励磁系统在电力中的作用1

励磁系统在电力中的作用1
励磁系统在电力中的作用1

励磁系统在电力中的作用1

励磁系统是发电机的重要组成部分,它对发电机本身及电力系统的安全稳定运行有着重要的作用。

励磁系统在电力系统中的作用:

a. 维持电力系统某点电压的恒定。

b. 调整各个并联运行机组之间的无功分配。

c. 提高电力系统的静态稳定和动态稳定。

d. 故障切除后,可以缩短电动机自启动的时间。

e. 提高带延时的继电保护的明确性。

在电力系统正常运行或事故运行中,同步发电机的励磁控制系统起着重要作用。优良的励磁控制系统不仅可以靠运行并提供合格的电能,而且还可有效地提高系统的技术指标。根据运行方式的要求,励磁控制系统的任务① 电压控制

电力系统在正常运行时,负荷总是经常波动的,同步发电机的功率就相应变化。由于发电机内部压降的存在,动,机端电压就会相应的发生变化,这就需要对励磁电流进行调节以维持机端或系统中某点的电压在给定的水控制系统担负了维持电压水平的任务。

② 控制无功功率的分配

与无限大容量电网并联运行的机组,调节它的励磁电流可以改变发电机无功功率的数值。但是,在实际运行中联运行的母线并不是无限大母线,即系统的等值阻抗不等于零。它的电压将随着负荷波动而改变,改变其中一磁电流不但影响它的电压和无功功率,而且也将影响与之并联运行机组的无功功率,其影响程度与系统情况有步发电机的励磁自动控制系统还担负着并联运行机组间的无功功率合理分配的任务。

③ 提高同步发电机并联运行的稳定性

保持同步发电机稳定运行是保证电力系统可靠供电的首要条件,电力系统在运行中随时都可能遭受各种干扰,发电机组能够恢复到原来的运行状态或过渡到另一个新的运行状态,则称系统是稳定的,其主要标志是在暂态同步发电机能维持或恢复同步运行。

电力系统稳定分为静态稳定和暂态稳定两类。所谓静态稳定是指电力系统在正常运行状态下,经受微小扰动后行状态的能力。而暂态稳定是指电力系统在某一正常运行方式下突然遭受大扰动后,能够过渡到一个新的稳定者恢复到原来运行状态的能力。这里所说的大扰动是指电力系统发生某种事故,如高压电网发生短路或发电机在分析电力系统稳定性问题时,不论静态稳定或暂态稳定,在数字模型表达式中总含有发电机空载电势E,而有关。可见,励磁自动控制系统是通过改变励磁电流从而改变E值来改善系统稳定性的。

④ 改善电力系统的运行条件

当电力系统由于种种原因,出现短时低电压时,励磁自动控制系统可以发挥其强励功能,即大幅度地增加励磁压,这在一定条件下可以改善系统的运行条件。

2.无刷励磁系统的技术特点

由无刷励磁机组、励磁(电压)调节器以及相应的操作设备组成的整体称为发电机的无刷励磁系统。它连同被控机构成的电压反馈控制称为无刷励磁控制系统。励磁系统向发电机励磁绕组供电以建立磁场,并根据发电机运节励磁电流以维持机端和系统的电压水平,并且决定着电力系统中并联机组间无功功率的分配。

无刷励磁机组由一台永磁发电机(交流付励磁机),一台交流主励磁机及装在发电机轴上的旋转整流装置组成。取消了大电流集电环及其碳刷装置,从而克服了常规的直流励磁机在高速换向器制造和发电机大电流集电环通明显存在的严重困难。交流主励磁机的工作原理几乎与直流发电机相同,其差别只是直流发电机利用换向器作电枢绕组内交流电变成直流电输出,而无刷励磁机则利用装在发电机轴上的旋转二极管整流从而同样将电枢绕

转变为直流电输出。这样既不可能产生火花,又使结构紧凑,同时也大大减少了运行维护的工作量,非常适用励磁系统的自动励磁调节对提高发电机并联机组稳定性有很大的作用,尤其近代电力系统元件设计有导致稳定势。引起这种趋势的原因是:

a.大容量发电机的惯性时间常数的降低和标么值电抗的增大。

b.大型联合电力系统中,愈来愈多地依靠输电线路传送大的功率。

这种趋势,使人们更加依赖于采用励磁控制的方法来提高稳定性。由此也促进了励磁系统技术的发展。特别对电机,采用旋转二极管无刷励磁系统是目前最有前途的励磁方式。

对励磁系统的基本要求:

首先励磁系统要有足够的容量,能提供发电机在额定负载和可能低的功率因数下所需的最大励磁容量,以及事系统强励到顶值时所能承担的短时最大励磁容量。励磁系统要有足够的电压给定值的调节范围,包括维持预定范围和输出无功功率的变化范围(由滞相到进相)。励磁系统应有独立的励磁电源,不受外部电网影响。励磁系应该是稳定的,在空载和负载情况下均能稳定连续地调节。励磁系统应反应灵敏和迅速。

有两个衡量励磁系统主要性能的指标,即电压反应比(电压响应比)和励磁电压顶值。前者表征励磁系统电压定义为励磁系统的输入(给定值)有一阶跃变化(其大小足以使励磁机从空载额定电压上升到顶值)时,励磁机在上升的标么值。图2—1示出了一个典型响应,在输入阶跃变化作用下,励磁电压沿曲线ad上升到顶值。因为的,则用0.5秒内曲线ad下的面积定义为反应比。可用acb包围的面积代替实际曲线abd所包围的面积且此于是反应比Rr表示为:

Rr = 电压(标么值)/秒

图2—1 电压反应比的定义曲线

励磁电压达到95%顶值电压所需时间(以秒计)称为励磁系统电压反应时间(亦即系统强励时达到顶值电压与额差的95%所需的时间)。但对于大型发电机组的快速励磁系统,能在0.1秒或更短的时间内到达顶值,这种励磁始响应励磁系统,那么在图中将三角形acb延伸到0.5秒就没有意义了。为此引进了新的定义:对于励磁电压秒的励磁系统,在图中用时间间隔oe=0.1秒代替0.5秒来定义反应比。

励磁顶值电压用于衡量励磁系统的强励能力,顶值电压的标么值一般定义为励磁顶值电压与额定励磁电压之比行励磁倍数。强励倍数也可表示为励磁顶值电流与额定励磁电流之比。但某些励磁系统励磁电源内阻抗很大,在强行励磁的初瞬间,由于发电机励磁绕组有很大的电感,转子电流还来不及增长时,励磁电源内阻降落小,上的电压会比发电机励磁电流到达稳定的顶值的电压值为大。考虑这一情况,新的规定中是用励磁机稳态顶值磁电压之比来定量强励倍数。按规程要求,强励倍数为1.5~2.0。强励倍数越高就越有利于系统的稳定。大容载能力约束一般承受强励倍数能力较中小容量的发电机组低。

针对600MW机组采用高起始响应无刷励磁系统,对其性能要求是:

a.励磁容量能满足发电机正常或故障时各种工况的要求。

b.保证发电机运行的可靠性和稳定性。

c. 励磁系统应维持发电机端电压恒定并保证一定的精度和并联机组间稳定分担无功功率。

d.具有一定的强励容量。要求强励顶值2倍,响应比为3.5倍/秒。

e.在欠励区域保证发电机稳定运行。

f.应装设过电压保护。

g.对于机组振荡能提供正阻尼, 改善机组的动态稳定性。

h.满足顶值电压倍数和平均电压反应比的要求。

旋转二极管整流型的无刷励磁系统,主励磁机采用频率为200Hz的交流发电机,其励磁绕组由永磁型付励磁机电机供电,励磁调节器通过小型可控硅整流桥控制主励磁机的励磁,这种励磁控制系统中包括了主励磁机的时励磁机的时间常数,主励磁机的铁芯不用整体结构,而用全叠片结构。图2—2示出其简化原理接线。

