+01,-0.57080E-01, 0.21800E+01,-0.39630E-01, 0.21900E+01,-0.79160E-01, 0.22000E+01,-0.11869E+00, 0.22100E+01,-0.15822E+00, 0.22200E+01,-0.83860E-01, 0.22300E+01, 0.21156E+00, 0.22400E+01, 0.35435E+00, 0.22500E+01, 0.21368E+00, 0.22600E+01, 0.73000E-01, 0.22700E+01,-0.67670E-01, 0.22800E+01,-0.20835E+00, 0.22900E+01,-0.24427E+00, 0.23000E+01,-0.10928E+00, 0.23100E+01, 0.25710E-01, 0.23200E+01, 0.16069E+00, 0.23300E+01, 0.16925E+00, 0.23400E+01, 0.10973E+00, 0.23500E+01, 0.50210E-01, 0.23600E+01,-0.93100E-02, 0.23700E+01,-0.68830E-01, 0.23800E+01,-0.71660E-01, 0.23900E+01, 0.68000E-03, 0.24000E+01, 0.73020E-01, 0.24100E+01, 0.14535E+00, 0.24200E+01, 0.11531E+00, 0.24300E+01, 0.79880E-01, 0.24400E+01, 0.44450E-01, 0.24500E+01, 0.90200E-02, 0.24600E+01, 0.20877E+00, 0.24700E+01, 0.20674E+00, 0.24800E+01, 0.12830E+00, 0.24900E+01, 0.49860E-01, 0.25000E+01,-0.28580E-01, 0.25100E+01,-0.10702E+00, 0.25200E+01,-0.11965E+00, 0.25300E+01,-0.69050E-01, 0.25400E+01,-0.18440E-01, 0.25500E+01, 0.13010E-01, 0.25600E+01,-0.47700E-02, 0.25700E+01,-0.22540E-01, 0.25800E+01,-0.40320E-01, 0.25900E+01,-0.58100E-01, 0.26000E+01,-0.14990E-01, 0.26100E+01, 0.16363E+00, 0.26200E+01, 0.15271E+00, 0.26300E+01, 0.10019E+00, 0.26400E+01, 0.47660E-01, 0.26500E+01,-0.48600E-02, 0.26600E+01,-0.57380E-01, 0.26700E+01,-0.10991E+00, 0.26800E+01,-0.16243E+00, 0.26900E+01,-0.21495E+00, 0.27000E+01,-0.26748E+00, 0.27100E+01,-0.27359E+00, 0.27200E+01,-0.12434E+00, 0.27300E+01, 0.24910E-01, 0.27400E+01, 0.13502E+00, 0.27500E+01, 0.23340E-01, 0.27600E+01,-0.88350E-01, 0.27700E+01,-0.20004E+00, 0.27800E+01,-0.31172E+00, 0.27900E+01,-0.25999E+00, 0.28000E+01,-0.12776E+00, 0.28100E+01, 0.44700E-02, 0.28200E+01, 0.13669E+00, 0.28300E+01, 0.26892E+00, 0.28400E+01, 0.25423E+00, 0.28500E+01, 0.17658E+00, 0.28600E+01, 0.98930E-01, 0.28700E+01, 0.21280E-01, 0.28800E+01,-0.56370E-01, 0.28900E+01,-0.53320E-01, 0.29000E+01,-0.20430E-01, 0.29100E+01, 0.12460E-01, 0.29200E+01, 0.45350E-01, 0.29300E+01, 0.78240E-01, 0.29400E+01, 0.11113E+00, 0.29500E+01, 0.14402E+00, 0.29600E+01, 0.17691E+00, 0.29700E+01, 0.20980E+00, 0.29800E+01, 0.19554E+00, 0.29900E+01, 0.65860E-01, 0.30000E+01,-0.63820E-01, 0.30100E+01,-0.19351E+00, 0.30200E+01,-0.13931E+00, 0.30300E+01,-0.41970E-01, 0.30400E+01, 0.55360E-01, 0.30500E+01, 0.15270E+00, 0.30600E+01, 0.25003E+00, 0.30700E+01, 0.32433E+00, 0.30800E+01, 0.19131E+00, 0.30900E+01, 0.58290E-01, 0.31000E+01,-0.74730E-01, 0.31100E+01,-0.20774E+00, 0.31200E+01,-0.34076E+00, 0.31300E+01,-0.47378E+00, 0.31400E+01,-0.30489E+00, 0.31500E+01,-0.94830E-01, 0.31600E+01, 0.11523E+00, 0.31700E+01, 0.27682E+00, 0.31800E+01, 0.18387E+00, 0.31900E+01, 0.90930E-01, 0.32000E+01,-0.20100E-02, 0.32100E+01,-0.94950E-01, 0.32200E+01,-0.18789E+00, 0.32300E+01,-0.28083E+00, 0.32400E+01,-0.37377E+00, 0.32500E+01,-0.19456E+00, 0.32600E+01, 0.10129E+00, 0.32700E+01, 0.25356E+00, 0.32800E+01,-0.10327E+00, 0.32900E+01,-0.75620E-01, 0.33000E+01,-0.36080E-01, 0.33100E+01,-0.35800E-01, 0.33200E+01,-0.76360E-01, 0.33300E+01,-0.11692E+00, 0.33400E+01,-0.15748E+00, 0.33500E+01,-0.19804E+00, 0.33600E+01,-0.23861E+00, 0.33700E+01,-0.24706E+00, 0.33800E+01,-0.17296E+00, 0.33900E+01,-0.98850E-01, 0.34000E+01,-0.24750E-01, 0.34100E+01, 0.49360E-01, 0.34200E+01, 0.12346E+00, 0.34300E+01, 0.19049E+00, 0.34400E+01, 0.14661E+00, 0.34500E+01, 0.10272E+00, 0.34600E+01, 0.58840E-01, 0.34700E+01, 0.14960E-01, 0.34800E+01,-0.28920E-01, 0.34900E+01,-0.72810E-01, 0.35000E+01,-0.11669E+00, 0.35100E+01,-0.16057E+00,

