一元二次不等式、分式、绝对值、简单高次不等式的解法

一元二次不等式、分式、绝对值、简单高次不等式的解法
一元二次不等式、分式、绝对值、简单高次不等式的解法

高次不等式、分式、绝对值、一元二次不等式的解法 1.可分解的高次不等式的解法

例1 解不等式()()()01323

2

<+--x x x

解析:奇穿偶回。使用范围:多个因式相乘或除 ① 检查各因式中x 的符号均正;

② 求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根); ③ 在数轴上表示各根并穿线,每个根穿一次(自右上方开始),如下图:

④ ∴原不等式的解集为()()3,22,1 - 例2解不等式()()()0423>--+x x x

例3 解不等式()()

032432≤+---x x x x x

例4 解关于x 的不等式: ()

()0122<++-a x x x .

解析:此不等式是含参数a 的高次不等式,a x -=是不等式对应方程的其中一根,但对它的位置我们无法确定,因此要对a 的所处位置进行讨论。

① 将二次项系数化“+”并分解为:()()()034>++-a x x x ; ② 相应方程的根为:a --,4,3;

③ 讨论:ⅰ)当4>-a ,即4-

∴原不等式的解集为()()+∞--,4,3a .

ⅱ)当43<-<-a ,即34<<-a 时,各根在数轴上的分布及穿线如下:

∴原不等式的解集为()()+∞--,4,3 a

ⅲ)当3-<-a ,即3>a 时,各根在数轴上的分布及穿线如下:

∴原不等式的解集为()()+∞--,43, a

ⅳ)当4=-a ,即4=a 时,各根在数轴上的分布及穿线如下:

∴原不等式的解集为()+∞-,3

ⅴ)当3-=-a ,即3=a 时,各根在数轴上的分布及穿线如下:

∴原不等式的解集为()+∞,4。

综上所得,当4-

当34<<-a 时,原不等式的解集为()()+∞--,4,3 a ; 当3>a 时,原不等式的解集为()()+∞--,43, a ; 当4=a 时,原不等式的解集为()+∞-,3; 当3=a 时,原不等式的解集为()+∞,4。

2.分式不等式的解法

例5 解不等式

01122≥---x x x 例6 解不等式.03

22

3222≤---+x x x x

例7 解不等式-1<22

1

3<+-x x 解析:等价转化法 解: 原不等式等价于(

1213++-x x )·(22

1

3-+-x x )<0 ,

练习1:解不等式:

1、

302x x -≥-(首相系数化为正,空实心) 2、21

13x x ->+(移项通分,右侧化为0)

3、22

32023x x x x -+≤--(因式分解) 4、221

02

x x x --<-(求根公式法因式分解)

5、()()()

3

22

1603x x x x -++≤+(恒正式,重根问题) 6、

()2

309x x x -≤-(不能随便约分) 7、

1

01x x <-<(取交集)

练习2:解不等式:

1.求不等式)

2()2()23()1()2(2233

4+--+-+x x x x x x 的解集

2、解不等式:22

320712

x x x x -+≤-+- 3、解不等式:22911

721x x x x -+≥-+

4、解不等式:

2121332x x x x ++>-- 5、解不等式:2

2331

x

x x ->++

3、绝对值不等式的解法

例1 不等式|8-3x|>0的解集是

练习4、解不等式:(1)|8-2x|>3 (2)|6-2x|<4

例2:解不等式|2x -1|>|2x -3|. 例3:解不等式22

x x

x x >

++。

例4、解关于x 的不等式

10832<-+x x

解:原不等式等价于1083102<-+<-x x ,

例5、解关于x 的不等式

23

21

>-x

解:原不等式等价于???

??<-≠-2

132032x x ?

?????

<<≠4

74523x x

练习5:1、解关于x 的不等式(1)212+<-x x

(2)、3529x ≤-< (3)、1|1|3x <+<

2、求方程x x x x x x 32322

2++=++的解集; 求不等式x

x

x x ->-22的解集

3、不等式

x 0)21(>-x 的解集是( )

.A )21,(-∞ .B )21,0()0,( -∞ .C ),21(+∞ .D )2

1,0(

4.一元二次不等式的解法

练习6: 解不等式(1)0)1)(4(<-+x x . (2)0122

>--x x ;

(3) 216x ≥ (4)2

25x ≤ (5) 9)12(2≤-x

练习7:1、解下列不等式

(1) 2340x x --> (2) 22740x x -->

(3)(x -1)(3-x)<5-2x (4)x(x +11)≥3(x +1)2

(5)(2x +1)(x -3)>3(x 2+2) (6)0)3)(2(>+-x x

[ ]

例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.