图2—2旋转二极管型无刷励磁系统简化原理图

对于大容量机组,为了提高其快速性,在主励磁机结构上采取以下措施:

a. 励磁机所有通过主极磁通部分均采用叠片结构。

b. 精心选择导线尺寸、匝数、糟形,使所有绕组的电感最小。

c.取消极面阻尼绕组。

d. 穿过主磁极的螺栓和主磁极叠片完全绝缘。

在励磁控制回路中所采取的措施是在励磁调节器回路中加入了发电机转子电压的硬负反馈,这一反馈回路中包加入负反馈后,由负反馈所包围的控制回路时间常数减少到原时间常数T的,kf为励磁电压的放大系数,也制回路的放大倍数,kf 》1。a为负反馈系数,一般a《1。可见加入负反馈后时间常数明显降低。然而加入负大系数也减至原有的。因此还要加大付励磁机的容量,增大付励磁机的电压值,将负反馈造成的增益降低补能加大转子电压上升速度并获得足够的强励顶值,实现这种无刷励磁系统的高起始响应。

无刷励磁系统具有以下技术特点:

a. 采用高起始响应无刷励磁系统,顶值电压为2倍(恒负载电流时),电压反应比为3.5倍/秒(恒电压时)。

b. 励磁系统的容量可以满足发电机额定励磁电流110%的要求。

c. 强励时间为10秒(决定于磁场热容量允许值)。

d. 自动励磁调节器设有自动跟踪系统,可实现自动与手动控制之间的平滑无扰动切换。

e. 自动励磁调节器的电压调整范围可从85%发电机额定电压(空载)变化至105%发电机额定电压(负载)。

f. 自动励磁调节器的稳态调节精度为±1%,稳态调差率为±1%。

g. 自动励磁调节器提供发电机电压信号丢失检测报警、无刷交流主励磁机和发电机磁场接地自动检测、功率系置。

h. 励磁系统具有欠励限制、最大励磁限制、过励保护、V/H限制和保护等功能。

i. 旋转整流装置采用三相全控桥式整流线路,在每相25%的硅整流管损坏时,励磁系统能保证发电机在额定负并满足强励要求。

j. 主励磁机磁场采用逆变和磁场断路器灭磁。

所谓灭磁,即在发电机跳闸前迅速将励磁回路的磁场能量减弱到最小程度,这样一方面可以防止励磁开关断开感应高电压危急其绝缘,另一方面,在发变组回路内部发生故障跳闸时可以削弱定子感应电势向故障点的供流线和铁芯。

对灭磁的要求:一是灭磁时间应尽可能短,灭磁时间指发电机灭磁时机端电压由额定值Ue降至5%Ue所需的时时励磁绕组过电压不超过允许值,一般为转子额定励磁电压的4~5倍。

发电机灭磁时,通常先采用逆变灭磁方式在极短的时间内将发电机的磁场能量降至最低,然后再跳开磁场开关的磁场能量由磁场开关消耗掉。

三相全控桥式整流线路有整流和逆变两种工作状态,两种状态的转换可通过改变可控硅导通角α的大小来完下,α≤π/2,整流管正向导通,整流电压为正值,整流电压与电流同极性,整流器将交流电转变为直流电送当α≥π/2时,整流管负向导通,整流电压为负值,整流电压与电流极性相反,整流器将转子电感中的能量反侧而消耗,这就是逆变状态,由于转子直流侧无电源,故逆变过程是暂态的,当逆变进行到励磁绕组中的剩余再维持逆变时,逆变过程结束。逆变过程能够消耗转子磁场中的大部分能量。

3. GEC—I系列全数字非线性励磁调节装置

3.1 硬件结构

GEC—I系列全数字非线性励磁装置主要应用于三机励磁系统,全双置配置,即配备完全独立的两个控制柜,每器、功率桥、电源及相关的逻辑操作回路。两套调节器并列运行,每套调节器均能满足包括强励在内的发电机对励磁的要求,并能满足大型发电机组对励磁调节器可靠性的要求。

励磁控制器的全双置结构分为A、B柜,每柜的结构基本相同,柜内的安排从上至下分别为:仪表单元、控制单开关单元、SCR全控整流桥及交、直流开关。

⑴ 仪表单元

仪表单元中主要安装的是隔离、驱动继电器,完成现场强电信号与微机弱电信号的隔离,以及执行相应的跳、V1:交流电压表,指示SCR输入处的阳极电压;B柜为机端电压表。

V2:直流电压表,指示SCR整流输出的电压。

A:直流电流表,指示SCR整流输出的电流(本柜)。

“直流合闸”按钮:合本柜的直流开关AK(BK)

“直流分闸”按钮:分本柜的直流开关AK(BK)

A柜仪表单元

在个别系统设计中,A柜增加了“控制方式”开关。

“控制方式”开关:切换A、B柜控制方式为恒功率因数或恒无功方式。

以下两部件仅B柜上有:

“方式选择”开关:选择跟踪的方式,一般指向“跟踪允许”位置。

“主从切换”按钮:切换主、从状态(在“跟踪允许”方式下)

B柜仪表单元

⑵ 控制单元

控制单元内主要安装的是核心部件:STD总线控制器和信号转换板JKB。STD控制器完成GEC的控制功能,JK 的隔离变换以及脉冲功率放大和同步信号处理。

LED指示:指示GEC的状态及报警信息。

键盘:完成状态显示及参数修改功能。

通讯口:STD计算机与PC机传送录波数据的端口。

“增磁”按钮:本柜增加励磁(增加给定值Ur)。

“减磁”按钮:本柜减少励磁(减少给定值Ur)。

“复归”按钮:本柜报警信号复归。

“监控投退”开关:切换本柜运行方式,即调节器处于监控状态还是运行状态。

“PSS投退”开关:投退本柜PSS功能。

“备用”开关:备用。

控制单元

⑶电源单元

电源单元内安装的是电源变压器及电源板,GEC控制器是交、直流双路供电的,任何一路电源有电即可保证G 常时交、直流双路并列供电。

电源单元

“直流”LED:直流供电指示灯。

“交流”LED:交流供电指示灯。

⑷开关单元

开关单元安装了STD工控机的直流电源开关及操作回路的电源开关,以及跟踪切换PLC等,其中A柜有以下开1SW:AK控制电源开关

2SW:操作回路电源开关

4SW:A组微机电源开关

B柜开关单元安装了以下部件:

3SW:BK控制电源开关

5SW:B组微机电源开关

PLC:跟踪切换逻辑PLC

开关单元

4SW、5SW是微机直流输入电源,而微机的交流输入电源由三相交流开关ADK、BDK控制。1SW、3SW控制直流开作电源,只有1SW、3SW合上,AK、BK才能操作。

操作回路电源开关2SW控制的是操作继电器,如增磁继电器、减磁继电器、灭磁继电器、主油开关位置继电器只有2SW合上,这些继电器才能操作。1SW~5SW均带有过流,失压脱扣及报警功能(应用户要求,可拆除失压⑸SCR全控桥单元

SCR全控桥单元含有由六只可控硅组成的全控整流桥及相应的脉冲触发和RC吸收回路。每只可控硅均有LED脉测到控制脉冲波形。

LED指示:指示可控硅控制单元有无脉冲

“阳极”:SCR阳极

“阴极”:SCR阴极

“控制极”:SCR控制极

控制极对阴极,可用示波器测量出触发脉冲的波形。

全控桥单元

⑹交、直流开关

GEC的每个柜子的最下层安装全控整流桥的交流开关和直流开关,如下图所示:

ADK:A柜三相交流开关

AK :A柜直流开关

BDK:B柜三相交流开关

BK :B柜直流开关

LEM:总输出电流传感器

A柜交直流开关

B柜交直流开关

ADK、BDK只能手动操作,且兼作微机电源交流组开关。AK、BK可电动就地或远方操作,1SW、3SW是其操作电流合闸”、“直流分闸”按钮是其就地操作按钮。

交、直流开关均为下端出线、对交流开关ADK、BDK,其进线从左到右排列分别是A、B、C相;对直流开关AK、左“+”右“-”。

有的GEC柜出线在柜后布置,具体接线如下图:

LEM传感器用于测量GEC输出的总励磁电流,用于保护模块的判断。其中A柜LEM装设在AK下口正极、B柜

下口负极,现场安装时连线如下图示。

3.2 状态设置与基本操作

为了保证运行的可靠性,GEC装置一般采用全双置结构,分为相对独立的A柜和B柜。A、B柜的运行方式有两运行方式和完全并列方式。另外在控制器的内部,还设置了一些运行状态,如自动状态、手动状态、通讯状态监控状态、等待状态等,下面作一简要说明。