0.35200E+01, 0.23540E-01, 0.35300E+01, 0.24476E+00, 0.35400E+01, 0.33061E+00, 0.35500E+01, 0.19559E+00, 0.35600E+01, 0.60570E-01, 0.35700E+01,-0.74450E-01, 0.35800E+01,-0.20947E+00, 0.35900E+01,-0.34448E+00, 0.36000E+01,-0.43520E+00, 0.36100E+01,-0.29330E+00, 0.36200E+01,-0.15141E+00, 0.36300E+01,-0.95200E-02, 0.36400E+01, 0.13238E+00, 0.36500E+01, 0.10669E+00, 0.36600E+01, 0.57300E-02, 0.36700E+01,-0.95240E-01, 0.36800E+01,-0.59870E-01, 0.36900E+01, 0.31180E-01, 0.37000E+01, 0.12223E+00, 0.37100E+01, 0.60830E-01, 0.37200E+01,-0.56960E-01, 0.37300E+01,-0.17474E+00, 0.37400E+01,-0.29253E+00, 0.37500E+01,-0.41032E+00, 0.37600E+01,-0.27444E+00, 0.37700E+01,-0.58460E-01, 0.37800E+01, 0.15752E+00, 0.37900E+01, 0.36439E+00, 0.38000E+01, 0.27661E+00, 0.38100E+01, 0.18882E+00, 0.38200E+01, 0.10103E+00, 0.38300E+01, 0.13250E-01, 0.38400E+01,-0.62290E-01, 0.38500E+01, 0.54110E-01, 0.38600E+01, 0.17051E+00, 0.38700E+01, 0.28690E+00, 0.38800E+01, 0.26236E+00, 0.38900E+01, 0.20895E+00, 0.39000E+01, 0.15555E+00, 0.39100E+01, 0.10214E+00, 0.39200E+01, 0.48730E-01, 0.39300E+01,-0.46800E-02, 0.39400E+01,-0.58090E-01, 0.39500E+01,-0.11150E+00, 0.39600E+01,-0.87480E-01, 0.39700E+01,-0.52910E-01, 0.39800E+01,-0.18340E-01, 0.39900E+01, 0.16230E-01, 0.40000E+01, 0.50790E-01, 0.40100E+01, 0.85360E-01, 0.40200E+01, 0.37010E-01, 0.40300E+01,-0.54060E-01, 0.40400E+01,-0.14514E+00, 0.40500E+01,-0.23621E+00, 0.40600E+01,-0.32729E+00, 0.40700E+01,-0.41836E+00, 0.40800E+01,-0.23830E+00, 0.40900E+01,-0.43970E-01, 0.41000E+01, 0.11170E-01, 0.41100E+01,-0.97100E-01, 0.41200E+01,-0.42880E-01, 0.41300E+01, 0.74530E-01, 0.41400E+01, 0.19195E+00, 0.41500E+01, 0.30936E+00, 0.41600E+01, 0.23416E+00, 0.41700E+01, 0.15896E+00, 0.41800E+01, 0.83760E-01, 0.41900E+01, 0.85700E-02, 0.42000E+01,-0.66630E-01, 0.42100E+01,-0.14183E+00, 0.42200E+01,-0.10759E+00, 0.42300E+01,-0.42480E-01, 0.42400E+01, 0.22640E-01, 0.42500E+01, 0.87750E-01, 0.42600E+01, 0.15286E+00, 0.42700E+01, 0.12384E+00, 0.42800E+01, 0.72740E-01, 0.42900E+01, 0.21640E-01, 0.43000E+01,-0.29460E-01, 0.43100E+01,-0.80550E-01, 0.43200E+01,-0.13165E+00, 0.43300E+01,-0.12485E+00, 0.43400E+01,-0.79440E-01, 0.43500E+01,-0.34030E-01, 0.43600E+01, 0.11380E-01, 0.43700E+01, 0.56780E-01, 0.43800E+01, 0.86680E-01, 0.43900E+01, 0.12790E-01, 0.44000E+01,-0.61110E-01, 0.44100E+01,-0.13501E+00, 0.44200E+01,-0.20890E+00, 0.44300E+01,-0.28280E+00, 0.44400E+01,-0.24073E+00, 0.44500E+01,-0.38520E-01, 0.44600E+01, 0.16369E+00, 0.44700E+01, 0.12238E+00, 0.44800E+01, 0.62740E-01, 0.44900E+01, 0.31100E-02, 0.45000E+01,-0.59800E-02, 0.45100E+01, 0.18711E+00, 0.45200E+01, 0.21260E+00, 0.45300E+01, 0.16962E+00, 0.45400E+01, 0.12665E+00, 0.45500E+01, 0.83670E-01, 0.45600E+01, 0.40690E-01, 0.45700E+01,-0.22800E-02, 0.45800E+01,-0.45260E-01, 0.45900E+01,-0.88230E-01, 0.46000E+01,-0.13121E+00, 0.46100E+01,-0.14463E+00, 0.46200E+01,-0.78150E-01, 0.46300E+01,-0.11670E-01, 0.46400E+01, 0.54810E-01, 0.46500E+01, 0.12129E+00, 0.46600E+01, 0.12292E+00, 0.46700E+01, 0.71480E-01, 0.46800E+01, 0.20050E-01, 0.46900E+01,-0.31390E-01, 0.47000E+01,-0.82820E-01, 0.47100E+01,-0.12327E+00, 0.47200E+01,-0.37390E-01, 0.47300E+01, 0.48500E-01, 0.47400E+01, 0.13438E+00, 0.47500E+01, 0.16436E+00, 0.47600E+01, 0.90500E-01, 0.47700E+01, 0.16640E-01, 0.47800E+01,-0.57220E-01, 0.47900E+01,-0.67450E-01, 0.48000E+01,-0.40300E-01, 0.48100E+01,-0.13150E-01, 0.48200E+01, 0.14000E-01, 0.48300E+01, 0.41150E-01, 0.48400E+01, 0.68300E-01, 0.48500E+01, 0.95450E-01, 0.48600E+01, 0.11259E+00, 0.48700E+01, 0.80840E-01, 0.48800E+01, 0.49090E-01, 0.48900E+01, 0.17350E-01, 0.49000E+01,-0.14400E-01, 0.49100E+01,-0.46150E-01, 0.49200E+01,-0.77890E-01, 0.49300E+01,-0.10964E+00, 0.49400E+01,-0.14138E+00, 0.49500E+01,-0.17313E+00, 0.49600E+01,-0.13277E+00, 0.49700E+01,-0.14290E-01, 0.49800E+01, 0.10419E+00, 0.49900E+01, 0.11857E+00, 0.50000E+01, 0.28870E-01, 0.50100E+01,-0.60830E-01, 0.50200E+01,-0.82410E-01, 0.50300E+01,-0.40350E-01, 0.50400E+01,-0.86460E-01, 0.50500E+01,-0.84040E-01, 0.50600E+01,-0.38590E-01, 0.50700E+01,-0.59540E-01, 0.50800E+01,-0.98130E-01, 0.50900E+01,-0.13101E+00, 0.51000E+01,-0.74250E-01, 0.51100E+01,-0.17490E-01, 0.51200E+01, 0.39280E-01, 0.51300E+01, 0.96040E-01, 0.51400E+01, 0.15280E+00, 0.51500E+01, 0.14461E+00, 0.51600E+01, 0.91290E-01, 0.51700E+01, 0.37970E-01, 0.51800E+01,-0.15340E-01, 0.51900E+01,-0.68660E-01, 0.52000E+01,-0.59510E-01, 0.52100E+01,-0.12080E-01, 0.52200E+01, 0.26980E-01, 0.52300E+01, 0.14550E-01, 0.52400E+01, 0.11770E-01, 0.52500E+01, 0.23490E-01, 0.52600E+01, 0.35200E-01, 0.52700E+01, 0.37860E-01,

0.52800E+01,-0.37300E-02, 0.52900E+01,-0.45310E-01, 0.53000E+01,-0.70720E-01, 0.53100E+01,-0.22470E-01, 0.53200E+01, 0.25780E-01, 0.53300E+01, 0.74030E-01, 0.53400E+01, 0.12228E+00, 0.53500E+01, 0.11288E+00, 0.53600E+01, 0.79930E-01, 0.53700E+01, 0.46990E-01, 0.53800E+01, 0.14040E-01, 0.53900E+01,-0.18910E-01, 0.54000E+01,-0.51850E-01, 0.54100E+01,-0.39370E-01, 0.54200E+01,-0.23430E-01, 0.54300E+01,-0.40170E-01, 0.54400E+01,-0.19600E-02, 0.54500E+01, 0.36240E-01, 0.54600E+01, 0.52790E-01, 0.54700E+01, 0.50140E-01, 0.54800E+01, 0.49590E-01, 0.54900E+01, 0.99660E-01, 0.55000E+01, 0.59020E-01, 0.55100E+01,-0.42900E-02, 0.55200E+01,-0.26850E-01, 0.55300E+01, 0.37200E-01, 0.55400E+01, 0.81190E-01, 0.55500E+01, 0.84440E-01, 0.55600E+01, 0.87690E-01, 0.55700E+01, 0.71630E-01, 0.55800E+01, 0.18060E-01, 0.55900E+01,-0.35510E-01, 0.56000E+01,-0.89070E-01, 0.56100E+01,-0.11715E+00, 0.56200E+01,-0.10182E+00, 0.56300E+01,-0.10868E+00, 0.56400E+01,-0.11857E+00, 0.56500E+01,-0.17320E-01, 0.56600E+01, 0.97670E-01, 0.56700E+01, 0.48260E-01, 0.56800E+01,-0.60200E-02, 0.56900E+01, 0.10080E-01, 0.57000E+01, 0.26180E-01, 0.57100E+01, 0.15060E-01, 0.57200E+01, 0.18900E-02, 0.57300E+01, 0.28830E-01, 0.57400E+01, 0.73780E-01, 0.57500E+01, 0.11874E+00, 0.57600E+01, 0.10162E+00, 0.57700E+01, 0.59150E-01, 0.57800E+01, 0.16680E-01, 0.57900E+01,-0.25800E-01, 0.58000E+01,-0.68270E-01, 0.58100E+01,-0.89850E-01, 0.58200E+01,-0.45260E-01, 0.58300E+01,-0.67000E-03, 0.58400E+01, 0.43920E-01, 0.58500E+01, 0.88520E-01, 0.58600E+01, 0.59040E-01, 0.58700E+01, 0.74300E-02, 0.58800E+01,-0.44170E-01, 0.58900E+01,-0.95770E-01, 0.59000E+01,-0.14386E+00, 0.59100E+01,-0.10760E+00, 0.59200E+01,-0.71340E-01, 0.59300E+01,-0.35080E-01, 0.59400E+01, 0.11800E-02, 0.59500E+01, 0.37440E-01, 0.59600E+01, 0.25730E-01, 0.59700E+01,-0.20720E-01, 0.59800E+01,-0.67160E-01, 0.59900E+01,-0.11361E+00, 0.60000E+01,-0.16006E+00, 0.60100E+01,-0.11117E+00, 0.60200E+01,-0.46760E-01, 0.60300E+01, 0.81900E-02, 0.60400E+01,-0.62100E-02, 0.60500E+01,-0.20620E-01, 0.60600E+01,-0.15860E-01, 0.60700E+01, 0.18870E-01, 0.60800E+01, 0.53610E-01, 0.60900E+01, 0.88340E-01, 0.61000E+01, 0.69780E-01, 0.61100E+01, 0.45940E-01, 0.61200E+01, 0.22100E-01, 0.61300E+01,-0.17300E-02, 0.61400E+01,-0.25570E-01, 0.61500E+01,-0.90000E-03, 0.61600E+01, 0.45570E-01, 0.61700E+01, 0.92040E-01, 0.61800E+01, 0.13851E+00, 0.61900E+01, 0.13357E+00, 0.62000E+01, 0.10765E+00, 0.62100E+01, 0.81720E-01, 0.62200E+01, 0.87810E-01, 0.62300E+01, 0.10574E+00, 0.62400E+01, 0.12367E+00, 0.62500E+01, 0.76300E-01, 0.62600E+01, 0.28930E-01, 0.62700E+01,-0.18440E-01, 0.62800E+01,-0.41910E-01, 0.62900E+01,-0.77000E-03, 0.63000E+01, 0.40380E-01, 0.63100E+01, 0.81530E-01, 0.63200E+01, 0.96270E-01, 0.63300E+01, 0.49410E-01, 0.63400E+01, 0.25500E-02, 0.63500E+01,-0.44320E-01, 0.63600E+01,-0.66130E-01, 0.63700E+01,-0.34710E-01, 0.63800E+01,-0.32900E-02, 0.63900E+01, 0.28130E-01, 0.64000E+01, 0.59550E-01, 0.64100E+01, 0.33740E-01, 0.64200E+01,-0.21800E-02, 0.64300E+01,-0.38100E-01, 0.64400E+01,-0.74010E-01, 0.64500E+01,-0.10993E+00, 0.64600E+01,-0.14585E+00, 0.64700E+01,-0.15173E+00, 0.64800E+01,-0.10860E+00, 0.64900E+01,-0.65480E-01, 0.65000E+01,-0.22350E-01, 0.65100E+01, 0.20770E-01, 0.65200E+01, 0.19820E-01, 0.65300E+01, 0.14510E-01, 0.65400E+01, 0.31250E-01, 0.65500E+01, 0.77230E-01, 0.65600E+01, 0.91370E-01, 0.65700E+01, 0.65000E-01, 0.65800E+01, 0.38630E-01, 0.65900E+01, 0.12260E-01, 0.66000E+01,-0.14110E-01, 0.66100E+01, 0.12650E-01, 0.66200E+01, 0.41040E-01, 0.66300E+01, 0.69440E-01, 0.66400E+01, 0.87000E-03, 0.66500E+01,-0.69670E-01, 0.66600E+01,-0.14022E+00, 0.66700E+01,-0.21077E+00, 0.66800E+01,-0.14911E+00, 0.66900E+01,-0.45700E-01, 0.67000E+01, 0.57710E-01, 0.67100E+01, 0.15588E+00, 0.67200E+01, 0.84790E-01, 0.67300E+01, 0.13700E-01, 0.67400E+01,-0.57400E-01, 0.67500E+01,-0.12849E+00, 0.67600E+01,-0.18726E+00, 0.67700E+01,-0.53080E-01, 0.67800E+01, 0.81110E-01, 0.67900E+01, 0.10394E+00, 0.68000E+01, 0.46140E-01, 0.68100E+01,-0.11660E-01, 0.68200E+01,-0.69460E-01, 0.68300E+01,-0.12726E+00, 0.68400E+01,-0.95200E-01, 0.68500E+01,-0.56900E-02, 0.68600E+01, 0.83830E-01, 0.68700E+01, 0.17334E+00, 0.68800E+01, 0.15974E+00, 0.68900E+01, 0.85580E-01, 0.69000E+01, 0.11410E-01, 0.69100E+01,-0.62750E-01, 0.69200E+01,-0.13691E+00, 0.69300E+01,-0.97570E-01, 0.69400E+01,-0.47010E-01, 0.69500E+01,-0.89100E-02, 0.69600E+01,-0.31620E-01, 0.69700E+01,-0.54340E-01, 0.69800E+01,-0.30570E-01, 0.69900E+01, 0.14090E-01, 0.70000E+01,-0.98300E-02, 0.70100E+01,-0.63130E-01, 0.70200E+01,-0.73770E-01, 0.70300E+01, 0.66840E-01,

