原位杂交探针设计原则

原位杂交探针设计原则
原位杂交探针设计原则

原位杂交探针大体可分为三类:寡核苷酸探针,CDNA探针,RNA探针。

寡核苷酸探针由25bp左右的核苷酸组成,通常可以由公司合成,由于其序列较短,因此特异性较强,原位杂交时可以区分家族基因,同一基因的不同剪切体,cDNA探针长约500bp左右,可以通过非对称PCR扩增合成,由于探针式DNA,可以有效的避免降解,但DNA和RNA的结合不如RNA与RNA结合强,通常不采用,RNA探针长约500bp左右,通过体外转录合成,如果设计合理,其特异性是可以得到保证的,其主要缺点是容易被RNAse酶降解。

查看原位杂交相关的文献发现,2000年以前的原位杂交常使用放射性标记的寡核苷酸探针,通过胶片曝光来显色,2000年以后的文献常使用RNA探

针。许多肾脏发育的文献虽然有很多原位杂交数据,但却没有附带上探针序列或者用于探针模板克隆的引物,通过了解厦门黄老师斑马鱼和昆明毛炳宇爪蟾中原位杂交探针设计方法,我们可以采用

RNA探针。文献中很难找到关于

RNA探针设计的原则,有的文献报道直接用cDNA合成RNA探针。借鉴爪蟾中原位杂交探针设计流程,以小鼠FGF10的探针设计为例进行介绍。

1.在NCBI数据库中下载该FGF10的mRNA全序列,然后用FGF10的全长在NCBI中进行BLAST 比对

分析,比对数据库选择mouse genome+transcript,比对程序选择somewhat similar

sequenee 。

Zebrafish seqRNAs

Choose Search Set

O Human genomic 卑transcript @Mouse genom c ■+ trans匚「ipt O Others (nr etc.)

Manse genomic plus hanscript Mcuss G+T

Prcarain Selection

Opiimire for0 Highly similar sequences i mega blast)

0 More dissi milar sequences [discontiguous meg ablaut)

? Somev/hat similar sequences iblastn)

Choose a BLAST algorithm ■&

得出的比对结果中有一幅图谱,显示比对序列与数据库中序列的相似性,探

针应设计在与其它基因不存在明显相似性的区段,在比对结果的图谱中选择

可变区。如下图黑色框区域。

Que ry

Color key tor alignment scores

<404Q-5O50 -80SQ-200 >=200

9001800270036004500 2.估计黑色框碱基在FGF10 mRNA中的大致范围,在这个范围内选择长约

500bp的序列设计探针。根据上图信息,我们选择FGF103000~3800的范

围进行探针设计。

agcac agaggcacaa tgctttggtt tatgggtata ggttgcattt

3301 tgtggtgttc tttcaacttg ttttctgaca aatgggattt ttaaaatgta tacttcttgt

3361 ggttggattc tgtatgttag agtttaattg gtaactgagt ctaaaggctc taatgtaatg

3421 aatctctaga agaactaggt atcttttttt acttttattt taaaataata attatacctg

3481 acacatgacc atggaccacc cacaaccaaa attaaatgtt tggggagaca aactatagta

3541 ttcagtgaca agggtaacag caaatagtgc agacgttgga ttcttatttc actttgccat

3601 ttagattact aaagagacta tgtgtaaaca gtcatcatta tagtactcaa gacattaaac

3661 agcttctagc aaaatgtatc aaagcttgca gagtccaaaa atagaaaaca tctttccccc

3721 tctcccaccc tacatttccc cctgtatgca tcctaacaga gat 底纹标注的为弓丨物

3.将设计好的探针序列在UCSC上再次比对分析,genome选择mouse,

query type选择translated RNA,点击submit,保证搜索出的条目只有目标基因,如果存在其它非目标匹配项(既不是来自FGF基因的序列),则需

要重新选择一段探针序列。

BLAT S^iirch Genome

你可以点击browser 浏览一下所设计的探针序列是否是

FGF10的序列以及

所在位置。 J-广旳 I

mun -

■ vour sequencgfrom|l at search VourSeci . UCSC on RefSe^, uni Prof, G^nEank, CCDS and

RefSeq Genes

在选择探针序列时,尽量选择 3'端的区域,避开可能的选择性剪切,同时也 要避免mRNA 的末端序列,因为可能存在翻译终止序列,影响以后的体外 转录效率。经过上述分析后,探针序列可以较好的避免家族基因的保守序 列,确保特异性。

我们可以针对每个基因设计两个探针,后面比较一下哪个探针杂交效果最 Genatne - Query 匕W Assembly Eort airtyiit - OiTtpjt type :

| Eulnit ] Im feding lucky

DNA实验技术:原位杂交实验要求及步骤

原位杂交组织(或细胞)化学(In situ Hybridization Histochemistry,ISHH)简称原位杂交(In Situ Hybridization),属于固相分子杂交的范畴,它是用标记的DNA或RNA为探针,在原位检测组织细胞内特定核酸序列的方法。根据所用探针和靶核酸的不同,原位杂交可分为DNA-DNA杂交,DNA-RNA杂交和RNA-RNA 杂交三类。 根据探针的标记物是否直接被检测,原位杂交又可分为直接法和间接法两类。直接法主要用放射性同位素、荧光及某些酶标记的探针与靶核酸进行杂交,杂交后分别通过放射自显影、荧光显微镜术或成色酶促反应直接显示。间接法一般用半抗原标记探针,最后通过免疫组织化学法对半抗原定位,间接地显示探针与靶核酸形成的杂交体。 原位杂交最初是以同位素标记探针进行的。尽管同位素标记(如35S,3H,32P等)仍然广泛使用,但非同位素标记探针的迅速发展(尤其是生物素标记探针和地高辛标记探针),更引起科技工作者的极大兴趣。 一、基本要求 1. 组织取材:组织取材应尽可能新鲜。由于组织RNA降解较快,所以新鲜组织和培养细胞最好在30 min 内固定。 2. 固定目的是: (1)保持细胞结构; (2)最大限度地保持细胞内DNA或RNA的水平; (3)使探针易于进入细胞或组织。 最常用的固定剂是多聚甲醛,与其它醛类固定剂(如戊二醛)不同,多聚甲醛不会与蛋白质产生广泛的交叉连接,因而不会影响探针穿透入细胞或组织。 3. 增强组织的通透性和核酸探针的穿透性: (1)稀酸处理和酸酐处理:为防止探针与组织中碱性蛋白之间的静电结合,以降低背景,杂交前标本可用0.25%乙酸酐处理10 min,经乙酸酐处理后,组织蛋白中的碱性基团通过乙酰化而被阻断。组织和细胞标本亦可用0.2 M HCl处理10 min,稀酸能使碱性蛋白变性,结合蛋白酶消化,容易将碱性蛋白移除。 (2)去污剂处理:去污剂处理的目的是增加组织的通透性,利于杂交探针进入组织细胞,最常应用的去污剂是Triton X-100。注意:过度的去污剂处理不仅影响组织的形态结构,而且还会引起靶核酸的丢失。