⑴ 运行状态

主从并列运行方式:指A、B柜并列运行,分主从状态,采用强制均流措施,A、B柜控制单元同时发脉冲,共流(理想状况下各带50%负荷)。若单柜发生故障,则自动将故障柜切除(通过封锁脉冲输出实现),另外正

自动带满100%负荷。在故障切换时一般没有明显波动。

因为主从并列运行方式可靠性高、能自动跟踪、均流性好,因此我们推荐用户采用这种运行方式运行。

GEC励磁调节器正常运行时,仪表单元的方式选择开关指向“跟踪允许”位置,两套励磁调节器分主从,为主行。若主状态控制器发生故障,则通过故障检测及切换部件切换成从状态,而原来为从状态的控制器此时则作行。在正常无故障运行时,也可以通过“主从切换”按钮切换A、B柜的主、从状态。A、B柜控制单元的LED状从状态”灯哪一套点亮,就表示哪一套运行在主状态。

完全并列运行方式:指A、B柜相对独立并列运行,不分主从状态(全为主状态),A、B柜互不跟踪运行,A 同时发脉冲,共同承担负载电流。若一套控制器发生故障,则正常运行的一套自动带满100%负荷。

因为完全并列运行方式没有自动跟踪功能,没有强制限流措施,均流性不好,因此不建议采用此种运行方式。方式选择开关指向“跟踪闭锁”位置,此时GEC的A、B柜即为完全并列运行。此时A、B柜控制单元的LED状从状态”灯全点亮。

跟踪切换需要故障检测及切换部件,此部件的可靠性及逻辑的完备性直接影响了系统的可靠性。若将GEC仪表择开关指向“跟踪允许”位置,这时GEC即为主从并列运行方式,我们可以从控制单元的LED状态指示的“主出哪一套在主状态(LED灯亮),哪一套处在从状态(LED灯灭)。

GEC的故障检测及切换部件是用位于B柜开关单元的跟踪逻辑PLC完成的。PLC的输入信息是A、B柜的运行信故障)、“方式选择”开关位置、“主从切换”按钮状态,PLC的输出信息是A、B套的主、从状态,如下图

励磁系统介绍

发电部培训专题(发电机的励磁系统)(因为目前我公司的励磁系统的资料还没有到,该培训资料还是不全面的,其间还有许多不足之处希望大家批评指正)

我厂励磁系统采用的是机端自并励静止励磁系统,全套引入ABB公司型号为UNITROL5000励磁系统。 发电机励磁系统能够满足不超过额定励磁电压和额定励磁电流1.1倍情况下的连续运行。励磁系统具有短时间过负荷能力,励磁强励倍数为2倍,允许强励时间为20秒,励磁系统强励动作值为0.8倍的机端电压值。 我厂励磁系统可控硅整流器设置有备用容量,功率整流装置并联支路为5路。当一路退出运行后还可以满足强励及额定励磁电压和额定励磁电流1.1倍情况下的连续运行工况;当两路退出运行时还可以满足额定励磁电压和额定励磁电流1.1倍情况下的连续运行工况,但闭锁强励功能。5路整流装置均设有均流装置,均流系数不低于95%。整流柜冷却风机有100%的额定容量,其通风装置有两路电源供电并可以自动进行切换。任意一台整流柜或风机有故障时,都会发生报警。每一路整流装置都设有快速熔断器保护。 我厂励磁系统主要包括:励磁变、励磁调节器、可控硅整流器、起励和灭磁单元几个部分。如图所示:

我厂励磁变采用三相油浸式变压器,其容量为7500KV A,变比为,接线形式为△/Y5形式,高压侧每相有3组CT ,其中两组分别提供给发变组保护A、C柜,另一组为测量用。低压侧设有三组CT其中两组分别提供给发变组保护A、C柜,另一组为备用。高压侧绝缘等级是按照35KV设计的,它设有静态屏蔽装置。 我厂励磁调节器采用的是数字微机型,具有微调节和提高暂态稳定的特性。励磁调节器设有过励限制、过励保护、低励限制、电力系统稳定器、过激磁限制、过激磁保护、转子过电压和PT断线保护单元。自动调节器有两个完全相同而且独立的通道,每个通道设有独立的CT、PT稳压电源元件。两个通道可实现自动跟踪和无扰动切换。单通道可以完全满足发电机各种工况运行。自动调节器具备以下4种运行方式:机端恒压运行方式、恒励磁电流运行方式、恒无功功率运行方式、恒功率因数运行方式。自动调节器采用风机强制通风。

(完整版)电力系统分析基础知识点总结

一.填空题 1、输电线路的网络参数是指(电阻)、(电抗)、(电纳)、(电导)。 2、所谓“电压降落”是指输电线首端和末端电压的(相量)之差。“电压偏移”是指输电线某点的实际电压和额定 电压的(数值)的差。 3、由无限大的电源供电系统,发生三相短路时,其短路电流包含(强制/周期)分量和(自由/非周期)分量,短路 电流的最大瞬时的值又叫(短路冲击电流),他出现在短路后约(半)个周波左右,当频率等于50HZ时,这个时间应为(0.01)秒左右。 4、标么值是指(有名值/实际值)和(基准值)的比值。 5、所谓“短路”是指(电力系统正常运行情况以外的相与相之间或相与地之间的连接),在三相系统中短路的基本 形式有(三相短路),(两相短路),(单相短路接地),(两相短路接地)。 6、电力系统中的有功功率电源是(各类发电厂的发电机),无功功率电源是(发电机),(电容器和调相机),(并联 电抗器),(静止补偿器和静止调相机)。 7、电力系统的中性点接地方式有(直接接地)(不接地)(经消弧线圈接地)。 8、电力网的接线方式通常按供电可靠性分为(无备用)接线和(有备用)接线。 9、架空线是由(导线)(避雷线)(杆塔)(绝缘子)(金具)构成。 10、电力系统的调压措施有(改变发电机端电压)、(改变变压器变比)、(借并联补偿设备调压)、(改变输电线路参 数)。 11、某变压器铭牌上标么电压为220±2*2.5%,他共有(5)个接头,各分接头电压分别为(220KV)(214.5KV)(209KV) (225.5KV)(231KV)。 二:思考题 1.电力网,电力系统和动力系统的定义是什么?(p2) 答: 电力系统:由发电机、发电厂、输电、变电、配电以及负荷组成的系统。 电力网:由变压器、电力线路、等变换、输送、分配电能的设备组成的部分。 动力系统:电力系统和动力部分的总和。 2.电力系统的电气接线图和地理接线图有何区别?(p4-5) 答:电力系统的地理接线图主要显示该系统中发电厂、变电所的地理位置,电力线路的路径以及它们相互间的连接。但难以表示各主要电机电器间的联系。 电力系统的电气接线图主要显示该系统中发电机、变压器、母线、断路器、电力线路等主要电机电器、线路之间的电气结线。但难以反映各发电厂、变电所、电力线路的相对位置。 3.电力系统运行的特点和要求是什么?(p5) 答:特点:(1)电能与国民经济各部门联系密切。(2)电能不能大量储存。(3)生产、输送、消费电能各环节所组成的统一整体不可分割。(4)电能生产、输送、消费工况的改变十分迅速。(5)对电能质量的要求颇为严格。 要求:(1)保证可靠的持续供电。(2)保证良好的电能质量。(3)保证系统运行的经济性。 4.电网互联的优缺点是什么?(p7) 答:可大大提高供电的可靠性,减少为防止设备事故引起供电中断而设置的备用容量;可更合理的调配用电,降低联合系统的最大负荷,提高发电设备的利用率,减少联合系统中发电设备的总容量;可更合理的利用系统中各类发电厂提高运行经济性。同时,由于个别负荷在系统中所占比重减小,其波动对系统电能质量影响也减小。联合电力系统容量很大,个别机组的开停甚至故障,对系统的影响将减小,从而可采用大容高效率的机组。 5.我国电力网的额定电压等级有哪些?与之对应的平均额定电压是多少?系统各元件的额定电压如何确定? (p8-9) 答:额定电压等级有(kv):3、6、10、35、110、220、330、500 平均额定电压有(kv):3.15、6.3、10.5、37、115、230、345、525 系统各元件的额定电压如何确定:发电机母线比额定电压高5%。变压器接电源侧为额定电压,接负荷侧比额定电压高10%,变压器如果直接接负荷,则这一侧比额定电压高5%。 6.电力系统为什么不采用一个统一的电压等级,而要设置多级电压?(p8) S 。当功率一定时电压越高电流越小,导线答:三相功率S和线电压U、线电流I之间的固定关系为