0.70400E+01, 0.14895E+00, 0.70500E+01, 0.35190E-01, 0.70600E+01,-0.78570E-01, 0.70700E+01,-0.56030E-01, 0.70800E+01, 0.14410E-01, 0.70900E+01, 0.84840E-01, 0.71000E+01, 0.12929E+00, 0.71100E+01, 0.99810E-01, 0.71200E+01, 0.70330E-01, 0.71300E+01, 0.40850E-01, 0.71400E+01, 0.13040E-01, 0.71500E+01, 0.25370E-01, 0.71600E+01, 0.37700E-01, 0.71700E+01, 0.50030E-01, 0.71800E+01, 0.62360E-01, 0.71900E+01, 0.60090E-01, 0.72000E+01, 0.54400E-01, 0.72100E+01, 0.48700E-01, 0.72200E+01, 0.47370E-01, 0.72300E+01, 0.54490E-01, 0.72400E+01, 0.61610E-01, 0.72500E+01, 0.56070E-01, 0.72600E+01, 0.42080E-01, 0.72700E+01, 0.28100E-01, 0.72800E+01, 0.14110E-01, 0.72900E+01, 0.11290E-01, 0.73000E+01, 0.26680E-01, 0.73100E+01, 0.42080E-01, 0.73200E+01, 0.57470E-01, 0.73300E+01, 0.72870E-01, 0.73400E+01, 0.88270E-01, 0.73500E+01, 0.82820E-01, 0.73600E+01, 0.66640E-01, 0.73700E+01, 0.50460E-01, 0.73800E+01, 0.34280E-01, 0.73900E+01, 0.18100E-01, 0.74000E+01, 0.69100E-02, 0.74100E+01, 0.17000E-01, 0.74200E+01, 0.27080E-01, 0.74300E+01, 0.37170E-01, 0.74400E+01, 0.16700E-01, 0.74500E+01,-0.50300E-02, 0.74600E+01,-0.26770E-01, 0.74700E+01,-0.48500E-01, 0.74800E+01,-0.14970E-01, 0.74900E+01, 0.37970E-01, 0.75000E+01, 0.90920E-01, 0.75100E+01, 0.71970E-01, 0.75200E+01, 0.53020E-01, 0.75300E+01, 0.34080E-01, 0.75400E+01, 0.15130E-01, 0.75500E+01, 0.36950E-01, 0.75600E+01, 0.53450E-01, 0.75700E+01, 0.28800E-01, 0.75800E+01, 0.41400E-02, 0.75900E+01,-0.20520E-01, 0.76000E+01,-0.13060E-01, 0.76100E+01,-0.15800E-02, 0.76200E+01,-0.36730E-01, 0.76300E+01,-0.71890E-01, 0.76400E+01,-0.91590E-01, 0.76500E+01, 0.44860E-01, 0.76600E+01, 0.89940E-01, 0.76700E+01, 0.78940E-01, 0.76800E+01, 0.10709E+00, 0.76900E+01, 0.10383E+00, 0.77000E+01, 0.47100E-01, 0.77100E+01,-0.96300E-02, 0.77200E+01,-0.56890E-01, 0.77300E+01,-0.45920E-01, 0.77400E+01,-0.34950E-01, 0.77500E+01,-0.23980E-01, 0.77600E+01,-0.16780E-01, 0.77700E+01,-0.29330E-01, 0.77800E+01,-0.41880E-01, 0.77900E+01,-0.48190E-01, 0.78000E+01,-0.26060E-01, 0.78100E+01,-0.39200E-02, 0.78200E+01, 0.18210E-01, 0.78300E+01, 0.40340E-01, 0.78400E+01, 0.62480E-01, 0.78500E+01, 0.37840E-01, 0.78600E+01, 0.11260E-01, 0.78700E+01,-0.15320E-01, 0.78800E+01,-0.41910E-01, 0.78900E+01,-0.68490E-01, 0.79000E+01,-0.69860E-01, 0.79100E+01,-0.44970E-01, 0.79200E+01,-0.28030E-01, 0.79300E+01,-0.33710E-01, 0.79400E+01,-0.39390E-01, 0.79500E+01,-0.45070E-01, 0.79600E+01,-0.30230E-01, 0.79700E+01,-0.11240E-01, 0.79800E+01,-0.31660E-01, 0.79900E+01,-0.49860E-01, 0.80000E+01,-0.25850E-01, 0.80100E+01,-0.12760E-01, 0.80200E+01,-0.23970E-01, 0.80300E+01,-0.29720E-01, 0.80400E+01,-0.23830E-01, 0.80500E+01,-0.17950E-01, 0.80600E+01,-0.15600E-01, 0.80700E+01,-0.20110E-01, 0.80800E+01,-0.24620E-01, 0.80900E+01,-0.18100E-01, 0.81000E+01,-0.96400E-02, 0.81100E+01,-0.11800E-02, 0.81200E+01,-0.33000E-03, 0.81300E+01,-0.41300E-02, 0.81400E+01, 0.97000E-02, 0.81500E+01, 0.25930E-01, 0.81600E+01, 0.42150E-01, 0.81700E+01, 0.58380E-01, 0.81800E+01, 0.55200E-01, 0.81900E+01, 0.42030E-01, 0.82000E+01, 0.31700E-01, 0.82100E+01, 0.35240E-01, 0.82200E+01, 0.38790E-01, 0.82300E+01, 0.31510E-01, 0.82400E+01, 0.10420E-01, 0.82500E+01,-0.10660E-01, 0.82600E+01,-0.31740E-01, 0.82700E+01,-0.28530E-01, 0.82800E+01,-0.15390E-01, 0.82900E+01,-0.10410E-01, 0.83000E+01,-0.32780E-01, 0.83100E+01,-0.55150E-01, 0.83200E+01,-0.34660E-01, 0.83300E+01, 0.90000E-03, 0.83400E+01, 0.22470E-01, 0.83500E+01, 0.42600E-02, 0.83600E+01,-0.13950E-01, 0.83700E+01,-0.32160E-01, 0.83800E+01,-0.50370E-01, 0.83900E+01,-0.66140E-01, 0.84000E+01,-0.23470E-01, 0.84100E+01, 0.16200E-01, 0.84200E+01,-0.14100E-02, 0.84300E+01,-0.19010E-01, 0.84400E+01,-0.33840E-01, 0.84500E+01,-0.11940E-01, 0.84600E+01, 0.99600E-02, 0.84700E+01, 0.28280E-01, 0.84800E+01, 0.10380E-01, 0.84900E+01,-0.75200E-02, 0.85000E+01,-0.25420E-01, 0.85100E+01,-0.12380E-01, 0.85200E+01, 0.20440E-01, 0.85300E+01, 0.20360E-01, 0.85400E+01, 0.13000E-03, 0.85500E+01,-0.20110E-01, 0.85600E+01,-0.13330E-01, 0.85700E+01, 0.86400E-02, 0.85800E+01, 0.11180E-01, 0.85900E+01, 0.32600E-02, 0.86000E+01,-0.12900E-02, 0.86100E+01, 0.11870E-01, 0.86200E+01, 0.19220E-01, 0.86300E+01, 0.10000E-03, 0.86400E+01,-0.19030E-01, 0.86500E+01,-0.38150E-01, 0.86600E+01,-0.57280E-01, 0.86700E+01,-0.68130E-01, 0.86800E+01,-0.47850E-01, 0.86900E+01,-0.27570E-01, 0.87000E+01,-0.73000E-02, 0.87100E+01, 0.12980E-01, 0.87200E+01, 0.33260E-01, 0.87300E+01, 0.34610E-01, 0.87400E+01, 0.29310E-01, 0.87500E+01, 0.27230E-01, 0.87600E+01, 0.34770E-01, 0.87700E+01, 0.35590E-01, 0.87800E+01, 0.18210E-01, 0.87900E+01, 0.83000E-03,