原位杂交

原位杂交试剂 1.Buffer I溶液 试剂剂量 Tris-HCl 7.882g NaCl 4.4g 纯水至500ml 混匀,调pH至7.5,室温保存。 2.Buffer Ⅱ溶液 试剂剂量 Buffer I溶液10ml Blocking(索莱宝公司) 0.1g

调pH至8.0,水浴溶解,过滤除菌分装,-20℃保存。 3.Buffer Ⅲ溶液 试剂剂量 Tris-HCl 7.882g NaCl 3g MgCl2·6H2O 5.1g 纯水至500ml 混匀,调pH至9.5,室温保存。 4.2×SSC 试剂剂量 20×SSC 100ml 纯水至1000ml 混匀,室温保存。 5.1×SSC 试剂剂量 20×SSC 50ml 纯水至1000ml 混匀,室温保存。 6.0.1×SSC 试剂剂量 1×SSC 100ml 纯水至1000ml 混匀,室温保存。 7.蛋白酶K稀释液 试剂剂量 Tris-HCl 7.882g EDTA 7.3g 纯水至500ml 混匀,调pH至8.0,室温保存。 原位杂交 1.探针构建 由上海生工生物工程有限公司合成本实验所用的探针。合成好的探针粉末用无核酶水溶解,浓度为0.5μg/μl。

2.探针标记 探针标记体系如下(10μl): 试剂剂量 合成的探针2μl Dig RNA 1μl 10×Buffer缓冲液1μl RNA聚合酶(SP6/T7)1μl DTT(100mM)1μl RI 0.5μl 无核酶水至10μl 混匀,37℃水浴1h。 后加入2μl DNA酶I,37℃水浴15min,降解模板DNA。再加入2μl EDTA (0.2M)终止反应。加入1/10体积的LiCl(4M)及2.5倍体积预冷的无水乙醇,混匀后置于-20℃冰箱过夜、沉淀。第二天,4℃,12000×g离心15min,弃去上清。用预冷的75%乙醇洗一次,4℃,12000×g离心1min,吸尽上清,晾干。溶于50μl无核酶水中,待完全溶解后分装,-80℃保存。 3.斑点杂交 1)从-80℃冰箱中取出已经分装好的探针原液,置于80℃水浴锅中热激5min,使探针变性,然后立即插入冰中。 2)用探针稀释液将变性后的探针依次稀释10、20、50倍。 3)取探针原液及稀释液各1μl依次点在做好标记的尼龙膜上,下面垫一张空膜。 4)将尼龙膜置于紫外仪中交联30s,再放入Buffer I缓冲液中平衡5min。 5)用BufferⅡ在室温条件下封闭1h,使用BufferⅡ稀释地高辛抗体(1:1000)室温孵育2h或者4℃过夜。 6)用BufferI洗膜3次,每次15min,后置于BufferⅢ中平衡5min,再倒掉。 7)用BufferⅢ稀释NBT/BCIP作为显色剂,稀释比例为1:50。 8)避光,滴加稀释好的显色剂,孵育10-20min,显色,根据显色结果选择合适的探针浓度。 4.原位杂交 原位杂交过程中需要全程在无核酶的环境中进行,所有用到的实验物品都需要经过无核酶处理方可使用。 1)从培养箱中取出细胞,室温静置平衡5min,用PBS洗2次,每次3min,晾干。 2)4%PFA固定20min,PBS洗3次,每次5min,晾干。

结构设计常识及规范

第一章材料 SPCC 一般用钢板,表面需电镀或涂装处理 SECC 镀锌钢板,表面已做烙酸盐处理及防指纹处理 SUS 301 弹性不锈钢 SUS304 不锈钢 镀锌钢板表面的化学组成------基材(钢铁),镀锌层或镀镍锌合金层,烙酸盐层和有机化学薄膜层. 有机化学薄膜层能表面抗指纹和白锈,抗腐蚀及有较佳的烤漆性. SECC的镀锌方法 热浸镀锌法: 连续镀锌法(成卷的钢板连续浸在溶解有锌的镀槽中 板片镀锌法(剪切好的钢板浸在镀槽中,镀好后会有锌花. 电镀法: 电化学电镀,镀槽中有硫酸锌溶液,以锌为阳极,原材质钢板为阴极. 1-2产品种类介绍 1.品名介绍 材料规格后处理镀层厚度 S A B C*D*E S for Steel A: EG (Electro Galvanized Steel)电气镀锌钢板---电镀锌 一般通称JIS 镀纯锌EG SECC (1) 铅和镍合金合金EG SECC (2) GI (Galvanized Steel) 溶融镀锌钢板------热浸镀锌 非合金化GI,LG SGCC (3) 铅和镍合金GA,ALLOY SGCC (4) 裸露处耐蚀性2>3>4>1 熔接性2>4>1>3 涂漆性4>2>1>3 加工性1>2>3>4