发电机静态励磁系统

发电机静态励磁系统 发电机静态励磁系统(参考EXC —9000 型)发电机励磁系统的主要任务是向发电机的励磁绕组提供一个可调的直流电流,以满足发电机正常运行的需要。无论在稳定运行或暂态过程中,同步发电机运行状态在很大程度上与励磁有关。对发电机的励磁进行的调节和控制,不仅可以保证发电机运行的可靠性和稳定性,而且可以提高发电机及其电力系统的技术经济指标。 WX21Z —085LLT 150MW 发电机采用的是静态励磁方式,也称为机端自并励励磁系统,指的是发电机出口处装设有一台降压的励磁变压器通过晶闸管向发电机提供受控的励磁电流,其显著特点是整个励磁装置中没有旋转的励磁机部分,电源来自静止的变压器所以又称为静态励磁系统。这种系统没有转动部分,励磁系统接线相对简单,维护简单,造价低,而且是一种高起始响应系统。但这种系统也有缺点,当发生发电机机端短路时,励磁电压会严重下降,以至完全消失。实际证明,在短路开始的0.5S 内,静态励磁与它励方式的励磁能力是很接近的,只是在短路0.5S 以后才明显下降。因此,只要发变组装设了动作时间小于0.5S 的快速保护,就能满足静态励磁系统的要求。 自动励磁调节器概述自动励磁调节器是发电机励磁控制系统中的控制设备,其基本任务是检测和综合励磁控制系统运行状态的信息,即发电机的端电压、静子电流、转子电流、有功功率、无功功率、发电机

频率等,并产生相应的控制信号,控制励磁功率单元的输出,以达到自动调节励磁、满足发电机及系统安全稳定运行的需要。自动励磁系统主要作用分析 1、控制发电机机端电压 在系统正常运行条件下,励磁调节系统供给同步发电机所需要的励磁功率,根据不同的负荷情况,自动调节励磁电流,以维持机端或系统某点电压在给定水平上。根据发电机的外特性曲线可知,造成发电机空载电势与端电压差值的主要原因是负荷电流中无功电流的大小,如果发电机的励磁电流保持不变时,当负荷的无功电流越大时,端电压降低也越严重,发电机的外特性曲线就是保持发电机转速不变,发电机的负载和负载功率因数为常数的情况下,发电机端电压随负载变化的曲线。我们所说的负载一共可以分为三类,即电感性负载、电容性负载、电阻性负载,发电机在接带这三种不同的负载时所对应的外特性曲线是不一样的,容性负载的增大使发电机端电压上升,而阻性和感性负载的增大使发电机端电压下降。从电力系统实际情况来看,负载都是阻性与感性的一种综合,当发电机接带这种综合负载时,发电机电枢反应的结果是将发电机气隙磁场削弱并扭曲,这就必然会使发电机的感应电势减小,因而使发电机的端电压降低,就必须增加转子励磁电流以增强主磁场,从而补偿由于电枢反应引起气隙磁场被削弱的程度。 2、控制无功功率分配发电机输出的无功功率和励磁电流有关,调节励磁可改变发电机输出的无功功率。在实际运行中,改变励磁会使端电压和输出无功功率都发生变化,但端电压变化较小,而输出的无

二(电力系统基本知识)单选学习资料

二、单选题(电力系统基本知识) 1. 当单电源变电所的高压为(A.线路—变压器组)接线,低压为单母线接线方式,只要线路或变压器及变压器 低压侧任何一元件发生故障或检修,整个变电所都将停电,母线故障或检修,整个变电所也要停电。 2. 下列各项,一般情况下属于一类用电负荷的是(B.中断供电时将造成人身伤亡)。 3. 配电变压器或低压发电机中性点通过接地装置与大地相连,即为(A.工作接地)。 4. 在三相系统中发生的短路中,除(A.三相短路)时,三相回路依旧对称,其余三类均属不对称短路。 5. 电流互感器是将高压系统中的电流或者低压系统中的大电流改变为(A.低压系统)标准的小电流。 6. 环网供电的目的是为了提高(C.供电可靠性)。 7. 低压配电网一般指(C.220V)、400V电压等级的配电网。 8. 电压变化的速率大于(A.1%),即为电压急剧变化。 9. 在10kV变电所中,主变压器将(A.10kV)的电压变为380/220V供给380/220V的负荷。 10. 我国10kV电网,为提高供电的可靠性,一般采用(A.中性点不接地)的运行方式。 11. 用户用的电力变压器一般为无载调压型,其高压绕组一般有(B.1±2×2.5%)UN的电压分接头,当用电设 备电压偏低时,可将变压器电压分接头放在较低档。 12. 一类负荷中的特别重要负荷,除由(B.两个)独立电源供电外,还应增设应急电源,并不准将其他负荷接入 应急供电系统。 13. 交流特高压输电网一般指(C.1000kV)及以上电压电网。 14. 从发电厂到用户的供电过程包括发电机、升压变压器、(A.输电线路)、降压变压器、配电线路等。 15. 在负荷不变的情况下,配电系统电压等级由10kV升至20kV,功率损耗降低至原来的(D.25%)。 16. 为了提高供电可靠性、经济性,合理利用动力资源,充分发挥水力发电厂作用,以及减少总装机容量和备用容量,现在都是将各种类型的发电厂、变电所通过(B.输配电线路)连接成一个系统。 17. 变、配电所主要由(A.主变压器)、配电装置及测量、控制系统等部分构成,是电网的重要组成部分和电能 传输的重要环节。 18. (A.过补偿)可避免谐振过电压的产生,因此得到广泛采用。 19. 供电频率的允许偏差规定,在电力系统非正常状态下供电频率允许偏差可超过(C.±1.0)Hz。 20. 在中性点直接接地的电力系统中,发生单相接地故障时,各相对地绝缘水平取决于(A.相电压)。 21. 交流高压输电网一般指(D.110kV)、220kV电网。 22. 消弧线圈实际是一个铁芯线圈,其(A.电阻)很小,电抗很大。 23. 在中性点不接地的电力系统中,当发生单相接地故障时,流入大地的电流若过大,就会在接地故障点出现断续 电弧而引起(B.过电流)。 24. 过补偿方式可避免(B.谐振过电压)的产生,因此得到广泛采用。 25. 电网按其在电力系统中的作用不同,分为(B.输电网和配电网)。 26. (A.变、配电所)是电力网中的线路连接点,是用以变换电压、交换功率和汇集、分配电能的设施。 27. 中性点非直接接地系统中用电设备的绝缘水平应按(C.倍相电压)考虑。 28. 根据消弧线圈的电感电流对接地电容电流补偿程度的不同,分为全补偿、欠补偿、(C.过补偿)三种补偿方式。 29. 在中性点经消弧线圈接地系统中,当发生单相接地故障时,一般允许运行2h,同时需发出(C.报警信号)。 30. 在中性点经消弧线圈接地系统中,当发生(C.单相接地)故障时,一般允许运行2h,需发出报警信号。 31. 电网谐波的产生,主要在于电力系统中存在各种(C.非线性元件)元件。 32. 中断供电时将在经济上造成较大损失,属于(B.二类)负荷。 33. 按变电所在电力系统中的位置、作用及其特点划分,变电所的主要类型有枢纽变电所、区域变电所、地区变电 所、(A.配电变电所)、用户变电所、地下变电所和无人值班变电所等。 34. 一般直流(D.±500kV)及以下称为高压直流输电。 35. 电能质量包括(B.电压)、频率和波形的质量。 36. 供电电压允许偏差规定,(A.10kV及以下三相供电的)电压允许偏差为额定电压的±7%。 37. 根据(A.消弧线圈的电感电流)对接地电容电流补偿程度的不同,分为全补偿、欠补偿、过补偿三种补偿方式。 38. 灯泡通电的时间越长,则(B.消耗的电能就越多)。 39. 供电质量指(A.电能质量)与供电可靠性。 40. 当消弧线圈的电感电流大于(A.接地电容电流)时,接地处具有多余的电感性电流称为过补偿。