0.88000E+01,-0.16550E-01, 0.88100E+01,-0.33940E-01, 0.88200E+01,-0.51320E-01, 0.88300E+01,-0.51850E-01, 0.88400E+01,-0.48160E-01, 0.88500E+01,-0.44480E-01, 0.88600E+01,-0.50590E-01, 0.88700E+01,-0.58860E-01, 0.88800E+01,-0.84800E-02, 0.88900E+01, 0.53920E-01, 0.89000E+01, 0.50950E-01, 0.89100E+01, 0.35540E-01, 0.89200E+01, 0.20140E-01, 0.89300E+01, 0.29260E-01, 0.89400E+01, 0.32640E-01, 0.89500E+01, 0.19420E-01, 0.89600E+01, 0.24160E-01, 0.89700E+01, 0.31340E-01, 0.89800E+01, 0.18020E-01, 0.89900E+01, 0.21700E-02, 0.90000E+01,-0.13670E-01, 0.90100E+01,-0.10380E-01, 0.90200E+01,-0.11300E-01, 0.90300E+01,-0.21010E-01, 0.90400E+01,-0.42000E-02, 0.90500E+01, 0.14920E-01, 0.90600E+01, 0.29770E-01, 0.90700E+01, 0.26430E-01, 0.90800E+01, 0.24460E-01, 0.90900E+01, 0.27930E-01, 0.91000E+01, 0.31400E-01, 0.91100E+01, 0.11690E-01, 0.91200E+01,-0.87300E-02, 0.91300E+01,-0.75700E-02, 0.91400E+01,-0.59800E-02, 0.91500E+01,-0.45080E-01, 0.91600E+01,-0.68540E-01, 0.91700E+01,-0.43860E-01, 0.91800E+01,-0.19170E-01, 0.91900E+01, 0.55200E-02, 0.92000E+01, 0.29480E-01, 0.92100E+01, 0.17980E-01, 0.92200E+01, 0.64800E-02, 0.92300E+01,-0.50200E-02, 0.92400E+01,-0.16530E-01, 0.92500E+01,-0.28030E-01, 0.92600E+01,-0.33260E-01, 0.92700E+01,-0.24550E-01, 0.92800E+01,-0.15830E-01, 0.92900E+01,-0.71100E-02, 0.93000E+01,-0.57700E-02, 0.93100E+01,-0.97800E-02, 0.93200E+01,-0.12150E-01, 0.93300E+01, 0.17000E-03, 0.93400E+01, 0.12480E-01, 0.93500E+01, 0.24800E-01, 0.93600E+01, 0.37120E-01, 0.93700E+01, 0.33180E-01, 0.93800E+01, 0.26810E-01, 0.93900E+01, 0.20440E-01, 0.94000E+01, 0.14080E-01, 0.94100E+01, 0.77100E-02, 0.94200E+01, 0.13400E-02, 0.94300E+01,-0.50000E-04, 0.94400E+01, 0.11300E-02, 0.94500E+01, 0.23000E-02, 0.94600E+01, 0.34800E-02, 0.94700E+01,-0.77900E-02, 0.94800E+01,-0.20000E-01, 0.94900E+01,-0.15820E-01, 0.95000E+01,-0.10600E-01, 0.95100E+01,-0.12460E-01, 0.95200E+01,-0.22630E-01, 0.95300E+01,-0.32810E-01, 0.95400E+01,-0.39520E-01, 0.95500E+01,-0.34640E-01, 0.95600E+01,-0.31470E-01, 0.95700E+01,-0.33720E-01, 0.95800E+01,-0.22240E-01, 0.95900E+01,-0.61900E-02, 0.96000E+01,-0.54800E-02, 0.96100E+01,-0.96100E-02, 0.96200E+01,-0.13740E-01, 0.96300E+01,-0.17870E-01, 0.96400E+01,-0.22000E-01, 0.96500E+01,-0.33710E-01, 0.96600E+01,-0.47440E-01, 0.96700E+01,-0.61160E-01, 0.96800E+01,-0.73670E-01, 0.96900E+01,-0.67050E-01, 0.97000E+01,-0.60430E-01, 0.97100E+01,-0.53810E-01, 0.97200E+01,-0.47190E-01, 0.97300E+01,-0.40570E-01, 0.97400E+01,-0.33950E-01, 0.97500E+01,-0.27330E-01, 0.97600E+01,-0.26470E-01, 0.97700E+01,-0.29280E-01, 0.97800E+01,-0.32100E-01, 0.97900E+01,-0.34910E-01, 0.98000E+01,-0.37730E-01, 0.98100E+01,-0.32050E-01, 0.98200E+01,-0.21600E-01, 0.98300E+01,-0.13200E-01, 0.98400E+01,-0.16410E-01, 0.98500E+01,-0.19630E-01, 0.98600E+01,-0.12860E-01, 0.98700E+01,-0.11600E-02, 0.98800E+01, 0.10530E-01, 0.98900E+01, 0.22220E-01, 0.99000E+01, 0.16170E-01, 0.99100E+01, 0.89900E-02, 0.99200E+01, 0.18000E-02, 0.99300E+01,-0.53800E-02, 0.99400E+01,-0.12570E-01, 0.99500E+01,-0.19750E-01, 0.99600E+01,-0.10290E-01, 0.99700E+01,-0.48000E-03, 0.99800E+01, 0.93200E-02, 0.99900E+01, 0.19130E-01, 0.10000E+02, 0.15140E-01

5、Vertical ground acceleration record.

** Vertical accelerogram of Koyna earthquake

0.00000E+00, 0.00000E+00, 0.10000E-01, 0.29600E-02, 0.20000E-01,-0.50800E-02, 0.30000E-01,-0.13120E-01, 0.40000E-01,-0.15260E-01, 0.50000E-01,-0.22400E-02, 0.60000E-01, 0.10790E-01, 0.70000E-01, 0.23810E-01, 0.80000E-01, 0.23970E-01, 0.90000E-01, 0.13600E-01, 0.10000E+00, 0.32300E-02, 0.11000E+00,-0.71300E-02, 0.12000E+00,-0.14890E-01, 0.13000E+00, 0.73100E-02, 0.14000E+00, 0.29500E-01, 0.15000E+00, 0.55700E-02, 0.16000E+00,-0.50420E-01, 0.17000E+00,-0.64690E-01, 0.18000E+00,-0.51150E-01, 0.19000E+00,-0.37600E-01, 0.20000E+00,-0.24060E-01, 0.21000E+00,-0.10520E-01, 0.22000E+00, 0.30300E-02, 0.23000E+00, 0.13630E-01, 0.24000E+00, 0.62000E-02, 0.25000E+00,-0.12400E-02, 0.26000E+00,-0.86800E-02, 0.27000E+00,-0.16110E-01, 0.28000E+00,-0.13950E-01, 0.29000E+00,-0.70600E-02, 0.30000E+00,-0.16000E-03, 0.31000E+00, 0.67300E-02, 0.32000E+00,-0.39500E-02, 0.33000E+00,-0.15740E-01, 0.34000E+00,-0.66500E-02, 0.35000E+00, 0.11390E-01,