B: 所使用的底材 C (Cold rolled) : 冷轧 H (Hot rolled): 热轧 C: 底材的种类 C: 一般用 D: 抽模用 E: 深抽用 H: 一般硬质用 D: 后处理 M: 无处理 C: 普通烙酸处理---耐蚀性良好,颜色白色化 D: 厚烙酸处理---耐蚀性更好,颜色黄色化 P: 磷酸处理---涂装性良好 U: 有机耐指纹树脂处理(普通烙酸处理)--- ---耐蚀性良好,颜色白色化,耐指纹性很好A: 有机耐指纹树脂处理(厚烙酸处理)---颜色黄色化,耐蚀性更好 FX: 无机耐指纹树脂处理---导电性 FS: 润滑性树脂处理---免用冲床油 E: 镀层厚 1-4物理特性 膜厚---含镀锌层,烙酸盐层及有机化学薄膜层,最小之膜厚需0.00356mm以上. 测试方法有磁性测试(ASTM B499), 电量分析(ASTM B504), 显微镜观察(ASTM B487) 表面抗电阻---一般应该小于0.1欧姆/平方公分. 1- 5 盐雾试验----试片尺寸100mmX150mmX1.2mm, 试片需冲整捆或整叠铁材中取下,必须在镀烙酸盐后24小时,但不可超过72小时才可以用于测试,使用5%的盐水,用含盐的水汽充满箱子,试片垂直倒挂在箱子中48小时。 测试后试片的镀锌层不可全部流失,也不能看到底材或底材生锈,但是离切断层面6mm范围有生锈情况可以忽略。

原位杂交组织化学技术的基本方法

原位杂交组织化学技术的基本方法 一、核酸分子杂交技术 1961年Hall开拓了液相核酸杂交技术的研究,其基本原理是利用核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价键的形成,出现稳定的双链区,形成杂交的双链。自此以后,由于分子生物学技术的迅猛发展,特别是70年代末到80年代初,分子克隆">克隆、质粒和噬菌体DNA的构建成功,核酸自动合成仪的诞生,大大丰富了核酸探针的来源,新的核酸分子杂交类型和方法不断涌现。按其作用方式可大致分为固相杂交和液相杂交两种:液相杂交是指参加反应的两条核酸链都游离在溶液中,而固相杂交是将参加反应的一条核酸链固定在固体的支持物上常用的有硝酸纤维素滤膜,其它如尼龙膜、乳胶颗粒和微孔板等),另一条参加反应的核酸链游离在溶液中。固相杂交有菌落原位杂交(colony in situ hybri dization)、斑点杂交法(Dot blot)、Southern印迹杂交(Southern blot)、Northern印迹杂交( N orthern blot)和组织原位杂交(Tissue in situ hybridization),即原位杂交组织化学技术和原位杂交免疫细胞化学技术。液相分子杂交技术包括吸附杂交、发光液相杂交、液相夹心杂交和复性速率液相分子杂交等。 二、原位杂交组织化学技术的由来及发展 原位杂交组织(或细胞)化学技术简称原位杂交(In situ hybridization),如上所述,属于固相核酸分子杂交的范畴。但它区别于固相核酸分子杂交中的任何一种核酸分子杂交技术。菌落杂交系细菌裂解释放出DNA,然后进行杂交。Southern印迹杂交法是以鉴定DNA中某一特定的基因片段,而Norhtern印迹杂交法是用以检测某一特定的RNA片段的。它们都只能证明该病原体、细胞或组织中是否存在待测的核酸而不能证明该核酸分子在细胞或组织中存在的部位。1969年美国耶鲁大学Gall和Pardue首先用爪蟾核糖体基因探针与其卵母细胞杂交,确定该基因定位于卵母细胞的核仁中。与此同时,Buongiorno– Nardell i和Amaldi, John及其同事等相继利用同位素标记核酸探针进行了细胞或组织的基因定位,从而创造了原位杂交细胞或组织化学技术。Orth(1970)应用3H标记的兔乳头状瘤病毒cRNA探针与兔乳头状瘤组织的冰冻切片进行杂交,首次用原位杂交检测了病毒DNA在细胞中的定位,但当时的工作多采用冰冻组织切片或培养细胞,探针均采用同位素标记。 由于同位素标记探针具有放射性既污染环境,又对人体有害,且受半衰期限制等缺点,科学工作者们开始探索用非放射性的标记物标记核酸探针进行原位杂交。Bauman(1981)等首先应用荧光素标记cRNA探针做原位杂交,然后用荧光显微镜观察获得成功。Shroyer(1982)报道用2,4二硝基苯甲醛(DNP)标记DNA探针,使该DNA探针具有抗原性,然后用兔抗DNP的抗体来识别杂交后的探针,最后经免疫过氧化物酶的方法来定位杂交探针。这两种方法至今仍有采用,但因敏感度不够高,应用不够普遍。 Pezzella(1 987)创建了用磺基化DNA探针来做细胞或组织原位杂交的方法,其基本原理是使DNA探针的胞嘧啶碱基磺基化,利用单克隆">克隆抗体识别磺基化探针,再通过免疫组化方法显示结合的单克隆抗体,从而对杂交结合的探针进行定位。本法的优点是磺基化DAN探针标记简便,不需作缺口平移标记,敏感度也较高。但自生物素和高辛标记探针技术建立后,已有取而代之的趋势。生物素标记探针技术是Brigat(1983)首先建立的,它利用生物素标记的探针在组织切片上检测了病毒DNA,通过生物素与抗生物素结合,过氧化物酶-抗过氧化物酶显示系统显示病毒DNA在细胞中的定位。生物素标记探针技术目前已被广泛应用,特别是在病毒学和病理学的临床诊断中。这种生物素标记技术又叫酶促生物素标记技术。另一种叫光促生物素标记核酸技术,该技术是用光敏生物素(Photobiotin)标记核酸。目前应用的光敏生物素有乙酸盐和补骨脂素生物素,它们都是由三个部分组成:光敏基团、连结臂和生物素(图20-1)。在强光下,不需酶反应,光敏生物素的光敏基团即可与核酸中的碱基相结合。光敏生物素标记核酸,方法简单,灵敏度也不低,但标记效率不高,每100~150个碱基才能标记一个生物素,对于短的基因探针特别是寡核苷酸探针不宜使用,以免因标记数过少而影响灵敏度(Forster et al 1985)。 近年来,地高辛(Digoxigonin)标记技术引起科技工作者的极大兴趣。Boeringer Mannhem Bio-ch emisca于1987年将地高辛标记的有关试剂及药盒投放市场。和其它非放射性标记物一样,地高辛较放射性标记系统安全,方便、省时间。同时在敏感性和质量控制方面比生物素标记技术要优越,可以检测出人基因组DNA中的单拷贝基因。地高辛标记法显示的颜色为紫蓝色(标记碱性磷酸酶-抗碱性磷酸酶显色系统),有较好的反差背景。 核酸探针根据标记方法的不同可粗略分为放射性探针和非放射性探针两类。根据探针的核酸性质不同可分为DNA探针、RNA探针、cDNA探针、cRNA探针和寡核苷酸探针等。DNA探针还有单链DNA(Single st randed, ssDNA)和双链DNA(Double stranded, dsDNA)之分(详见十九章)。早期应用的主要是DNA探