10KV线路中励磁涌流问题的探讨

10KV线路中励磁涌流问题的探讨 摘要:电力系统中,有时会碰到10KV线路在检修或者限电后恢复运行时,出现继电保护动作,开关跳闸,而运行人员在巡线后又找不到故障点,这时我们往往会忽略励磁涌流,而这种情况很有可能就是由励磁涌流引起的。 关键词:励磁涌流继电保护误动 在电力系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起,其覆盖的地域极其辽阔,运行环境极其复杂以及各种认为因素的影响,电气故障的发生是不可避免的。但有时会碰到这样的情况:一条10KV线路在检修或者限电后恢复运行时,出现继电保护动作、开关跳闸,而运行人员在巡线后又找不到故障点,这时我们往往会忽略励磁涌流,而这种情况很有可能就是由励磁涌流引起的。 1、励磁涌流的产生及特点: 当变压器空载投入或外部故障切除后电压恢复时,就有可能出现数值很大的励磁电流(又称为励磁涌流)。这时因为变压器空载时其铁心中的磁通不能突变,此时将出现一个非周期分量磁通,使变压器铁芯饱和,励磁电流将急剧增大。变压器励磁涌流最大值可以达到变压器额定电流的6~8倍,其中包含有大量的非周期分量和高次谐波分量,并以一定时间系数衰减。励磁涌流的大小和衰减时间跟变压器的容量大小、变压器安装地点与电源的电器距离、电力系统的容量大小、铁心中剩磁的大小和方向及铁心的性质都有关系。变压器容量大,产生历次涌流倍数小,但励磁涌流时间常数大,存在时间长,有时要经过数秒甚至几分钟后才能会衰减到正常值。 2、 线路中励磁涌流对继电保护装置的影响: 一条10KV线路装有大量的变压器,在线路改运行时,这些变压器都挂在线路上,在合闸瞬间,各变压器所产生的励磁涌流在线路上相互迭加、来回反射,产生了一个复杂的电磁暂态过程,在系统阻抗较小时,会出现较大的励磁涌流,时间常数也较大。一般10KV线路的主保护是采用三段式电流保护,即瞬时电流速断保护、限时电流速断保护和过电流保护。瞬时电流速断保护和过电流保护。瞬时电流速断保护由于要兼顾保护的灵敏度。动作电流值往往取得较小,特别在长线路或系统阻抗大时更明显,励磁涌流值很可能会大于保护装置的整定值,使保护误动。这种情况在线路变压器个数少、容量小以及系统阻抗大时并不突出,因此容易被忽视,但当线路变压器个数及容量增大后,就可能出现。这种10KV线路由于励磁涌流而无法正常投入的问题在我们实际中已发生了多次,值得注意。

励磁系统题库

励磁系统题库 填空题:2选择题:5判断题:6问答题:8

填空题: 1、同步发电机励磁系统的基本任务是(维持发电机电压在给定水平)和(稳定 地分配机组间的无功功率)。 2、可控硅元件导通的条件是①(阳极与阴极之间须加正向电压),②(控制极 上加正向触发电压)。 3、发电机正常停机采用(逆变)方式灭磁,事故时采用(跳灭磁开关)方式灭 磁。调节器具有五种励磁限制:(反时限过励磁电流限制/强励限制)、(过无功限制)、(欠励限制)、(功率柜故障限制)、(伏赫限制/过磁通限制)。 4、在三相全控桥中,共阴极组在(正)半周导通;共阳极组在(负)半周导通。 5、PID调节方式就是(比例积分微分)调节方式。 6、在励磁调节器中,控制发电机电压的通道,称为(自动),控制励磁电流的 通道,称为(手动)。 7、励磁调节器发生 PT 断线,则运行中的通道(退出)运行,即切换,同时该 通道由(发电机电压/自动)调节方式转化为(励磁电流/手动)调节方式。 8、励磁调节器发生过励或低励,调节器就由(发电机电压)调节方式转化为 (无功)调节方式。 9、接触器铁芯上的(短路)环,可防止衔铁振动。 10、一般来说,交流发电机的励磁绕组是转子绕组,而直流发电机的励磁绕 组是(定子)绕组。 11、发电机在旋转的转子磁场中发电,把(机械)能转化为(电能),在发电 机并网前(空载),调节发电机的(励磁电流),作用于调节发电机的机端电压,发电机并网后,调节发电机的(励磁电流),作用于调节发电机的无功负荷(无功电流),有功不变,调节主汽门作用于有功功率(有功电流)的变化,与励磁电流的大小无关。 12、应用电磁理论,导体在磁场中(切割磁力线)产生电动势(电压):ξ=BLV (B:磁场强度,L:导体长度,V:切割速度)。简单的讲就是:导体在磁场中做切割(磁力线)运动,就产生感应电动势,当形成(闭合回路时),就会感生出电流。

不平衡电流产生的原因

不平衡电流产生的原因 1励磁涌流的影响 变压器在正常运行时,它的励磁电流只流过变压器的电源测,因此,通过电流互感器反映到差动回路中就不能被平衡。在正常情况下,变压器励磁电流不过为变压器额定电流的 2% ~3%;在外部故障时,由于电压降低,励磁电流也相应减少,其影响就更小。在实际整定时可以不必考虑。 但是,在变压器空载投入和外部故障切除后电压恢复时,则可能产生数值很大的励磁涌流,其数值可达变压器额定电流的6~8倍。励磁涌流中含有大量的非周期分量和高次谐波分量。励磁涌流的大小与合闸瞬间外加电压的相位,铁芯中剩磁的大小和方向以及铁芯的特性有关。若正好在电压最大值时合闸,则不会出现励磁涌流,而只有正常时的电流。但对于三相变压器而言,由于三相电压相位不同,无论在任何瞬间合闸,至少有两相要出现程度不同的励磁涌流。励磁涌流可分解成各次谐波,以二次谐波为主,同时在励磁涌流波形中还会出现间断角。励磁涌流的波形如图2。 2绕组连接方式不同的影响 变压器各侧绕组的连接方式不同,如双绕组变压器采用Y,d接线,三绕组变压器采用Y,y,d 接线时,各侧电流相位就不同。这时,即使变压器各侧电流互感器二次电流大小能相互匹配,但不调整,相位差也会在差动回路中产生很大的不平衡电流。 3实际变比与计算变比不同的影响 由于电流互感器选用的是定型产品,其变比都是标准化的,很难与通过计算得出的变比相吻合,这样就会在主变差动回路中产生不平衡电流。 4改变调压档位引起的不平衡电流及克服措施 电力系统中带负荷调整变压器分接头是调节系统电压的重要手段。改变调压档位实际上就是改变变压器的变比。而差动保护已按照某一变比调整好,当分接头改换时,就会产生一个新的不平衡电流流入差动回路。此时不可能再用重新选择平衡线圈匝数的方法来消除这个不平衡电流,这是因为变压器的分接头是经常在改变,而差动保护的电流回路在带电时是不可能进行操作的。因此,对由此产生的不平衡电流,通常是根据具体情况提高保护动作的整定值加以克服。 5型号不同产生的不平衡电流 由于变压器各侧电流互感器的型号不同,它们的饱和特性和励磁电流(归算到同一侧)就不相同,因此,在差动回路中所产生的不平衡电流也就较大。 转子一点接地保护 转子一点接地保护反应发电机转子对大轴绝缘电阻的下降。顾名思义,转子一点接地就是转子上只有一个点与地接触了,发电机转子一点接地后励磁回路对地电压将有所升高。在正常情况下,励磁回路对地电压约为励磁电压的一半。当励磁回路的一端发生金属性接地故障时,另一端对地电压将升高为全部励磁电压值,即比正常电压值高出一倍。在这种情况下运行,当切断励磁回路中的开关或一次回路的主断路器时,将在励磁回路中产生暂态过电压,