0.36000E+00, 0.80800E-02, 0.37000E+00,-0.35400E-02, 0.38000E+00, 0.32500E-02, 0.39000E+00, 0.16860E-01, 0.40000E+00, 0.13890E-01, 0.41000E+00,-0.63300E-02, 0.42000E+00,-0.26540E-01, 0.43000E+00,-0.46750E-01, 0.44000E+00,-0.44200E-01, 0.45000E+00,-0.20630E-01, 0.46000E+00, 0.29400E-02, 0.47000E+00, 0.26510E-01, 0.48000E+00, 0.50080E-01, 0.49000E+00, 0.46150E-01, 0.50000E+00, 0.19740E-01, 0.51000E+00,-0.66700E-02, 0.52000E+00,-0.33090E-01, 0.53000E+00,-0.21770E-01, 0.54000E+00,-0.21600E-02, 0.55000E+00,-0.49800E-02, 0.56000E+00,-0.12400E-01, 0.57000E+00,-0.12390E-01, 0.58000E+00,-0.72300E-02, 0.59000E+00,-0.20700E-02, 0.60000E+00, 0.30900E-02, 0.61000E+00,-0.20640E-01, 0.62000E+00,-0.48680E-01, 0.63000E+00, 0.14330E-01, 0.64000E+00, 0.75460E-01, 0.65000E+00, 0.48730E-01, 0.66000E+00, 0.27970E-01, 0.67000E+00, 0.41010E-01, 0.68000E+00, 0.24110E-01, 0.69000E+00,-0.35890E-01, 0.70000E+00,-0.95880E-01, 0.71000E+00,-0.91300E-01, 0.72000E+00,-0.56320E-01, 0.73000E+00,-0.21340E-01, 0.74000E+00, 0.13640E-01, 0.75000E+00, 0.48610E-01, 0.76000E+00, 0.83590E-01, 0.77000E+00, 0.11857E+00, 0.78000E+00, 0.74450E-01, 0.79000E+00, 0.27880E-01, 0.80000E+00,-0.18690E-01, 0.81000E+00,-0.48750E-01, 0.82000E+00,-0.26540E-01, 0.83000E+00,-0.43200E-02, 0.84000E+00,-0.15910E-01, 0.85000E+00,-0.38770E-01, 0.86000E+00,-0.60500E-01, 0.87000E+00,-0.26780E-01, 0.88000E+00, 0.69400E-02, 0.89000E+00, 0.40660E-01, 0.90000E+00, 0.45450E-01, 0.91000E+00, 0.26910E-01, 0.92000E+00, 0.33390E-01, 0.93000E+00, 0.30000E-02, 0.94000E+00,-0.51420E-01, 0.95000E+00,-0.40250E-01, 0.96000E+00,-0.33810E-01, 0.97000E+00,-0.36980E-01, 0.98000E+00,-0.40160E-01, 0.99000E+00,-0.27460E-01, 0.10000E+01, 0.14730E-01, 0.10100E+01, 0.56910E-01, 0.10200E+01, 0.29150E-01, 0.10300E+01,-0.99900E-02, 0.10400E+01,-0.49130E-01, 0.10500E+01,-0.88270E-01, 0.10600E+01,-0.51760E-01, 0.10700E+01,-0.59000E-02, 0.10800E+01, 0.12590E-01, 0.10900E+01,-0.99800E-02, 0.11000E+01,-0.32550E-01, 0.11100E+01,-0.55120E-01, 0.11200E+01,-0.53240E-01, 0.11300E+01, 0.60020E-01, 0.11400E+01, 0.76050E-01, 0.11500E+01, 0.46320E-01, 0.11600E+01, 0.16600E-01, 0.11700E+01,-0.13120E-01, 0.11800E+01,-0.42850E-01, 0.11900E+01,-0.72570E-01, 0.12000E+01,-0.13020E-01, 0.12100E+01, 0.40130E-01, 0.12200E+01,-0.44340E-01, 0.12300E+01,-0.13660E-01, 0.12400E+01, 0.58900E-02, 0.12500E+01,-0.11450E-01, 0.12600E+01,-0.28800E-01, 0.12700E+01,-0.46140E-01, 0.12800E+01,-0.36500E-01, 0.12900E+01, 0.46080E-01, 0.13000E+01, 0.54800E-01, 0.13100E+01,-0.19900E-02, 0.13200E+01,-0.54480E-01, 0.13300E+01,-0.25380E-01, 0.13400E+01, 0.37200E-02, 0.13500E+01,-0.18780E-01, 0.13600E+01,-0.53370E-01, 0.13700E+01,-0.42160E-01, 0.13800E+01,-0.20890E-01, 0.13900E+01,-0.31920E-01, 0.14000E+01,-0.34660E-01, 0.14100E+01,-0.84400E-02, 0.14200E+01,-0.92800E-02, 0.14300E+01,-0.28160E-01, 0.14400E+01,-0.12740E-01, 0.14500E+01, 0.82600E-02, 0.14600E+01, 0.29270E-01, 0.14700E+01, 0.44590E-01, 0.14800E+01, 0.25010E-01, 0.14900E+01, 0.54300E-02, 0.15000E+01,-0.14150E-01, 0.15100E+01,-0.33730E-01, 0.15200E+01,-0.53310E-01, 0.15300E+01,-0.72890E-01, 0.15400E+01,-0.70470E-01, 0.15500E+01,-0.38870E-01, 0.15600E+01,-0.72800E-02, 0.15700E+01, 0.24320E-01, 0.15800E+01, 0.55910E-01, 0.15900E+01, 0.87510E-01, 0.16000E+01, 0.56280E-01, 0.16100E+01, 0.22430E-01, 0.16200E+01,-0.11420E-01, 0.16300E+01,-0.45270E-01, 0.16400E+01,-0.79120E-01, 0.16500E+01,-0.11297E+00, 0.16600E+01,-0.14682E+00, 0.16700E+01,-0.18067E+00, 0.16800E+01,-0.21452E+00, 0.16900E+01,-0.62590E-01, 0.17000E+01, 0.87260E-01, 0.17100E+01, 0.72920E-01, 0.17200E+01, 0.58570E-01, 0.17300E+01, 0.64030E-01, 0.17400E+01, 0.11801E+00, 0.17500E+01, 0.17199E+00, 0.17600E+01, 0.14767E+00, 0.17700E+01, 0.10500E+00, 0.17800E+01, 0.62320E-01, 0.17900E+01, 0.19640E-01, 0.18000E+01,-0.23030E-01, 0.18100E+01, 0.11100E-01, 0.18200E+01, 0.98600E-01, 0.18300E+01, 0.11280E+00, 0.18400E+01,-0.91300E-02, 0.18500E+01,-0.13106E+00, 0.18600E+01,-0.25299E+00, 0.18700E+01,-0.21981E+00, 0.18800E+01,-0.91550E-01, 0.18900E+01, 0.36700E-01, 0.19000E+01, 0.16495E+00, 0.19100E+01, 0.12547E+00, 0.19200E+01, 0.67340E-01, 0.19300E+01, 0.92100E-02, 0.19400E+01,-0.48910E-01, 0.19500E+01,-0.10704E+00, 0.19600E+01,-0.16517E+00, 0.19700E+01,-0.22330E+00, 0.19800E+01,-0.71770E-01, 0.19900E+01, 0.95200E-01, 0.20000E+01,-0.52750E-01, 0.20100E+01,-0.15085E+00, 0.20200E+01,-0.61370E-01, 0.20300E+01, 0.28100E-01, 0.20400E+01, 0.11758E+00, 0.20500E+01, 0.16358E+00, 0.20600E+01, 0.64020E-01, 0.20700E+01,-0.35540E-01, 0.20800E+01,-0.13510E+00, 0.20900E+01,-0.23466E+00, 0.21000E+01,-0.90770E-01, 0.21100E+01, 0.12999E+00,