原位杂交原理及具体操作

原位杂交原理及具体操作

原位杂交实验原理与方法 一、目的 本实验的目的是学会原位杂交的使用方法。了解各种原位杂交的基本原理和优缺点。 二、原理 原位杂交组化(简称原位杂交,in situ hybridization histochemistry;ISHH)属于分子杂交的一种,是一种应用标记探针与组织细胞中的待测核酸杂交,再应用标记物相关的检测系统,在核酸原有的位置将其显示出来的一种检测技术。原位杂交的本质就是在一定的温度和离子浓度下,使具有特异序列的单链探针通过碱基互补规则与组织细胞内待测的核酸复性结合而使得组织细胞中的特异性核酸得到定位,并通过探针上所标记的检测系统将其在核酸的原有位置上显示出来。 当然杂交分子的形成并不要求两条单链的碱基顺序完全互补,所以不同来源的核酸单链只要彼此之间有一定程度的互补顺序(即某种程度的同源性)就可以形成杂交双链。 探针的种类按所带标记物可分为同位素标记探针和非同位素标记探针两大类。目前,大多数放

射性标记法是通过酶促反应将标记的基因掺入DNA中,常用的同位素标记物有3H、35S、125I 和32P。同位素标记物虽然有灵敏性高,背底较为清晰等优点,但是由于放射性同位素对人和环境均会造成伤害,近来有被非同位素取代的趋势。非同位素标记物中目前最常用的有生物素、地高辛和荧光素三种。 探针的种类按核酸性质不同又可分为DNA探针、cDNA探针、cRNA探针和合成寡核苷酸探针。cDNA 探针又可分为双链cDNA探针和单链cDNA探针。原位杂交又可分为菌落原位杂交和组织原位杂交。 菌落原位杂交(Colony in situ hybridization)菌落原位杂交是将细菌从培养平板转移到硝酸 纤维素滤膜上,然后将滤膜上的菌落裂菌以释出DNA。将NDA烘干固定于膜上与32P标记的探针杂交,放射自显影检测菌落杂交信号,并与平板上的菌落对位。 组织原位杂交(Tissue in situ hybridization)组织原位杂交简称原位杂交,指组织或细胞的原位杂交,它与菌落的原位杂交不同。菌落原位杂交需裂解细菌释出DNA,然后进行杂交。而原位

real time PCRTaqman探针设计、实时多重PCR探针的选择、引物的设计及评价

real time PCRTaqman探针设计、实时多重PCR探针的选择、引物的设计及评价 一、实时荧光Taqman 探针设计 总原则:探针选择要保守,引物选择要保守,因此必须找一段100-200bp相对要保守的片段来设计引物与探针。即real-time PCR的扩增片段是50bp----150bp。当找不到150bp的保守片段时,必须确保探针的片段是保守的。 在设计探针和引物时,要同时考虑在两条链上设计引物与探针。但要注意的是:在那条链上设计探针时,就应靠近在同一条链上设计的引物(即上游引物)。这样,可保证在将来扩增时,即便没有完全扩增,也有荧光信号报告出来。两者的距离最好是探针的5’端离上游引物的3’有一个碱基,但也可以重叠。 若在原序列中找不到合适的探针与引物(1主要是探针和上游引物的距离太远,而离下游引物的距离却较近时;2突变位点要求在探针的5’ 端也能检测到荧光信号,但却是在3’端),可在互补的序列中设计引物与探针。 另real-time PCR中的探针和引物的Tm值,均要高于平常PCR的引物和杂交的探针的Tm值。 二、探针的设计 探针设计的基本原则: 1.保守:探针要绝对的保守,有时分型就单独依靠探针来决定。理论上有一个碱基不配对,就可能检测不出来。若找不到完全保守的片段,也只能选取有一个碱基不同的片段。且这个不同的碱基最好在探针的中间,对探针与目的片段的杂交影响不大,不相同的碱基最好不要在两端,因为两端不利于探针的杂交。且最好为A或T,而不能为G或A,因为A、T为双键,而G、A为三键。 2.探针长度

Taqman探针的长度最好在25-32bp之间,且Tm值在68-72℃之间,最好为70℃,确保探针的Tm 值要比引物的Tm值高出10℃,这样可保证探针在煺火时先于引物与目的片段结合。因此探针最好是富含GC的保守片段,保证其的Tm值较高。现在有Taqman MGB探针,在TAMER之后再标记一个MGB,可使探针的Tm值较高,即使探针片段较短,也可达到Taqman探针的Tm值要求(68-70℃)。 3.探针的名称 应标记探针在基因组的位置及长度。 4.探针Tm值计算 用oligo或primer preiemer软件即可计算Tm值。确保探针中GC含量在30-80%。应避免探针中多个重复的碱基出现,尤其是要避免4个或超过4个的G碱基出现。 5.探针的评价 用DNAstar软件中的Primerselect软件,点击“log”菜单中的“create primer catalog”,在“name” 中输入探针的名称、位置,按Tab键进入“sequence”,粘贴或输入要分析的探针序列。选中整个序列后,在“report”菜单下“primer self dimer”,分析探针的二聚体。弹出的窗口中就告诉此探针有多少个dime r,并对此探针用dG值进行评价(通常给出最差的dG值,理论上是dG值越大越好)。在“report”菜单下“p rimer hairpins”,分析探针的发夹结构。弹出的窗口中就告诉此探针有多少个hairpins,并对此探针的h airpins进行评价。多重荧光PCR时,要对多条探针进行“pair dimer”进行分析。 6.探针的5’端不能为G 因为即使单个G碱基与FAM荧光报告基团相连时,G可以淬灭FAM基团所发出的荧光信号,从而导致假阴性的出现。 7.Taqman探针与引物之间的位置