电力系统基本知识试题库

电力系统基本知识题库 出题人: 1.电力系统中输送和分配电能的部分称为(B) A、电力系统; B、电力网; C、动力系统; D、直流输电系统2.发电机的额定电压与系统的额定电压为同一等级时,发电机的额定电压规定比系统的额定电压(D) A、低10%; B、高10% ; C、低5%; D、高5% 3.下面那种负荷级造成国民经济的重大损失,使市政生活的重要部门发生混乱(A) A、第一级负荷; B、第二级负荷; C、第三级负荷; D、无 4.系统向用户提供的无功功率越小用户电压就(A) A、越低; B、越高; C、越合乎标准; D、等于0 5.电力系统不能向负荷供应所需的足够的有功功率时,系统的频率就(B) A、要升高; B、要降低; C、会不高也不低; D、升高较轻6.电力系统在很小的干扰下,能独立地恢复到它初始运行状况的能力称(B) A、初态稳定; B、静态稳定; C、系统的抗干扰能力; D、动态稳定 7.频率主要决定于系统中的(A) A、有功功率平衡; B、无功功率平衡; C、电压; D、电流

8.电压主要决定于系统中的(B) A、有功功率平衡; B、无功功率平衡; C、频率; D、电流 9.用户供电电压的允许偏移对于35kV及以上电压级为额定值的(C)A、5%; B、10%; C、±5%; D、±10% 10.当电力系统发生短路故障时,在短路点将会(B) A、产生一个高电压; B、通过很大的短路电流; C、通过一个很小的正常的负荷; D、产生零序电流 11.电力系统在运行中发生短路故障时,通常伴随着电压(B) A、上升; B、下降; C、越来越稳定; D、无影响 12.根据国家标准,10kV及以下三相供电电压的允许偏差为额定电压的(D) A、3%; B、±3%; C、5%; D、±5% 13.系统频率波动的原因(B) A、无功的波动; B、有功的波动; C、电压的波动; D、以上三个原因 14.系统的容量越大允许的频率偏差越(C) A、大; B、不一定; C、小; D、不变 15.以下短路类型中(A)发生的机会最多。 A、单相接地短路; B、两相接地短路; C、三相短路; D、两相相间短路

电力系统的基本知识简易版

In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编订:XXXXXXXX 20XX年XX月XX日 电力系统的基本知识简易 版

电力系统的基本知识简易版 温馨提示:本安全管理文件应用在平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 1、什么叫电力系统的稳定和振荡? 答:电力系统正常运行时,原动机供给发 电机的功率总是等于发电机送给系统供负荷消 耗的功率,当电力系统受到扰动,使上述功率 平衡关系受到破坏时,电力系统应能自动地恢 复到原来的运行状态,或者凭借控制设备的作 用过度到新的功率平衡状态运行,即谓电力系 统稳定。这是电力系统维持稳定运行的能力, 是电力系统同步稳定(简称稳定)研究的课 题。 电力系统稳定分为静态稳定和暂态稳定。 静态稳定是指电力系统受到微小的扰动(如负

载和电压较小的变化)后,能自动地恢复到原来运行状态的能力。暂态稳定对应的是电网受到大扰动的情况。 系统的各点电压和电流均作往复摆动,系统的任何一点电流与电压之间的相位角都随功角δ的变化而改变、频率下降等我们通常把这种现象叫电力系统振荡。 2、电力系统振荡和短路的区别是什么? 答:电力系统振荡和短路的主要区别是: 振荡时系统各点电压和电流值均作往复摆动,而短路时电流、电压值是突变的。此外,振荡时电流、电压值的变化速度较慢,而短路时的电流、电压值突变量很大。 振荡时系统任何一点电流与电压之间的相位角随功角δ的变化而改变;而短路时,电流

电力系统基本知识题库

第一章电力系统基本知识题库(81题占7.77%) 一、选择题(40题) 1、产生谐波电流最为突出的设备是()。 A. 晶闸管变流设备 B. 电焊机 C. 荧光灯 正确答案:A 2、停电时间包括事故停电、()及临时性停电时间。 A. 限电 B. 用户非工作时间段停电 C. 计划检修停电 正确答案:B 3、中性点非直接接地系统中发生单相接地时,非故障相对地电压会()。【★★☆☆☆】 A. 不变 B. 升高 C. 降低 正确答案:B 4、10KV三相供电电压允许偏差为额定电压的()。【★★☆☆☆】 A. ±7% B. ±10% C. +7%,-10% 正确答案:A 5、在()系统,相与地之间通过电弧形成的连接视为短路。【★★☆☆☆】 A. 中性点直接接地 B. 中性点经消弧线圈接地 C. 中性点不接地 正确答案:A 6、供电质量指电能质量与()。 A. 供电可靠性 B. 供电经济性 C. 供电服务质量 正确答案:A 7、工作接地的接地电阻一般不应超过()Ω。 A. 4 B. 5 C. 10 正确答案:A 8、相与地之间通过金属导体、电弧或其他较小阻抗连接而形成的短路称为()。 A. 单相短路 B. 两相短路 C. 三相短路 正确答案:A 9、高压长线路重载运行时,线路末端电压()首端电压。 A. 低于

B. 高于 C. 等于 正确答案:A 10、我国技术标准规定电力系统的额定工作频率是()Hz。 A. 40 B. 50 C. 60 正确答案:B 11、TN-C系统是指电力系统中性点直接接地,整个系统的中性线与保护线是()。 A. 合一的 B. 分开的 C. 部分合一部分分开的 正确答案:A 12、在并联运行的同一电力系统中,任一瞬间的()在全系统都是统一的。 A. 电压 B. 频率 C. 波形 正确答案:B 13、电压变化的速率大于(),即为电压急剧变化。 A. 1% B. 2% C. 5% 正确答案:A 14、我国电力系统中,线路始端的最低电压等级为()。 A. 0.20kV B. 0.38kV C. 0.4kV 正确答案:C 15、发电厂的发电机输出电压通常为6.3kV,10.5kV,最高不超过()。 A. 20kV B. 25kV C. 30kV 正确答案:A 16、远距离输送电能时,首先要将发电机的输出电压通过升压变压器升高到几万伏或几十万伏,以()输电线上的能量损耗。【★★☆☆☆】 A. 减小 B. 增大 C. 改变 正确答案:A 17、220V单相供电电压允许偏差为额定电压的()。 A. ±7% B. ±10% C. +7%,-10% 正确答案:C 18、远距离输送电能时,首先要将发电机的输出电压通过升压变压器升高到几万伏或几十万

电力系统基础知识

1、电力系统基础知识 ●电力系统的构成 ●电力系统的额定电压 ●电力系统的中性点运行方式●供电质量的主要指标 ●电气主接线方式

电力系统的构成 一个完整的电力系统由分布各地的各种类型的发电厂、升压和降压变电所、输电线路及电力用户组成,它们分别完成电能的生产、电压变换、电能的输配及使用。 图1-1 电力系统的组成示意图

电力系统的额定电压 电网电压是有等级的,电网的额定电压等级是根据国民经济发展的需要、技术经济的合理性以及电气设备的制造水平等因素,经全面分析论证,由国家统一制定和颁布的。 1.用电设备 用电设备的额定电压和电网的额定电压一致。实际上,由于电网中有电压损失,致使各点实际电压偏离额定值。为了保证用电设备的良好运行,国家对各级电网电压的偏差均有严格规定。显然,用电设备应具有比电网电压允许偏差更宽的正常工作电压范围。 2.发电机 发电机的额定电压一般比同级电网额定电压高出5%,用于补偿电网上的电压损失。3.变压器 变压器的额定电压分为一次和二次绕组。对于一次绕组,当变压器接于电网末端时,性质上等同于电网上的一个负荷(如工厂降压变压器),故其额定电压与电网一致,当变压器接于发电机引出端时(如发电厂升压变压器),则其额定电压应与发电机额定电压相同。对于二次绕组,额定电压是指空载电压,考虑到变压器承载时自身电压损失(按5%计),变压器二次绕组额定电压应比电网额定电压高5%,当二次侧输电距离较长时,还应考虑到线路电压损失(按5%计),此时,二次绕组额定电压应比电网额定电压高10%。