0.21200E+01, 0.12707E+00, 0.21300E+01, 0.57330E-01, 0.21400E+01, 0.13608E+00, 0.21500E+01, 0.19800E+00, 0.21600E+01, 0.11618E+00, 0.21700E+01, 0.34360E-01, 0.21800E+01,-0.47460E-01, 0.21900E+01, 0.34350E-01, 0.22000E+01, 0.15454E+00, 0.22100E+01, 0.27473E+00, 0.22200E+01, 0.19812E+00, 0.22300E+01, 0.81210E-01, 0.22400E+01,-0.35710E-01, 0.22500E+01,-0.15262E+00, 0.22600E+01,-0.26954E+00, 0.22700E+01,-0.19996E+00, 0.22800E+01,-0.10002E+00, 0.22900E+01,-0.90000E-04, 0.23000E+01, 0.99850E-01, 0.23100E+01, 0.19978E+00, 0.23200E+01, 0.11703E+00, 0.23300E+01, 0.11700E-01, 0.23400E+01,-0.93640E-01, 0.23500E+01,-0.19897E+00, 0.23600E+01,-0.30430E+00, 0.23700E+01,-0.14521E+00, 0.23800E+01, 0.36870E-01, 0.23900E+01, 0.21895E+00, 0.24000E+01, 0.17816E+00, 0.24100E+01, 0.12315E+00, 0.24200E+01, 0.68130E-01, 0.24300E+01, 0.13120E-01, 0.24400E+01,-0.41890E-01, 0.24500E+01,-0.96900E-01, 0.24600E+01,-0.15192E+00, 0.24700E+01,-0.20693E+00, 0.24800E+01,-0.13489E+00, 0.24900E+01, 0.69380E-01, 0.25000E+01, 0.27365E+00, 0.25100E+01, 0.21200E+00, 0.25200E+01, 0.15036E+00, 0.25300E+01, 0.88720E-01, 0.25400E+01, 0.27080E-01, 0.25500E+01,-0.32400E-01, 0.25600E+01,-0.21910E-01, 0.25700E+01,-0.11430E-01, 0.25800E+01,-0.40850E-01, 0.25900E+01,-0.10292E+00, 0.26000E+01,-0.16500E+00, 0.26100E+01,-0.21725E+00, 0.26200E+01,-0.13904E+00, 0.26300E+01,-0.60820E-01, 0.26400E+01, 0.17390E-01, 0.26500E+01, 0.95600E-01, 0.26600E+01, 0.89910E-01, 0.26700E+01, 0.28280E-01, 0.26800E+01,-0.33350E-01, 0.26900E+01,-0.94980E-01, 0.27000E+01,-0.15660E+00, 0.27100E+01,-0.20081E+00, 0.27200E+01,-0.12845E+00, 0.27300E+01,-0.56090E-01, 0.27400E+01,-0.24900E-02, 0.27500E+01,-0.55210E-01, 0.27600E+01,-0.17720E-01, 0.27700E+01, 0.66250E-01, 0.27800E+01, 0.15022E+00, 0.27900E+01, 0.11327E+00, 0.28000E+01,-0.83960E-01, 0.28100E+01,-0.16490E+00, 0.28200E+01,-0.97850E-01, 0.28300E+01,-0.30790E-01, 0.28400E+01, 0.36260E-01, 0.28500E+01, 0.10331E+00, 0.28600E+01, 0.12212E+00, 0.28700E+01, 0.86510E-01, 0.28800E+01, 0.50900E-01, 0.28900E+01, 0.15280E-01, 0.29000E+01, 0.31400E-01, 0.29100E+01, 0.21130E+00, 0.29200E+01, 0.22432E+00, 0.29300E+01, 0.18171E+00, 0.29400E+01, 0.13910E+00, 0.29500E+01, 0.96500E-01, 0.29600E+01, 0.53890E-01, 0.29700E+01, 0.11280E-01, 0.29800E+01,-0.31320E-01, 0.29900E+01,-0.73930E-01, 0.30000E+01,-0.11654E+00, 0.30100E+01,-0.15914E+00, 0.30200E+01,-0.19429E+00, 0.30300E+01,-0.13035E+00, 0.30400E+01,-0.66400E-01, 0.30500E+01,-0.24500E-02, 0.30600E+01, 0.26860E-01, 0.30700E+01,-0.11070E-01, 0.30800E+01,-0.48990E-01, 0.30900E+01,-0.86910E-01, 0.31000E+01,-0.11172E+00, 0.31100E+01,-0.30370E-01, 0.31200E+01, 0.50970E-01, 0.31300E+01, 0.13232E+00, 0.31400E+01, 0.44650E-01, 0.31500E+01,-0.66070E-01, 0.31600E+01,-0.14725E+00, 0.31700E+01,-0.61050E-01, 0.31800E+01, 0.25140E-01, 0.31900E+01, 0.44920E-01, 0.32000E+01,-0.26990E-01, 0.32100E+01,-0.98910E-01, 0.32200E+01,-0.13544E+00, 0.32300E+01,-0.21090E-01, 0.32400E+01, 0.93260E-01, 0.32500E+01, 0.20761E+00, 0.32600E+01, 0.13087E+00, 0.32700E+01, 0.46160E-01, 0.32800E+01,-0.38550E-01, 0.32900E+01,-0.12325E+00, 0.33000E+01,-0.84970E-01, 0.33100E+01, 0.86540E-01, 0.33200E+01, 0.17853E+00, 0.33300E+01, 0.31910E-01, 0.33400E+01,-0.14650E-01, 0.33500E+01, 0.34950E-01, 0.33600E+01, 0.63930E-01, 0.33700E+01, 0.37190E-01, 0.33800E+01, 0.10450E-01, 0.33900E+01,-0.16290E-01, 0.34000E+01,-0.43030E-01, 0.34100E+01,-0.69760E-01, 0.34200E+01,-0.96500E-01, 0.34300E+01,-0.12324E+00, 0.34400E+01,-0.14998E+00, 0.34500E+01,-0.19680E-01, 0.34600E+01, 0.14510E+00, 0.34700E+01, 0.22075E+00, 0.34800E+01, 0.12341E+00, 0.34900E+01, 0.26060E-01, 0.35000E+01,-0.71280E-01, 0.35100E+01,-0.29770E-01, 0.35200E+01, 0.10051E+00, 0.35300E+01, 0.23079E+00, 0.35400E+01, 0.51180E-01, 0.35500E+01,-0.13631E+00, 0.35600E+01,-0.66660E-01, 0.35700E+01, 0.29900E-02, 0.35800E+01, 0.72650E-01, 0.35900E+01, 0.14230E+00, 0.36000E+01, 0.21195E+00, 0.36100E+01, 0.28160E+00, 0.36200E+01, 0.26841E+00, 0.36300E+01, 0.14083E+00, 0.36400E+01, 0.13240E-01, 0.36500E+01,-0.81800E-01, 0.36600E+01,-0.38120E-01, 0.36700E+01, 0.55700E-02, 0.36800E+01, 0.49260E-01, 0.36900E+01, 0.92940E-01, 0.37000E+01, 0.13663E+00, 0.37100E+01, 0.11921E+00, 0.37200E+01, 0.79200E-01, 0.37300E+01, 0.39180E-01, 0.37400E+01,-0.84000E-03, 0.37500E+01,-0.40850E-01, 0.37600E+01,-0.80870E-01, 0.37700E+01,-0.69340E-01, 0.37800E+01, 0.81550E-01, 0.37900E+01, 0.23243E+00, 0.38000E+01, 0.31156E+00, 0.38100E+01, 0.20615E+00, 0.38200E+01, 0.10075E+00, 0.38300E+01,-0.46600E-02, 0.38400E+01,-0.10043E+00, 0.38500E+01,-0.45230E-01, 0.38600E+01, 0.99700E-02, 0.38700E+01, 0.65180E-01,

ABAQUS帮助范例中文索引

帮助文档ABAQUS Example Problems Menual 1.静态应力/位移分析 1.1.静态与准静态应力分析 1.1.1.螺栓结合型管法兰连接的轴对称分析 1.1. 2.薄壁机械肘在平面弯曲与内部压力下的弹塑性失效 1.1.3.线弹性管线在平面弯曲下的参数研究 1.1.4.橡胶海绵在圆形凸模下的变形分析 1.1.5.混泥土板的失效 1.1.6.有接缝的石坡稳定性研究 1.1.7.锯齿状梁在循环载荷下的响应 1.1.8.静水力学流体单元:空气弹簧模型 1.1.9.管连接中的壳-固体子模型与壳-固体耦合的建立 1.1.10.无应力单元的再激活 1.1.11.黏弹性轴衬的动载响应 1.1.1 2.厚板的凹入响应 1.1.13.叠层复合板的损害和失效 1.1.14.汽车密封套分析 1.1.15.通风道接缝密封的压力渗透分析 1.1.16.震动缓冲器的橡胶/海绵成分的自接触分析 1.1.17.橡胶垫圈的橡胶/海绵成分的自接触分析 1.1.18.堆叠金属片装配中的子模型分析 1.1.19.螺纹连接的轴对称分析 1.1.20.周期热-机械载荷下的汽缸盖的直接循环分析 1.1.21.材料(沙产品)在油井中的侵蚀分析 1.1.2 2.压力容器盖的子模型应力分析 1.1.23.模拟游艇船体中复合涂覆层的应用 1.2.屈曲与失效分析 1.2.1.圆拱的完全弯曲分析 1.2.2. 层压复合壳中带圆孔圆柱形面的屈曲分析 1.2.3.点焊圆柱的屈曲分析 1.2.4. K型结构的弹塑性分析 1.2.5. 不稳定问题:压缩载荷下的加强板分析 1.2.6.缺陷敏感柱型壳的屈曲分析 1.3. 成形分析 1.3.1. 圆柱形坯料墩粗:利用网格对网格方案配置与自适应网格 的准静态分析 1.3. 2. 矩形方盒的超塑性成型 1.3.3. 球形凸模的薄板拉伸 1.3.4. 圆柱杯的深拉伸 1.3.5. 考虑摩擦热产生的圆柱形棒材的挤压成形分析 1.3.6. 厚板轧制成形分析 1.3.7. 圆柱杯的轴对称成形分析 1.3.8. 杯/槽成形分析 1.3.9. 正弦曲线形凹模锻造

abaqus屈曲分析实例

整个计算过程包括2个分析步,第1步做屈曲分析,笫2步做极限强度分析。 第1步:屈曲分析 载荷步定义如下: Step 1-Initial Step 2- Buckle

? Re Mbs M^nce C^wvoini live 2oc*$ *l^*?4 tjdp V :i.Jsa&# 录 +r A AJIu fffiC? fe3 Ha ? ;r????y fa-t n>rr ?: OfEYcm v Se?今 gh 3, gqcvKeiry C*p*?9r ? ? O?lec? ■ %?no?v C5 廉 H5Wr> MM fa Tin* Forti Sv Al€ *dep6?? ve^ tbjUx9)lo t JeiWA Tc?D -^lQZlll?hQ we' E ejewwiw b>w* biE Glcte 」r?>w* 69D eJe*MKi r?jw* bee CWfcr*?9*^ s£ Zac? “ Iraftet H U 匕“rb ? 2 更 K?4dCu^u!R? 虫 Hntwr GUput b 伽》ezi5 &■心 AcUxv? V H H?*?ctnr? 易 htecMtlar. hra, 日 CcrtadCcrtra 0 C?Wl >?wt K Ccctect sub lx 權 CwMoarSt Hj fiUdi _n ,.. ? ?! ? MCg WtW Swtfc lk2 pe**j". liwar p?nwbia?ko ▼ freque." 拯 sufAuun The 11?-51>^ )L>4ldH9jjn-2 “9 wioZ S *0 Sxe U>* oil^ 51 “ed S iU* TO . 0 . -ISO -MO mtb rew :t no 心 &逐Ply OCCOIIMV * 巧恪tc ?:?L -5Moe>?* bw tZfft to ?D7cp 炉、?ZlHWr? Me" “乡“r?x HMldrann ?2 vd 乡 tygeJa* 400 0 0 with x*w :? ?o tfi* oc