原位杂交介绍与步骤

原位杂交 组织(或细胞)化学(In situ Hybridization Histochemistry,ISHH)简称原位杂交(In Situ Hybridization),属于固相分子杂交的范畴,它是用标记的DNA或RNA为探针,在原位检测组织细胞内特定核酸序列的方法。根据所用探针和靶核酸的不同,原位杂交可分为DNA-DNA 杂交,DNA-RNA杂交和RNA-RNA杂交三类。 根据探针的标记物是否直接被检测,原位杂交又可分为直接法和间接法两类。直接法主要用放射性同位素、荧光及某些酶标记的探针与靶核酸进行杂交,杂交后分别通过放射自显影、荧光显微镜术或成色酶促反应直接显示。间接法一般用半抗原标记探针,最后通过免疫组织化学法对半抗原定位,间接地显示探针与靶核酸形成的杂交体。 原位杂交最初是以同位素标记探针进行的。尽管同位素标记(如35S,3H,32P等)仍然广泛使用,但非同位素标记探针的迅速发展(尤其是生物素标记探针和地高辛标记探针),更引起科技工作者的极大兴趣。 一、基本要求 1. 组织取材:组织取材应尽可能新鲜。由于组织RNA降解较快,所以新鲜组织和培养细胞最好在30 min 内固定。 2. 固定目的是: (1)保持细胞结构; (2)最大限度地保持细胞内DNA或RNA的水平; (3)使探针易于进入细胞或组织。 最常用的固定剂是多聚甲醛,与其它醛类固定剂(如戊二醛)不同,多聚甲醛不会与蛋白质产生广泛的交叉连接,因而不会影响探针穿透入细胞或组织。 3. 增强组织的通透性和核酸探针的穿透性: (1)稀酸处理和酸酐处理:为防止探针与组织中碱性蛋白之间的静电结合,以降低背景,杂交前标本可用0.25%乙酸酐处理10 min,经乙酸酐处理后,组织蛋白中的碱性基团通过乙酰化而被阻断。组织和细胞标本亦可用0.2 M HCl处理10 min,稀酸能使碱性蛋白变性,结合蛋白酶消化,容易将碱性蛋白移除。 (2)去污剂处理:去污剂处理的目的是增加组织的通透性,利于杂交探针进入组织细胞,最常应用的去污剂是Triton X-100。注意:过度的去污剂处理不仅影响组织的形态结构,而且还会引起靶核酸的丢失。 (3)蛋白酶处理:蛋白酶消化能使经固定后被遮蔽的靶核酸暴露,以增加探针对靶核酸的可及性。常用的蛋白酶有蛋白酶K(proteinase K),还有链霉蛋白酶(pronase)和胃蛋白酶(pepsin)等。 4. 杂交缓冲液孵育: 杂交前用不含探针的杂交缓冲液在杂交温度下孵育2 hr,以阻断玻片和标本中可能与探针产生非特异性结合的位点,达到减低背景的目的。 5. 防止污染: 由于在手指皮肤及实验室用玻璃器皿上均可能含有RNA酶,为防止其污染影响实验结果,在整个杂交前处理过程中都需要戴消毒手套,实验所用玻璃器皿及镊子都应于实验前一日置高温烘烤(180℃)以达到消除RNA酶的目的。杂交前及杂交时所用的溶液均需经高压消毒处理。 6. 双链DNA探针和靶DNA的变性:

原位杂交技术步骤

1.For each probe (control and experimental), set up a separate 100-ml PCR in a 0.5-ml sterile tube, as tabulated below. Either.cDNA inserted in plasmids or genomic DNA can be used as templates for the PCR (see REAGENT SETUP for details on primer design). 每个探针(实验组和对照组),在0.5 -ml无菌管设立一个独立的100毫升PCR,正如下面的表。另外。互补脱氧核糖核酸插入到基因组DNA质体或可用作模板PCR(见试剂设置有关底漆设计)。 **注意关键: 1.很多版本的实验反义核酸探针可以作为一种控制背景染色(见试剂设置)。然而,我们相信最好的方法来演示特异性是获取相同的空间限制表达模式使用不同的非重叠探测器相同的基因。 2.小心不要污染pcr.使用无菌试管和过滤器的技巧和戴手套 3.另外,PCR扩增,cDNAs质粒中可以使用约束线性化酶,独特的站点位于5¢(反义核酸探针)或3¢(对感官探测)来插入。净化的线性DNA可以通过苯酚/氯仿萃取乙醇沉淀紧随其后。 2| Run the PCR using the conditions tabulated below. 使用下面列出的条件运行PCR **暂停点:把扩增好的pcr产品放4℃降温和在-20℃贮藏几个星期。 3| Add the 100-ml PCR to a Microcon YM-50 column and add 400 ml of sterile water. Centrifuge for 15–20 min at 1,000 g at room temperature. 加入100毫升PCR到Microcon YM-50列并加入400毫升的无菌水。在室温下1000g离心15 - 20分钟。 **注意关键:膜应该是干的。如果没有再离心 4|Place the Microcon column into a new microfuge tube (provided in the kit), add 20ml of sterile water, vortex briefly and then turn the Microcon column upside down. Spin for 1 min at 1,000 g at room temperature to recover the DNA. 把小层析柱放在一个新的离心管(在这个工具包中提供),增加20毫升的无菌水、短暂离心,然后颠倒层析柱。自旋1分钟1000 g在室温下恢复了DNA **注意关键:离心的步骤应该快速。离心机1分钟只是为了避免样本太干。 5|Check the quality, quantity and size of the PCR amplification product by loading 1/20 of the preparation on a 1% (wt/vol) agarose gel in 1 TBE buffer. DNA should appear as a band and not as a smear. The 1/20 of the preparation should contain at least 40 ng of DNA. 通过装载1/20的稀释液在1*的TBE buffer缓冲液中的1% (wt/vol)的琼脂糖凝胶检查PCR的扩增产物的质量

qPCR引物设计原则及具体操作步骤

qPCR引物设计原则及具体操作步骤 1.找基因(DNA) 1)通过英文名称查找 通过查看文献或者百度搜索查找到对应基因的准确的英文名称 →进入NCBI官网 →点击网页右下角GenBank,进入GenBank界面 →在搜索框中输入准确的英文名称,点击Search搜索即可 2)通过序列号查找 通过查找文献,找到相应基因在GenBank上的登录号,直接输入上面的搜索框进行查找即可。 例如:犬冠状病毒(canine coronavirus,CCV)基因保守片段序列号为KT222978。 3)通过引物查找 通过查找文献,找到别人用过的对应的引物 →在NCBI官网右下角点击Primer-BLAST →输入正、反向引物序列 →设置对应参数 →点击“Get Primers”进行搜索即可 4)找到对应的基因后点击“FASTA”,进入相应界面,再点击“Send to”选择相应格式,保存 序列。