例4. 解下列关于x 的不等式: (1)71322

4++

x x ; (3).24||52x x <+

例若<<,则不等式--<的解是1 0a 1(x a)(x )01

a

A a x

B x a .<<.<<11a a

C x a

D x x a

.>或<.<或>x a a 1

1例有意义,则的取值范围是

.2 x x 2--x 6

高考数学 高次分式不等式解法

课 题:分式不等式 高次不等式的解法 ⒈ 一元二次不等式与特殊的高次不等式解法 例1 解不等式0)1)(4(<-+x x . 分析一:利用前节的方法求解; 分析二:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等 式的解集是下面两个不等式组:???<+>-0401x x 与???>+<-0401x x 的解集的并集,即{x|? ??<+>-040 1x x } ∪?? ?>+<-0 40 1|{x x x }=φ∪{x|-4-0401x x 或? ??>+<-040 1x x ?x ∈φ或-40; 解:①检查各因式中x 的符号均正;②求得相应方程的根为:-2,1,3; ③列表如下: ④由上表可知,原不等式的解集为:{x|-23}. 小结:此法叫列表法,解题步骤是:

①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)… (x-xn)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……; ②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的 因式开始依次自上而下排列); ③计算各区间内各因式的符号,下面是乘积的符号; ④看下面积的符号写出不等式的解集. 练习:解不等式:x(x-3)(2-x)(x+1)>0. {x|-13}. {x|-10(<0)形式,并将各因式x的系数化“+”;(为了统一方便) ②求根,并在数轴上表示出来; ③由右上方穿线,经过数轴上表示各根的点(为什么?); ④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”, 则找“线”在x轴下方的区间. 注意:奇过偶不过 例3解不等式:(x-2)2(x-3)3(x+1)<0. 解:①检查各因式中x的符号均正; ②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根); ③在数轴上表示各根并穿线,每个根穿一次(自右上方开始奇过偶不过),如下图: ④∴原不等式的解集为:{x|-1

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

分式不等式的解法

一 不等式的解法 1 含绝对值不等式的解法(关键是去掉绝对值) 利用绝对值的定义:(零点分段法) 利用绝对值的几何意义:||x 表示x 到原点的距离 ||(0){|}x a a x x a =>=±的解集为 }|{)0(||a x a x a a x <<-><的解集为 }|{)0(||a x a x x a a x -<>>>或的解集为 公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. 2 整式不等式的解法 根轴法(零点分段法) 1) 化简(将不等式化为不等号右边为0,左边x 的最高次项系数为正); 2) 分解因式; 3) 标根(令每个因式为0,求出相应的根,并将此根标在数轴上。注意:能取 的根打实心点,不能去的打空心); 4) 穿线写解集(从右到左,从上到下依次穿线。注意:偶次重根不能穿过); 一元二次不等式解法步骤: 1) 化简(将不等式化为不等号右边为0,左边x 的最高次项系数为正); 2) 首先考虑分解因式;不易分解则判断?,当0?≥时解方程(利用求根公式) 3) 画图写解集(能取的根打实心点,不能去的打空心) 3 分式不等式的解法 1)标准化:移项通分化为()0()f x g x >(或()0()f x g x <);()0()f x g x ≥(或()0() f x g x ≤)的形式, 2)转化为整式不等式(组)()()0()()0()()00()0()()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠?; 4 指数、对数不等式的解法 ①当1a >时 ()()()()f x g x a a f x g x >?> log ()log ()()()0a a f x g x f x g x >?>> ②当01a <<时 ()()()()f x g x a a f x g x >?< log ()log ()0()()a a f x g x f x g x >?<< x = 0x x ≥ 0x x -<

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

分式不等式的解法基础测试题回顾.doc

分式不等式的解法 一.学习目标: 1.会解简单的分式不等式。 二.学习过程 (一)基础自测 1.解下列不等式 (1)43107x x -<+ (2)-x 2+7x >6 (3)()()015<+-x x . (二)尝试学习 2.解下列不等式 (1)121 >+-x x (2)2x +11-x <0. (3)41 2+-x x ≥0 (4) x +5(x -1)2≥2

(三)巩固练习题 1.不等式 02 1<+-x x 的解集是 . 2.不等式 01 312>+-x x 的解集是( ) .A }2131|{>-x x .D }31|{->x x (四)归纳总结 1.解分式不等式的基本方法是将其转化为与之同解的整式不等式或不等式组. 2.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解;若不等式含有等号时,分母不为零.即: (1)f (x )g (x )>0?()()0>?x g x f (f (x )g (x ) <0?()()0