abaqus帮助文档中轮胎的例子

外胎是由胎体、缓冲层(或称带束层)、胎面、胎侧和胎圈组成 1、Bead:胎唇部; 2、sidewall:胎侧; 3、tread:胎面;4belt:缓冲层;5、carcass:胎体帘布层。 3.1.8 Treadwear simulation using adaptive meshing in ABAQUS/Standard 3.1.8使用自适应网格在Abaqus/Standard中进行轮胎磨损仿真分析 软件:Abaqus/Standard 这个例子在Abaqus/Standard中使用自适应网格技术对稳态滚动的轮胎进行建模。这次分析使用类似“Steady-state rolling analysis of a tire”Section 3.1.2来建立稳态滚动轮胎的接地印迹和状态。接着,进行稳态传输分析来计算和推测持续分析步,在稳态过程中产生一个近似瞬态磨损解。 问题描述和建模 轮胎描述和有限元建模和“Import of asteady-state rolling tire,”Section 3.1.6一样,但是有一些不一样,在这里需要指出。由于这次分析的中心是轮胎磨损,所以胎面建模需要更加精细。另外台面使用线性弹性材料模型来避免超弹性材料在网格自适应过程中不收敛。 图1所示的是轴对称175SR14轮胎的一半模型。橡胶层用CGAX4和 CGAX3单元建模。加强层使用带有rebar层的SFMGAX1单元模拟。橡胶层和加强层之间潜入单元约束。橡胶层的弹性模量为6Mpa,泊松比为0.49。剩下的轮胎部分用超弹性材料模型模拟。多应变能使用系数C10=10^6,C01=0和D1=2*10^8。用来模拟骨架纤维的刚性层和径向成0°,弹性模量为9.87Gpa。压缩系数设置成受拉系数的百分之一。名义应力应变数据用马洛超弹性模型定义材料本构关系。Belt fibers材料的拉伸弹性模量为172.2Gpa。压缩系数设置成拉伸系数的的百分之一。Belt的纤维走向在轴向±20°内。 旋转前面的轴对称一半模型可得到局部三位模型,如图2所示。我们关注轮胎印迹区域的网格。将局部模型镜像后可得到完整的三维模型。 自适应网格在轮胎磨损计算中的局限性 在这个例子中使用自适应网格必须严格遵守以下条件: 1、圆柱网格不支持自适应网格并且在本例子也没有使用 2、由于梯度状态变量的变形错误严重,自适应网格使用超弹性材料时表现很差。因此胎面用弹性材料定义 3、在自适应网格的范围内不能用包含刚性层的嵌入网格。 4、自适应网格通过网格几何特征来决定自适应网格在自由面光滑的方向,网格几何的特征通常不容易和描述的磨损方向一致。因此,下面将讨论到,通常你需要做额外的工作来明确地描述磨损的方向。 加载

(完整word版)abaqus6.12-典型实例分析

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。 1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图

为了使模拟结果尽可能真实,通过查阅相关资料,定义了在碰撞过程中相关的数据以及各部件的材料属性。其中,刚性墙的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28;保险杠、平板以及横梁的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28,塑形应力-应变数据如表2.1所示。 表2.1 应力-应变数据表 应力210 300 314 325 390 438 505 527 应变0.0000 0.0309 0.0409 0.0500 0.1510 0.3010 0.7010 0.9010 注:本例中的单位制为:ton,mm,s。 3.案例详细求解过程 本案例使用软件为版本为abaqus6.12,各详细截图及分析以该版本为准。3.1 创建部件 (1)启动ABAQUS/CAE,创建一个新的模型数据库,重命名为The crash simulation,保存模型为The crash simulation.cae。 (2)通过导入已有的*.IGS文件来创建各个部件,在主菜单中执行【File】→【Import】→【Part】命令,选择刚刚创建保存的的bumper_asm.igs文件,弹出【Create Part From IGS File】对话框如图3.1所示,根据图3.1所示设定【Repair Options】的相关选项,其它参数默认,单击【Ok】按钮,可以看到在模型树中显示了导入的部件bumper_asm。 图3.1 Create Part From IGS File对话框

ABAQUS2016版安装步骤.pdf

64位Abaqus2016 Win7安装教程 (一颗星星亲测安装)(关闭防火墙)(关闭杀毒软件)Abaqus2016安装共分为三部分,即License、Solver、CAE,这三部分依次安装。安装文件夹下的内容如下图所示。1位License,2为Solver安装部分,3位CAE安装部分。安装前需要将IE浏览器升级至IE10或IE11,我升级至IE10。 1.License安装 1.在_SolidSQUAD_文件夹下,将所有的文件复制到您要安装的文件夹下,如我的安装文件夹为C:\Simulation Software\ABAQUS 2016\License。 2.复制完成后,打开ABAQUS.lin文件,以记事本格式,如下图,将this_host改为您的计算机名,切记其余的不要改动。

3.右键点击server_install.bat,以管理员身份打开。(只需打开以下即可)。 4.右键点击Imtools.exe,出现下图。 5. 点击Config Serverce,出现下图,选在第1步中复制后的文件,此处和Abaqus 以前的版本一致。 6.点击Start/Stop/Reread,再点击Start Server。

7.至此License安装完成。环境变量不需设置。 2. Solver安装 1. 首先安装3DEXPERIENCE_AbaqusSolver,打开此文件夹,以管理员身份运行Steup.exe。 2.点击下一步。 3.选择安装目录,并下一步。

4.点击下一步。 5.点击安装。 6.安装过程中

7.显示安装完成。 8. 安装CAA_3DEXPERIENCE_AbaqusSolver,打开此文件夹,以管理员身份运行Steup.exe。 9.

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应得简单实例ABAQUS时程分析法计算地震反应得简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2、1e11Pa,泊松比0、3,所有振型得阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 得集中质量。反应谱按7度多遇地震,取地震影响系数为0、08,第一组,III类场地,卓越周期Tg=0、45s。 图1 计算对象 第一部分:反应谱法 几点说明: λ本例建模过程使用CAE; λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 λ ABAQUS得反应谱法计算过程以及后处理要比ANSYS方便得多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3)Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2、1e11,poisson’s ratio:0、3、

ABAQUS关键字(keywords)

ABAQUS帮助里关键字(keywords)翻译 (2013-03-06 10:42:48) 转载▼ 分类:abaqus 转自人人网 总规则 1、关键字必须以*号开头,且关键字前无空格 2、**为注释行,它可以出现在中的任何地方 3、当关键字后带有时,关键词后必须采用逗号隔开 4、参数间都采用逗号隔开 5、关键词可以采用简写的方式,只要程序能识别就可以了 6、不需使用隔行符,如果参数比较多,一行放不下,可以另起一行,只要在上一行的末尾加逗号便可以 ----------------------------------------------------------------------------------------------------------------------------------------- *AMPLITUDE:幅值 这个选项允许任意的载荷、和其它指定的数值在一个分析步中随时间的变化(或者在ABAQUS/Standard分析中随着的变化)。 必需的参数: NAME:幅值曲线的名字 可选参数: DEFINITION:设置definition=Tabular(默认)给出表格形式的幅值-时间(或幅值-频率)定义。设置DEFINITION=EQUALLY SPACED/PERIODIC/MODULATED/DECAY/SMOOTH STEP/SOLUTION DEPENDENT或BUBBLE来定义其他形式的幅值曲线。 INPUT:设置该参数等于替换输入文件名字。 TIME:设置TIME=STEP TIME(默认)则表示分析步时间或频率。TIME=TOTAL TIME表示总时间。 VALUE:设置VALUE=RELATIVE(默认),定义相对幅值。VALUE=ABSOLUTE表示绝对幅值,此时,行中载荷选项内的值将被省略,而且当温度是指定给已定义了温度TEMPERATURE=GRADIENTS(默认)梁上或壳上的,不能使用ABSOLUTE。 对于DEFINITION=TABULAR的可选参数: SMOOTH:设置该参数等于 DEFINITION=TABULAR的数据行 第一行 1、时间或频率 2、第一点的幅值(绝对或相对) 3、时间或频率 4、第二点的幅值(绝对或相对) 等等 基本形式: *Amplitude,name=Amp-1 0.,0.,0.2,1.5,0.4,2.,1.,1.