2.qPCR引物和TaqMan探针的设计 1)引物设计注意事项 a)引物长度17bp-25bp为佳。太短的引物容易导致扩增效率降低;太长的引物会导致出 现引物高级结构的几率增加。两者都会干扰定量结果的准确性 b)扩增片段长度为:90-150 bp(最低不能超过70,最高不能超过180) c)引物的Tm值为:最小57℃,最大63℃,最适为60℃,两条引物之间退火温度得差距 不超过1℃,推荐使用Primer Premier 5进行Tm值计算; d)引物A、G、C、T整体分布尽量要均匀,避免使用GC或者TA含量高的区域,尤其 是3’端,必须避开GC含量不均匀的区域。 e)引物设计时请尽量避开TC或者AG的连续结构。 f)3’端不能超过3个以上碱基互补,自互补碱基数不超过3;3’端最后一个碱基绝对不能 搭上 g)特异性要有保证,与非特异模板3’端互搭碱基数不超过3,不连续出现4个及以上的 GC互搭 h)引物3’端最后五个碱基不能包含超过2个以上的G或者C i)引物的GC含量控制在40%-60%之间为好,最佳为45%-55%之间 j)正向或者反向引物应尽量接近探针序列但是不能和探针序列有重合区域 k)在Primer-BLAST设计时,在Organism 处选择相应物种 l)需跨外显子设计,避免基因组污染 2)TaqMan探针设计指南 a)探针序列应尽量接近正向或者反向引物,但是不能与之有重合区域;一般相隔1~5个 碱基(一般10个以内,最好是1个碱基)。 b)应避免连续相同的碱基出现,特别是要避免GGGG或者更多的连续G出现。 c)探针5’端应避免使用碱基G,因为5'G会有淬灭作用,而且即使是被切割下来还会存 在淬灭作用 d)3’端应避免使用碱基A

原位杂交实验操作步骤

原位杂交实验操作步骤 一质粒制备 1质粒的转化和扩增 1.1制备XL1-Blue感受态细菌 1.取400uLXL1-Blue菌种加入到含200mlLB培养基的锥形瓶中,37℃、100rpm 培养4h,离心,倒置,以冰冷的0.1mol/LCaCl_2重悬细菌,冰浴30min,离心,弃上清,倒置,再加4ml(含15%甘油)冰冷的CaCl2重悬细菌,分装(200μ/tube),-80℃保存。 2.转化:在冰浴中将1管XL1-Blue感受态菌解冻,将浓度为2ng/μ1的质粒DNA4μ1加入到8Oμ1感受态菌中。 3.轻轻摇匀,冰浴30min。 4.42℃热激9O秒,然后迅速冰浴2min。 5.加入LB培养液(无氨苄青霉素)0.8ml,在37℃,100转/min水浴孵育60min。 6.取200μl菌液铺于琼脂板上(涂有X-Gal(20mg/ml)-IPTG(200mg/ml)的LB-氨苄青霉素50mg/ml,1μl/ml培养基),待菌液全部被吸收后,倒置平板于37℃培养12-16h。 1.2鉴定和挑选含重组质粒的菌落 1.用无菌牙签挑取单菌落,接种到10ml含氨苄青霉素的LB培养液的离心管中,于37℃,200转/分培养2h,取1ml之一Eppendorf离心管,加 50μl10mmol/L EDTA(pH8.0)。 2.加入50μl新配置的0.2mol/LNaOH、0.5%SDS、20%蔗糖溶液后,振荡30秒。 3.在70℃温育5min,然后冷却到室温。 4.加1.5μ14mol/LKCl和0.5μ1含0.4%溴酚兰染液,振荡3O秒后,冰浴5min。 5.12000g,4℃离以3min,以除去细菌碎片。 6.制备1%的琼脂糖凝胶(含EB0.5μg/ml),取50μl上清液加入到样品孔中,其中一孔加入中等分子量DNAMarker。恒压50V,进行电泳。 7.当溴酚兰迁移到凝胶全长的2/3-3/4时,停止电泳,在紫外灯下检查质粒DNA 分于量的大小是否与转入质粒相符。

两种定量分析方法的比较及Taqman探针引物设计原则

两种定量分析方法的比较及Taqman 探针、引物设计原则 遗传物质DNA 首先要把所携带的遗传信息转录成为信使RNA (mRNA ),携带遗传信息的mRNA 从细胞核进入到细胞质中与核糖体结合,在核糖体中mRNA 携带的遗传信息被翻译成为多肽,多肽经过进一步加工后变成蛋白质,至此遗传物质DNA 完成了表达过程。期间的转录过程是基因表达中非常重要的调节步骤,所转录的mRNA 的多少直接影响着相关最终蛋白质的多少,所以通过对细胞内某条基因mRNA 含量多少的分析,就能大致判断出该条基因的表达是否活跃。 定量PCR 仪是在普通PCR 仪的基础上加装了荧光激发装臵和荧光检测装臵,PCR 扩增和检测同时进行;在PCR 反应体系中加入荧光基团,利用荧光信号的积累实时监测整个PCR 进程,最后通过标准曲线对未知模板进行定量分析。该技术于1996年由美国Applied Biosystems 公司推出,由于该技术不仅实现了PCR 从定性到定量的飞跃,而且与常规PCR 相比,它具有特异性更强、有效解决PCR 污染问题、自动化程度高等特点,目前已得到广泛应用。 定量PCR 常用的三个常用概念 扩增曲线、荧光阈值、Ct 值 扩增曲线:反映PCR 循环次数和荧光强度的曲线,定量PCR 仪每次轮PCR 扩增都会自动记录 荧光强度的变化 荧光阈值:样本的荧光背景值和阴性对照的荧光值,手动 设臵的原则要大于样本的荧光背 景值和阴性对照的荧光最高值,同时要尽量选择进入指数期的最初阶段,并且保 证回归系数大于0.99。 CT 值: PCR 扩增过程中,扩增产物的荧光信号达到设定的阈值时所经过的扩增循环次数。 扩增曲线 阈值及CT 值 荧光定量PCR 的数学原理 理想的PCR 反应: X=X0*2n 非理想的PCR 反应: X=X0* (1+Ex)n (n :扩增反应的循环次数;X :第n 次循环后的产物量;X0:初始模板量;Ex :扩增效率) 在扩增产物达到阈值线时 : C(t) value