1.不等式 23--x x ≥0的解集是 . 2.不等式 0121≤+-x x 的解集是 3.不等式 042>+-x x 的解集是 4.不等式1x x -≥2的解集为( ) .A [1,0)- .B [1,)-+∞ .C (,1]-∞- .D (,1](0,)-∞-+∞ 5.解下列不等式 (1)2x +11-x <0 (2)x +12x -3≤1 四.作业 解不等式:(1) 0324≤+-x x (2)321≥-+x x

含参数不等式及绝对值不等式的解法

含参数不等式及绝对值不等式的解法 例1解关于x 的不等式:2(1)0x x a a ---> 0)(3 22<++-a x a a x 01)1(2<++-x a ax 02)12(2>++-x a ax 22+≥+ a x ax 11 +>-a x x 11<-x ax ()()02 21>----x a x a 0)2(≥--x x a x 01 2≥--x ax x a x x <- 0)2)(1(1≥----x x k kx 例2: 关于x 的不等式01)1(2 <-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围。

例3:若不等式210x ax ≥++对于一切1(0,)2 x ∈成立,则a 的取值范围. 例4:若对于任意a (]1,1-∈,函数()()a x a x x f 2442-+-+=的值恒大于0,求x 的 取值范围。 例5:已知19≤≤-a ,关于x 的不等式: 0452 <+-x ax 恒成立,求x 的范围。 例 6: 对于∈x (0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的 取值范围。 例7:2212<--+x x 1332+<-x x 321+<+x x x x 332≥- 例8、 若不等式a x x >-+-34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x >---34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x <---34有解,求a 的取值范围 若不等式a x x <---34的解集为空集,求a 的取值范围 若不等式a x x <---34解集为R ,求a 的取值范围

《一元二次不等式及其解法》典型例题透析

《一元二次不等式及其解法》典型例题透析 类型一:解一元二次不等式 例1. 解下列一元二次不等式 (1)2 50x x -<; (2)2 440x x -+>; (3)2 450x x -+-> 思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为2(5)410250?=--??=> 所以方程2 50x x -=的两个实数根为:10x =,25x = 函数25y x x =-的简图为: 因而不等式2 50x x -<的解集是{|05}x x <<. 方法二:2 50(5)0x x x x -???-? 解得05x x >?? ?,即05x <<或x ∈?. 因而不等式2 50x x -<的解集是{|05}x x <<. (2)方法一: 因为0?=, 方程2440x x -+=的解为122x x ==. 函数2 44y x x =-+的简图为: 所以,原不等式的解集是{|2}x x ≠ 方法二:2244(2)0x x x -+=-≥(当2x =时,2 (2)0x -=) 所以原不等式的解集是{|2}x x ≠ (3)方法一: 原不等式整理得2 450x x -+<.

因为0?<,方程2 450x x -+=无实数解, 函数245y x x =-+的简图为: 所以不等式2 450x x -+<的解集是?. 所以原不等式的解集是?. 方法二:∵2245(2)110x x x -+-=---≤-< ∴原不等式的解集是?. 总结升华: 1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力; 2. 当0?≤时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当0?>且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题). 3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三: 【变式1】解下列不等式 (1) 2 2320x x -->;(2) 2 3620x x -+-> (3) 2 4410x x -+≤; (4) 2 230x x -+->. 【答案】 (1)方法一: 因为2(3)42(2)250?=--??-=> 方程2 2320x x --=的两个实数根为:11 2 x =-,22x = 函数2 232y x x =--的简图为: 因而不等式2 2320x x -->的解集是:1 {|2}2 x x x <- >或. 方法二:∵原不等式等价于 21)(2)0x x +->(, ∴ 原不等式的解集是:1 {|2}2 x x x <->或. (2)整理,原式可化为2 3620x x -+<, 因为0?>, 方程2 3620x x -+=的解131x =231x =,

高中数学不等式的分类、解法(教资材料)