电力系统的中性点运行方式 在电力系统中,当变压器或发电机的三相绕组为星形联结时,其中性点可有两种运行方式:中性点接地和中性点不接地。中性点直接接地系统称为大电流接地系统,中性点不接地和中性点经消弧线圈(或电阻)接地的系统称为小电流接地系统。中性点的运行方式主要取决于单相接地时电气设备绝缘要求及供电可靠性。图1-2列出了常用的中性点运行方式。图中,电容C为输电线路对地分布电容。 图1-2 电力系统中性点运行方式 a)中性点直接接地b)中性点不接地 c)中性点经消弧线圈接地d)中性点经电阻接地 中性点直接接地方式:当发生一相对地绝缘破坏时,即构成单相短路,供电中断,可靠性降低。但是,该方式下非故障相对地电压不变,电气设备绝缘水平可按相电压考虑。此外,在380/220V低压供电系统中,线对地电压为相电压,可接入单相负荷。 中性点不接地方式:当发生单相接地故障时,线电压不变,而非故障相对地电压升高到原来相电压的√3倍,供电不中断,可靠性高。

(完整版)励磁涌流产生的原因及应对策略

励磁涌流产生的原因及应对策略 随着经济的发展,电业因其无污染等特点被广泛应用到社会的各方面,变压器作为交流电力系统重要的电气设备,其正常运行直接关系着人民生命财产的安全。本文从变压器励磁涌流释义开始、随后就变压器励磁涌流产生原因进行了分析研究,最后就变压器励磁涌流的应对策略提出了很好的意见。 变压器的励磁电流是只流入变压器接通电源一侧绕组的,对纵差保护回路来说,励磁电流的存在就相当于变压器内部故障时的短路电流。因此,它必然给纵差保护的正确工作带来影响。下面笔者结合工作实际谈一下励磁涌流产生的原理及应对策略。 变压器励磁涌流释义 1.1励磁涌流的定义 变压器是一种依据电磁感应原理制造而成的静止元件,是交流输电系统中用于电压变换的重要电气设备。当合上断路器给变压器充电时,有时候,能够观察到变压器电流表的指针有很大摆动,随后,很快又返回到正常的空载电流值,这个冲击电流通常就被称为励磁涌流。 1.2变压器励磁涌流的特点 1.2.1涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线为尖顶波。 1.2.2励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。因此,在开始瞬间衰减很快,以后逐渐减慢,经0.5~1s后其值不超过(0.25~0.5)In。

1.2.3一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。 1.2.4励磁涌流的数值很大,最大可达额定电流的8~10倍。当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定。 变压器励磁涌流产生原因 变压器励磁涌流是由变压器铁心饱和引起的。在铁心不饱和时,铁心磁化曲线的斜率很大,励磁电流近似为零;一旦铁心出现饱和,磁化曲线斜率变小,电流随着磁通线性增长,最终演变为励磁涌流。 现代常用的电力变压器饱和磁通一般设为1.15~1.4,而变压器运行电压一般不应超过额定电压的3%~6%或更小,故纵差保护回路中的不平衡电流也很小。外部短路时,由于系统电压下降,励磁电流也将减小,因此,在稳态情况下,励磁电流对纵差保护的影响常常可忽略不计。然而在电压突然增加的特殊情况下,就可能产生很大的励磁电流,其数值可达额定电流的6~8倍。这种励磁电流就有可能大于饱和磁通,从而造成变压器饱和。 变压器励磁涌流的应对策略 目前采用速饱和中间变流器;二次谐波制动的方法;间断角鉴别方法等三种方法来防止励磁涌流引起的纵差保护的误动。 3.1采用差动速断保护 由于差动速断保护有固有动作时间,故动作电流无需避开最大电流,此方案灵敏性低,只适用于小型变压器。差动保护按照躲开最大不平衡电流进行整定时,带速饱和原理的差动保护能够减少非周期分量造成的保护误动,这种差动保护的核心部分是带短路线圈的饱和中

电力系统基础知识科普

电力系统基础知识科普 1.电力系统、动力系统和电力网的划分 电力网:由变电所和不同电压等级输电线路组成的网络。 电力系统:由发电设备、输电设备和用电设备组成的网络。 动力系统:在电力系统的基础上,把发电厂的动力部分包含在内的系统。 2.电力系统运行的特点 电力系统运行特点: 电能不能大量存储;各环节组成的统一整体不可分割;过渡过程非常迅速(百分之几秒到十分之几秒);电力系统的地区性特点较强;对电能质量的要求颇为严格;与国民经济各部门和人民生活关系极其密切 3.电力系统运行的基本要求 保证供电的可靠性:减少停电损失,要求元件有足够的可靠性,要求提高系统运行的稳定性 保证良好的供电质量:电压、频率、波形 提高电力系统运行的经济性:降低能耗 4.发电厂的类型 发电厂的类型: 常规能源发电(主要发电形式):火力发电厂,水力发电厂,核能电厂 新能源发电:地热电厂、潮汐电厂、风力发电厂、太阳能电站、海洋能发电、磁流体发电、氢能发电、核聚变发电 5.电力系统的中性点接地方式 四种中性点接地方式:(前两种属于小电流接地,后两种属于大电流接地) 中性点不接地;中性点经消弧线圈接地;中性点直接接地;中性点经电阻接地 6.日负荷曲线、年最大负荷曲线的用途。 日负荷曲线对电力系统有很重要的意义,它是安排日发电计划,确定各发电厂发电任务以及确定系统运行方式等的重要依据。每日的最大负荷不尽相同,一般是年初底,年末高。夏季小于冬季。把每天的最大负荷抽取出来按年绘成曲线,成为年最大负荷曲线。年最大曲线的用途:安排各发电厂检修计划的依据;安排新装机组计划的依据。 7.电力系统的电压等级。 我国电力系统的电压等级分为: 电力系统的标称电压 3、6、10、35、60、110 、220、330、500、750 KV 对应的最高电压 3.6、7.2、12、40.5、72.5、126、252、363、550、800 KV 8.架空线路的结构组成 架空线路由导线,避雷线(架空地线),绝缘子,金具,杆塔等主部件组成。 9. 架空线路换位的目的 消除由于位置原因引起的不对称电抗,从而消除产生的电流畸变。 10. 分裂导线的优点 增大导线的有效半径,减少导线的电晕损耗,减少导线的电抗 11.导纳阵的特点 稀疏矩阵,对称矩阵

电力系统基本知识

电力系统基本知识 一、单选: 1、以煤、石油、天然气等作为燃料,燃料燃烧时的化学能转换为热能,然后借助汽轮机等热力机械将热能变为机械能,并由汽轮机带动发电机将机械能变为电能,这种发电厂称(B)。P39 A、风力电站 B、火力发电厂 C、水力发电厂 D、核能发电厂 2、由各级电压的电力线路,将各种发电厂、变电所和电力用户联系起来的一个(A)和用电的整体,叫做电力系统。P39

A、发电、输电、配电 B、发电、输电、变电 C、变电、输电、配电 D、发电、变电、配电 3、(D)是由于核燃料在反应堆内产生核裂变,释放出大量热能,由冷却剂(水或气体)带出,在蒸发器中将水加热为蒸汽,用高温高压蒸汽推动汽轮机,再带动发电机发电。P40 A、风力电站 B、火力发电厂 C、水力发电厂 D、核能发电厂 4、从发电厂发电机开始一直到( D )为止,这一整体称为电力系统。P41 A、变电设备 B、输电设备C、发电设备D、用电设备

5、环网供电的目的是为了提高(C)。P41 A、调度灵活性 B、供电安全性 C、供电可靠性 D、供电经济性 6、发电厂与用电负荷中心相距较远,为了减少网络损耗,所以必须建设(A)、高压、超高压输电线路,将电能从发电厂远距离输送到负荷中心。P41 A、升压变电所 B、降压变电所 C、中压变电所 D、低压变电所 7、从发电厂到用户的供电过程包括发电机、(D)、输电线、降压变压器、

配电线等。P41 A、汽轮机 B、电动机 C、调相机 D、升压变压器 8、为了提高供电可靠性、经济性,合理利用动力资源,充分发挥水力发电厂作用,以及减少总装机容量和备用容量,现在都是将各种类型的发电厂、变电所通过(B)连接成一个系统。P41 A、用电线路 B、输配电线路 C、发电线路 D、配电线路 9、从发电厂到用户的供电过程包括发电机、升压变压器、(A)、降压变压器、配电线路等。P41