原位杂交操作流程

原位杂交操作流程 1、使用地高辛标记的核酸探针进行石蜡切片的RNA原位杂交第一天 1)二甲苯于37℃脱蜡2次,每次15分钟; 2)无水乙醇浸泡2次,每次3分钟; 3) 95%乙醇浸泡2次,每次3分钟; 4) PBS清洗3分钟; 5) 2%焦碳酸二乙酯室温下浸泡10分钟; 6) PBS清洗10分钟; 7)加入胃蛋白酶25ul/ml,37℃孵育15分钟; 8) PBS清洗2次,每次3分钟; 9) 0.2N的HCl孵育30分钟; 10)PBS清洗2次,每次3分钟; 11)0.25%无水乙酸和0.1M三乙醇胺孵育10分钟; 12)PBS清洗2次,每次5分钟; 13)预杂交缓冲液孵育30分钟; 14)准备核酸探针混合物:使用预杂交缓冲液稀释探针,85℃加热5分钟,置于冰块中10分钟; 15)杂交;第二天 16)将玻片置于SSC中2次,每次5分钟以去除封片; 17)PBS清洗3分钟; 18)RNA酶A溶液中(或0.1-1ng/mlPBS中),37℃孵育30分钟; 19)PBS清洗5分钟; 20)室温,2×SSC清洗10分钟; 21)37℃,1×SSC清洗10分钟; 22)37℃,0.5×SSC清洗10分钟; 23)缓冲液A孵育10分钟; 24)缓冲液A(1%正常绵羊血清和0.03%三重氢核X-100)孵育30分钟; 25)加入抗地高辛抗体(1/200的上述缓冲液,来自Boehringer Mannheim),37℃孵育3 小时; 26)缓冲液A清洗2次,每次10分钟; 27)缓冲液B清洗2次,每次5分钟; 28)制成NBT/BCIP暗处保存30-60分钟,显微镜下进行观察,如果背景尚佳,显色时间可延长到16小时;29)停止缓冲液B的反应,用水进行简单的清洗; 30)固红,脱水以及封片进行核的复染。 2、使用地高辛标记的寡核苷酸探针进行石蜡切片的原位DNA杂交第一天 1)二甲苯于37℃脱蜡2次,每次15分钟; 2)无水乙醇浸泡2次,每次5分钟; 3) 95%乙醇浸泡2次,每次5分钟; 4) PBS清洗5分钟; 5) 2%焦碳酸二乙酯室温下浸泡10分钟; 6) PBS清洗5分钟; 7)加入胃蛋白酶25ul/ml,37℃孵育10分钟; 8) PBS清洗2次,每次5分钟; 9) 0.2N的HCl孵育30分钟; 10)PBS清洗2次,每次5分钟; 11)0.25%无水乙酸和0.1M三乙醇胺孵育10分钟;

荧光原位杂交(FISH)探针的制备及其应用

荧光原位杂交(FISH)探针的制备及其应用 概述 1、克隆性染色体异常是肿瘤的特征 2、染色体异常常见的类型 3、染色体异常的检测方法 二、荧光原位杂交及其探针 1、荧光原位杂交的原理 2、荧光原位杂交的探针 三、荧光原位杂交探针的制备和荧光原位杂交(按试验流程介绍) 一、概述 1、克隆性染色体异常是肿瘤的特征 1914年德国遗传学家Boveri就提出染色体畸变与肿瘤起源相关,然而这还仅仅只是一个假说;1960年Nowell和Hungerford在7例慢性髓系白血病(chronic myeloid leukemia,CML)的患者中发现后来被称为费城染色体(Philadelphia chromosome)的微小染色体;1973年Rowley证实了Ph染色体是9号和22号染色体易位所致,这是人们在肿瘤中认识到的第一个染色体易位;目前,已经有11,500篇文献报道了55,600多种克隆性细胞遗传学异常。这些染色体畸变,尤其是染色体易位及其相应的融合基因在肿瘤致病的起始阶段有着重要的作用,无不说明克隆性细胞遗传学异常是肿瘤的特征,在肿瘤起源中起重要作用。

下图是各种疾病报告的克隆性染色体异常病例数

2、染色体异常的常见类型 染色体异常指数目异常和结构异常两类:前者包括整条染色体数目的扩增和缺失;后者包括染色体易位、插入、倒置、区带的缺失或扩增等。 下图是染色体数目异常

染色体结构异常 3、染色体异常的检测方法 染色体异常的识别得益于二十世纪六十年代后发展起来的胰蛋白酶-姬姆萨染色和常规显带技术,使得常规筛查全基因组染色体异常和检测染色体核型改变成为可能。染色体显带是细胞遗传学分析技术中标准和常用的方法,但耗时且依赖于获得良好的分裂相,还难于分析复杂和隐匿的异常。