(完整word版)ABAQUS实例分析

《现代机械设计方法》课程结业论文 ( 2011 级) 题目:ABAQUS实例分析 学生姓名 XXXX 学号 XXXXX 专业机械工程 学院名称机电工程与自动化学院 指导老师 XX 2013年 5 月8 日

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (6) 二、具体步骤 (6) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (23)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生 成一个Abaqus输入文件。提交给Abaqus/Standard或 Abaqus/Explicit。 2.分析计算(Abaqus/Standard或Abaqus/Explicit):在分析计算阶段, 使用Abaqus/Standard或Abaqus/Explicit求解输入文件中所定义的

ABAQUS帮助文档

初始损伤对应于材料开始退化,当应力或应变满足于定义的初始临界损伤准则,则此时退化开始。Abaqus 的Damage for traction separation laws 中包括:Quade Damage、Maxe Damage、Quads Damage、Maxs Damage、Maxpe Damage、Maxps Damage 六种初始损伤准则,其中前四种用于一般复合材料分层模拟,后两种主要是在扩展有限元法模拟不连续体(比如crack 问题)问题时使用。前四种对应于界面单元的含义如下:Maxe Damage 最大名义应变准则:Maxs Damage 最大名义应力准则:Quads Damage 二次名义应变准则:Quade Damage 二次名义应力准则 最大主应力和最大主应变没有特定的联系,不同材料适用不同准则就像强度理论有最大应力理论和最大应变理论一样~ ABAQUS帮助文档10.7.1 Modeling discontinuities as an enriched feature using the extended finite element method 看看里面有没有你想要的 Defining damage evolution based on energy dissipated during the damage process 根据损伤过程中消耗的能量定义损伤演变 You can specify the fracture energy per unit area,, to be dissipated during the damage process directly. 您可以指定每单位面积的断裂能量,在损坏过程中直接消散。Instantaneous failure will occur if is specified as 0. 瞬间失效将发生 However, this choice is not recommended and should be used with care because it causes a sudden drop in the stress at the material point that can lead to dynamic instabilities.

abaqus实例

一.创建部件 1.打开abaqus; 开始/程序/Abaqus6.10-1/Abaque CAE 2.Model/Rename/Model-1,并输入名字link4

3.单击Create part弹出Create part对话框, Name输入link-4; Modeling Space 选择2D Planar Type 选择Deformable Base Feature 选择Wire Approximate size 输入800;然后单击continue 4.单击(Create Lines:connected)通过点(0,0)、(400,0)、(400,300)、(0,300)单击(Create Lines:connected)连接(400,300)和(0,0)两点,单击提示区中的Done按钮(或者单击鼠标滚轮,也叫中键),形成四杆桁架结构

5.单击工具栏中的(Save Model Database),保存模型为link4.cae 二.定义材料属性 6.双击模型树中的Materials(或者将Module切换到Property,单击Create Material -ε) 弹出Edit Material对话框后。 执行对话框中Mechanical/Elasticity/Elastic命令, 在对话框底部出现的Data栏中输入Young’s Module为29.5e4, 单击OK.完成材料设定。

7.单击“Create Section ”,弹出Create Section对话框, Category中选择Beam; Type中选择Truss; 单击continue按钮 弹出Edit Section对话框, 材料选择默认的Material-1,输入截面积(Cross-sectional area)为100,单击ok按钮。

abaqus子结构帮助文档

OVERVIEW OF SUBSTRUCTURES IN Abaqus/CAE 39.Substructures This section explains how to integrate substructures into your analysis in Abaqus/CAE.The following topics are covered: ?“Overview of substructures in Abaqus/CAE,”Section39.1 ?“Generating a substructure,”Section39.2 ?“Specifying the retained nodal degrees of freedom and load cases for a substructure,”Section39.3?“Importing a substructure into Abaqus/CAE,”Section39.4 ?“Using substructure part instances in an assembly,”Section39.5 ?“Recovering?eld output for substructures,”Section39.7 ?“Visualizing substructure output,”Section39.8 39.1Overview of substructures in Abaqus/CAE Substructures are collections of elements that have been grouped together,so the internal degrees of freedom have been eliminated for the https://www.360docs.net/doc/766188832.html,ing a substructure make model de?nition easier and analysis faster when you analyze a model that contains identical pieces that appear multiple times(such as the teeth of a gear),because you can use a substructure repeatedly in a model.Substructures are connected to the rest of the model by the retained degrees of freedom at the retained nodes.Factors that determine how many and which nodes and degrees of freedom should be retained are discussed in “De?ning substructures,”Section10.1.2of the Abaqus Analysis User’s Manual.Substructure de?nition in your model follows two sets of steps: ?“Creating substructures in your model database,”Section39.1.1 ?“Including substructures in your analysis,”Section39.1.2 39.1.1Creating substructures in your model database You can create substructures in Abaqus/CAE by following these general steps: 1.Create or open the model database in which you want to specify substructures in Abaqus/CAE. 2.In the Step module,create a Substructure generation step.Abaqus/CAE converts the entire model into a single substructure.For more information,see“Generating a substructure,” Section39.2. 3.In the Load module,create Retained nodal dofs boundary conditions to determine which degrees of freedom will be retained as external degrees of freedom on the substructure.You can also de?ne a load case in the substructure generation step if you want to apply a load to the substructure at

ABAQUS实例分析论文

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (5) 二、具体步骤 (5) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (22)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生

多体分析实例

第八章多体分析实例 多体分析:由多个刚体或柔体组成,各实体之间具有一定的约束关系和相对运动关系。Abaqus 的多体分析可以模拟系统的运动状况和系统各部分之间的相互作用,得到所关系部位的位移、速度、加速度、力和力矩等。如果是柔体,还可以得到柔体的应力、应变等分析结果。 8.1多体分析的主要方法 Abaqus模拟多体分析的 基本思路: abaqus使用两节点连接单元在系统各部分之间建立连接,并通过定义连接属性来描述各部分之间的相对运动约束关系。 基本步骤: 1.在PART 、ASSEMBLY或INTERACTION功能模块中,定义连接单元和约束所要用到的参 考点和基准坐标系 2.在INTERACTION模块中,设置连接单元、连接属性和约束 3.在STEP模块中,设置单元的历史变量输出;如果模型中出现较大的位移或转动,应将 几何非线性参数NLGEOM设置为ON 4.在LOAD模块中,定义边界条件和载荷,以及连接单元的边界条件和载荷 5.在VISUALIZATION模块中,查看连接单元的历史变量输出、控制连接单元的显示方式。8.1.1连接单元 用来模拟模型中的两个点或一个点和地面之间的运动和力学关系,所涉及到的点称为连接点。 8.1.2连接属性 分类:基本连接属性和组合连接属性 基本连接属性:平移连接属性和旋转连接属性 两个节点上的局部坐标系有如下三种情况: REQUIRED;IGNORED;OPTIONAN 两个连接点之间的相对运动分量:平移运动分量和旋转运动分量;又可以分为受约束的相对

运动分量和可用的相对运动分量。 几种常用的连接属性: JOIN;LINK;SLOT;REVOLVE;HINGE 8.1.3输出单元的分析结果 连接单元的作用:在两个连接点之间施加运动约束,度量两个连接点之间的相对运动、力和力矩 分析结果:运动分析结果和力与力矩的分析结果 8.2实例1:圆盘的旋转过程模拟

abaqus帮助文档之地震相应计算分析

2.1.15 Seismic analysis of a concrete gravity dam Products: Abaqus/Standard Abaqus/Explicit In this example we consider an analysis of the Koyna dam, which was subjected to an earthquake of magnitude 6.5 on the Richter scale on December 11, 1967. The example illustrates a typical application of the concrete damaged plasticity material model for the assessment of the structural stability and damage of concrete structures subjected to arbitrary loading. This problem is chosen because it has been extensively analyzed by a number of investigators, including Chopra and Chakrabarti (1973), Bhattacharjee and Léger (1993), Ghrib and Tinawi (1995), Cervera et al. (1996), and Lee and Fenves (1998). Problem description The geometry of a typical non-overflow monolith of the Koyna dam is illustrated in Figure 2.1.15–1. The monolith is 103 m high and 71 m wide at its base. The upstream wall of the monolith is assumed to be straight and vertical, which is slightly different from the real configuration. The depth of the reservoir at the time of the earthquake is = 91.75 m. Following the work of other investigators, we consider a two-dimensional analysis of the non-overflow monolith assuming plane stress conditions. The finite element mesh used for the analysis is shown in Figure 2.1.15–2. It consists of 760 first-order, reduced-integration, plane stress elements (CPS4R). Nodal definitions are referred to a global rectangular coordinate system centered at the lower left corner of the dam, with the vertical y-axis pointing in the upward direction and the horizontal x-axis pointing in the downstream direction. The transverse and vertical components of the ground accelerations recorded during the Koyna earthquake are shown in Figure 2.1.15–3 (units of g = 9.81 m sec–2). Prior to the earthquake excitation, the dam is subjected to gravity loading due to its self-weight and to the hydrostatic pressure of the reservoir on the upstream wall. For the purpose of this example we neglect the dam–foundation interactions by assuming that the foundation is rigid. The dam–reservoir dynamic interactions resulting from the transverse component of ground motion can be modeled in a simple form using the Westergaard added mass technique. According to Westergaard (1933), the hydrodynamic pressures that the water exerts on the dam during an earthquake are the same as if a certain body of water moves back and forth with the dam while the remainder of the reservoir is left inactive. The added mass per unit area of the upstream wall is given in approximate form by the expression , with , where = 1000 kg/m3 is the density of water. In the Abaqus/Standard analysis the added mass approach is implemented using a simple 2-node user element that has been coded in user subroutine UEL. In the Abaqus/Explicit analysis the dynamic interactions between the dam and the reservoir are ignored. The hydrodynamic pressures resulting from the vertical component of ground motion are assumed to be small and are neglected in all the simulations. Material properties

abaqus6.12 典型实例解析

(北京) CHINA UNIVERSITY OF PETROLEUM 《工程分析软件应用基础》保险杠撞击刚性墙的实例分析 院系名称:机械与储运工程学院 专业名称:机械工程 学生姓名: 学号: 指导教师: 完成日期2014年5月1日

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。 1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图

ABAQUS线性静力学分析实例

线性静力学分析实例 线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在ABAQUS 中,该类问题通常采用静态通用(Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I 、C3D8I )的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 一 悬臂梁的线性静力学分析 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises 应力、位移分布。 材料性质:弹性模量32e E =,泊松比3.0=ν 均布载荷:Mpa p 6.0= 图1-1 悬臂梁受均布载荷图

启动ABAQUS 启动ABAQUS有两种方法,用户可以任选一种。 (1)在Windows操作系统中单击“开始”--“程序”--ABAQUS -- ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。