电力系统基本知识

第一章 电力系统基本知识

第一章电力系统基本知识 一、概念 1)世界上第一台发电机建于1882年,在美国纽约市,机组容量只有30万千瓦,随着科技的发展,到1976年为止,全世界的发电厂总装机容量已达到16亿4千万千瓦,从世界各国经济发展的经验来看,国民经济增长1%电力系统就要增长1.3~1.5%左 右,发达国家几乎是每7~10年装机容量就要增长一倍,个别特别发达国家为5~6 年装机容量就要增长一倍。这是70年代,从80年代到目前为止,发达国家已达到 2~3年左右装机容量就要增长近一倍,发展相当快,这是跟他们的工业基础有相当 大的关系,而且发电的手段和控制系统的手段都达到了相当的先进。 2)我国的电力发展情况 我国解放前总发电能力还不到2000万千瓦,这个时候主要分为东北地区和上海地 区,上海当时以杨树浦电厂为主,以后发展了南市和闸北电厂,陆续的不断发展, 在上海周边地区发展了很多发电厂。到80年代末,进过三十几年的建设,全国发 电设备的总装机容量达到7000万千瓦,发电量达到近3000亿度,是世界的第四、 第五位(在60年代上海武宁路陆家宅武宁变电所是亚洲第一位),在80年代末容 量在25万千瓦以上的大型电厂全国共有六十多个,发展也相当快,已建成330KV 超高压输电线路,在90年至今上海已达到500KV直流输送超高压输电线路,随着 国民经济的不断增长和经济建设的效率开放,电力系统在内资和外资的作用下装机 容量又发生了更大的变化。装机容量几乎是80年代的3~4倍,但是还不能适应经 济的发展,所以电力系统在不断地发展,作为涉及到电力行业或即将接触到高压电 的人现在也越来越多,在这个领域里工作的人,必须要掌握和熟悉电气安全知识和 各项电气安全规程、规章制度,才能确保电力系统的安全运行,稳定我们的国民经 济的生产。 第一节供电系统 一、了解电力系统及电力网的构成,大型电力系统的优点,电力生产的特点。 1)电力系统是由发电厂→变电站(所)→电力线路和用电设备(用户)联系在一起组成的一个发电、输电、变电、配电和用电的整体。

电力系统基础知识学习

STATE GRID 国家电网公司 电力系统知识学习 一、SG(SG186大型软件) 1、电网公司 供电网:国家电网公司、南方电网公司(广东、广西、海南、云南) 发电:大唐、华能、中电投 级别:国网公司—〉省网公司—〉县公司—〉供电所 2、县供电公司主要部门及其职责: 营销部:售电、收费(县局一年购电量平均3~4亿度,多的可达10亿度) 生产部:架设线路、变电站、设备安装等 计量中心:表计管理、校表等 调度中心:监视全电网的一次系统图、开关的关合等 信息中心:保证网络畅通、相关系统的维护等 3、输送电过程 发电—〉供电220V 50HZ 交流单相电 我们日常所用的都是单相电 发电厂发出A、B、C 单相电之后要先经过 升压的变电站—〉降压的变电站—〉降压的变电站—〉降压的变压器—〉用户 4、重要名词解释(一) 线损:电能损耗的简称,电能在传输过程中由于电阻的存在产生的有功电能损失。 线损电量:根据电能表所计量的总的供电量和总的售电量之差。 线损率:线损占供电量的百分比。 技术线损:也称理论线损,是电网中各元件的电能损耗,是不可避免的。 管理线损:主要是由于管理不善或者失误造成的,如:偷窃电,错抄、漏抄,统计失误等。 营销线损:全部购电量与全部售电量之差。 统计线损:也称实际线损,是根据供、售电能表的表记读数计算出的差值。 变压器铁损:变压器的初级绕组通电后,线圈所产生的磁通在铁芯流动,因为铁芯本身也是导体,在垂直磁力线的平面上就会感应电势,这个感应电势在铁芯的断面上形成闭合回路并产生电流,好像一个漩涡,所以称为“涡流”。这个涡流使得变压器的损耗增加,并且使变压器的铁芯发热,变压器的温升增加。由涡流产生的损耗,我们称之为“铁损”。 变压器铜损:绕制变压器需要大量的铜线,这些铜导线存在着电阻,电流流过这些电阻时,会消耗一定的功率,这部分损耗往往变成热量而消耗,我们则称这种损耗为“铜损”。 5、线电压与相电压 发电机:A相、B相、C相u

励磁系统在电力中的作用1

励磁系统在电力中的作用1 励磁系统是发电机的重要组成部分,它对发电机本身及电力系统的安全稳定运行有着重要的作用。 励磁系统在电力系统中的作用: a. 维持电力系统某点电压的恒定。 b. 调整各个并联运行机组之间的无功分配。 c. 提高电力系统的静态稳定和动态稳定。 d. 故障切除后,可以缩短电动机自启动的时间。 e. 提高带延时的继电保护的明确性。 在电力系统正常运行或事故运行中,同步发电机的励磁控制系统起着重要作用。优良的励磁控制系统不仅可以靠运行并提供合格的电能,而且还可有效地提高系统的技术指标。根据运行方式的要求,励磁控制系统的任务① 电压控制 电力系统在正常运行时,负荷总是经常波动的,同步发电机的功率就相应变化。由于发电机内部压降的存在,动,机端电压就会相应的发生变化,这就需要对励磁电流进行调节以维持机端或系统中某点的电压在给定的水控制系统担负了维持电压水平的任务。 ② 控制无功功率的分配 与无限大容量电网并联运行的机组,调节它的励磁电流可以改变发电机无功功率的数值。但是,在实际运行中联运行的母线并不是无限大母线,即系统的等值阻抗不等于零。它的电压将随着负荷波动而改变,改变其中一磁电流不但影响它的电压和无功功率,而且也将影响与之并联运行机组的无功功率,其影响程度与系统情况有步发电机的励磁自动控制系统还担负着并联运行机组间的无功功率合理分配的任务。 ③ 提高同步发电机并联运行的稳定性 保持同步发电机稳定运行是保证电力系统可靠供电的首要条件,电力系统在运行中随时都可能遭受各种干扰,发电机组能够恢复到原来的运行状态或过渡到另一个新的运行状态,则称系统是稳定的,其主要标志是在暂态同步发电机能维持或恢复同步运行。 电力系统稳定分为静态稳定和暂态稳定两类。所谓静态稳定是指电力系统在正常运行状态下,经受微小扰动后行状态的能力。而暂态稳定是指电力系统在某一正常运行方式下突然遭受大扰动后,能够过渡到一个新的稳定者恢复到原来运行状态的能力。这里所说的大扰动是指电力系统发生某种事故,如高压电网发生短路或发电机在分析电力系统稳定性问题时,不论静态稳定或暂态稳定,在数字模型表达式中总含有发电机空载电势E,而有关。可见,励磁自动控制系统是通过改变励磁电流从而改变E值来改善系统稳定性的。 ④ 改善电力系统的运行条件 当电力系统由于种种原因,出现短时低电压时,励磁自动控制系统可以发挥其强励功能,即大幅度地增加励磁压,这在一定条件下可以改善系统的运行条件。 2.无刷励磁系统的技术特点 由无刷励磁机组、励磁(电压)调节器以及相应的操作设备组成的整体称为发电机的无刷励磁系统。它连同被控机构成的电压反馈控制称为无刷励磁控制系统。励磁系统向发电机励磁绕组供电以建立磁场,并根据发电机运节励磁电流以维持机端和系统的电压水平,并且决定着电力系统中并联机组间无功功率的分配。 无刷励磁机组由一台永磁发电机(交流付励磁机),一台交流主励磁机及装在发电机轴上的旋转整流装置组成。取消了大电流集电环及其碳刷装置,从而克服了常规的直流励磁机在高速换向器制造和发电机大电流集电环通明显存在的严重困难。交流主励磁机的工作原理几乎与直流发电机相同,其差别只是直流发电机利用换向器作电枢绕组内交流电变成直流电输出,而无刷励磁机则利用装在发电机轴上的旋转二极管整流从而同样将电枢绕

相关文档
最新文档