探针的设计原则

实时荧光Taqman 探针设计的几个要点 实验室很多同学都要做Real time PCR实验,实验室的师兄师姐都会有很多宝贵意见,不过也有实验室前没有做过的,查找了下资料和大家分享下关于实时荧光Taqman探针设计、实时荧光PCR探针的选择、 引物的设计及评价。 荧光探针法是用序列特异的荧光标记探针来检测产物,探针法的出现使得定量PCR技术的特异性比常规PCR技术大大提高。目前较常提及的有TaqMan探针、FRET杂交探针(荧光共振能量传递探针)和分子信 标Molecular Beacon。 广泛使用的TaqMan探针法是指PCR扩增时在加入一对引物的同时另外加入一个特异性的荧光探针,该探针只与模板特异性地结合,其结合位点在两条引物之间。探针的5′端标记有荧光报告基团(Reporter, R),如FAM、VIC等,3′端标记有荧光淬灭基团(Quencher, Q),如TAMRA等。当探针完整的时候,5′端报告基团经仪器光源激发的荧光正好被近距离的3′端荧光基团淬灭,仪器检测不到5′端报告基团所激发的荧光信号(就是说5’荧光基团的发射波长正好是3’ 荧光基团的吸收波长,因而能量被吸收传递到3’荧光基团而发出其它荧光)。随着PCR的进行,Taq酶在链延伸过程中遇到与模板结合的探针,其5′-3′外切酶活性(此活性是双链特异性的,游离的单链探针不受影响)就会将切割探针,释放5′端报告基团游离于反应体系中,远离3′端荧光淬灭基团的屏蔽,5′端报告基团受激发所发射的荧光信号就可以被探头检测到。也就是说每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。报告信号 的强度就代表了模板DNA的拷贝数。 (请注意,该图显示的不是普通的Taqman探针法,而是Taqman MGB探针法)Taqman探针检测的是积累荧光。常用的荧光基团有FAM,TET,VIC,HEX等等。当探针完整的时候,由于3′端的荧光淬灭基团在吸收5′端报告基团所发射的荧光能量,本身会发射波长不同的荧光而导致本底高,因此TaqMan探针近来又有新的发展——TaqMan MGB探针。MGB探针的淬灭基团采用非荧光淬灭基团(Non-Fluorescent Quencher),本身不产生荧光,可以大大降低本底信号的强度。同时探针上还连接有MGB (Minor Groove Binder)修饰基团,可以将探针的Tm值提高10°C左右。因此为了获得同样的Tm值,MGB探针可以比普通TaqMan探针设计得更短,既降低了合成成本,也使得探针设计的成功率大为提高——因为在模板的DNA碱基组成不理想的情况下,短的探针比长的更容易设计。实验证明,TaqMan MGB探针对于富含A/T 的模板可以区分得更为理想。 Taqman探针法已经得到广泛使用,不过有人认为这种技术利用了Taq酶5`—3`外切酶活性,一般试剂厂家只给Taq酶的聚合酶活性定标,没有同时给Taq酶5`—3`外切酶活性定标,不同批号试剂之间会给定量带来差异。另外对探针的熔点温度(Tm)仅要求其高于60°C,这就使不同试剂盒之间的特异性参差不齐,难 于做质控检测。 Real time PCR Taqman探针设计、实时多重PCR探针的选择和引物的设计及评价 一、实时荧光Taqman探针设计 总原则:探针选择要保守,引物选择要保守,因此必须找一段100-200bp相对要保守的片段来设计引物与探针。即real-time PCR的扩增片段是50bp----150bp。当找不到150bp的保守片段时,必须确保探针的 片段是保守的。

原位杂交技术的操作详解及小贴士

原位杂交技术的操作详解及小贴士 原位杂交技术应用于染色体、细胞和组织切片等样品中进行核酸特异性检测,与免疫组化技术的结合应用,能将DNA、mRNA和蛋白水平上的基因活性与样品的显微拓扑信息结合起来。1969年Pardue和Gall将放射性标记的探针直接应用于纯化核酸的杂交,此后得益于分子克隆技术的发展,及不同探针标记系统和检测系统的应用,大大增加了原位杂交检测的应用灵活性和检测灵敏度。 多种探针标记检测系统 基于地高辛、生物素和荧光标记分子的标记和检测系统是常见的原位杂交检测方法。 荧光标记检测常为直接探针标记方法,如在dUTP/UTP/ddUTP上连接Fluorescein后进行核酸标记。由于标记在核酸上的荧光分子必须经受杂交和洗脱过程中的考验,以及荧光分子易于衰减,其检测灵敏度受到一定的影响。但对荧光分子的直接检测呈现的背景较低。 间接标记的方法中应用了报告分子标记的探针,报告分子通过亲和酶促的方法进行显色。常用的报告分子如地高辛,生物素。结合地高辛抗体或链霉亲和素上耦联的酶系统进行间接的底物反应检测。地高辛标记核酸的历史可追溯到1987年,由于地高辛是洋地黄的花和叶中特有的成分,检测时使用的地高辛抗体不会结合于其他的生物分子。这是相较于生物素标记系统的优势。地高辛抗体上可耦联碱性磷酸酶、过氧化酶,及荧光分子和胶体金等,根据不同的应用需求,呈现高信噪比的核酸检测结果。但需注意,由于引入了免疫检测反应,在放大检测灵敏度的同时,应注意样品内源性酶的灭活,以降低检测背景。 通过不同标记方法的联合应用,还可在同一样本中实现染色体不同区域或细

胞样本中不同RNA序列的多重检测。 原位杂交中探针的选择 DNA探针、RNA探针和寡核苷酸探针均能通过不同的酶促分子反应进行标记。寡核苷酸探针的长度较短,因此避免了探针内部退火的问题,在杂交时的渗透能力也更好,探针与靶标的接触这是影响原位杂交是否成功的重要因素之一。DNA 探针、RNA探针在合成时需要控制探针片段长度,通常300-1000bp左右,能覆盖到较长片段的靶核酸序列,增加检测的灵敏度。 就DNA探针和RNA探针的比较,DNA探针在杂交过程中会出现探针双链之间退火的可能,也更倾向于在溶液中形成大分子的探针聚合体,从而影响其渗透能力。而RNA 探针的应用,将提高DNA-RNA杂交子的热稳定性。 Tips:RNA探针因其单链、高分子结合力、可适应高温杂交的特性,其检测特异性和灵敏度均优于DNA探针。常用的RNA探针标记方法为构建质粒后进行转率合成。通过PCR扩增的方法,可以更方便地进行RNA探针的制备;RNA探针合成后,还需验证其对目标片段检测的灵敏度和特异性。具体实验流程和注意事项可参考技术文章:A Method for High Quality Digoxigenin-Labeled RNA Probes for In Situ Hybridization 原位杂交检测步骤 原位杂交涉及的步骤:玻片的准备和样品固定,细胞或组织的预渗透处理,靶DNA变性(DNA原位杂交),探针制备,原位杂交过程,杂交后洗涤,探针(显色)检测。 1. 玻片的准备和样品固定 对于染色体涂片,1:1的乙醇/醚处理的载玻片已能符合要求。对于组织切片的原位杂交,为了在实验过程中不丢失组织样品,可使用多聚赖氨酸或铬矾

相关文档
最新文档