高中数学简单不等式的分类、解法 一、知识点回顾 1.简单不等式类型:一元一次、二次不等式,分式不等式,高次不等式,指数、对数不等式,三角不等式,含参不等式,函数不等式,绝对值不等式。 2.一元二次不等式的解法 解二次不等式时,将二次不等式整理成首项系数大于0的一般形式,再求根、结合图像写出解集 3三个二次之间的关系: 二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系(见复习教材P228) 二次函数的零点---对应二次方程的实根----对应二次不等式解集区间的端点 4.分式不等式的解法 法一:转化为不等式组;法二:化为整式不等式;法三:数轴标根法 5.高次不等式解法 法一:转化为不等式组;法二:数轴标根法 6.指数与对数不等式解法 a>1时)()()() (x g x f a a x g x f >?>; 0)()()(log )(log >>?>x g x f x g x f a a 0; )()(0)(log )(log x g x f x g x f a a < 7.三角不等式解法 利用三角函数线或用三角函数的图像求解 8.含参不等式解法 根据解题需要,对参数进行分类讨论 9.函数不等式解法 利用函数的单调性求解,化为基本不等式(有时还会结合奇偶性) 10.绝对值不等式解法(后面详细讨论) 二、练习: (1)2 3440x x -++>解集为 (2 23x - << ) (一化二算三写) (2)213 022 x x ++>解集为 (R ) (变为≤,则得?)(无实根则配方) 三、例题与练习 例1已知函数)()1()(b x ax x f +?-= ,若不等式 0)(>x f 的解集为)3,1(-,则不等式0)2(<-x f 的 解集为 ),2 1()23,(+∞--∞ 解法一:由根与系数关系求出3,1-=-=b a ,得 32)(2++-=x x x f ,再得出新不等式,求解 解法二:由二次不等式0)(>x f 的解集为)3,1(-得 0)(+n mx 的解集为 (m, n )=(-4,-5),解集为)4 5 ,(--∞ 例2:不等式 22 32 x x x -++≥0的解集是_____. 答案:(-2,-1)∪[2,+∞) 法一:化为不等式组 法二:数轴标根法 法三:化为整式不等式(注意等价性) 变式2:不等式0332 3<+--x x x 的解集为 . 答案:)1,()3,1(--∞ 例3:解关于x 的不等式ax x ax -≥-222 分析:化为02)2(2 ≥--+x a ax ,考虑分类标准:①a 与0的关系② a 2 与-1的关系 变式3:①解关于x 的不等式ax 2-(a +1)x +1<0 解:原不等式可化为(ax-1)(x-1)<0 当a<0时,原不等式解集为),1()1 ,(+∞-∞ a 当a=0时,x-1>0, 原不等式解集为(1,+ ∞) 当0

专题二、分式不等式的解法

(一)分式不等式: 型如: 0)()(>x x f ?或0) () (??>x x f x x f ?? (3)0)()(0) ()(-+x x 方法一:等价转化为: 方法二:等价转化为: ???>->+02301x x 或? ??<-<+02301x x 0)23)(1(>-+x x 变式一: 02 31 ≥-+x x 等价转化为:? ? ?≠-≥-+0230 )23)(1(x x x 比较不等式0231<-+x x 及02 31≤-+x x 的解集。(不等式的变形,强调等价转化,分母不为零)

练一练:解关于x 的不等式 051)1(>--x x 3532 )2(≤-x 例1、 解关于x 的不等式: 23 2 ≥+-x x 解: 023 2 ≥-+-x x 03) 3(22≥++--x x x 即, 038 ≥+--x x 03 8 ≤++x x (保证因式分解后,保证一次项前的系数都为正) 等价变形为:? ? ?≠+≤++030 )3)(8(x x x ∴原不等式的解集为[)3,8-- 例2、解关于x 不等式 23 28 2<+++x x x 方法一:322 ++x x 恒大于0,利用不等式的基本性质 方法二:移项、通分,利用两式同号、异号的充要条件,划归为一元一次或一元二次不等式。 例3、 解关于x 的不等式:1≥x a 解:移项 01≥-x a 通分 0≥-x x a 即,0≤-x a x 等价转化为,?? ?≠≤-0 )(x a x x 当a>0时,原不等式的解集为],0(a 当a<0时,原不等式的解集为)0,[a 当a=0时,原不等式的解集为φ

解绝对值不等式的解法

解绝对值不等式题型探讨 题型一 解不等式2|55|1x x -+<. [题型1]解不等式2|55|1x x -+<. [思路]利用|f(x)|0) -a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即22551(1)551 (2)x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >, 所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x >12或无解,所以原不等式的解集是{x |x >1 2 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2226360(3)(2)032(1)(6)0 16263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x [请你试试4—1] ???

一元二次不等式及其解法例题分类

一对一个性化辅导教案

一元二次不等式及其解法 【要点梳理】 要点一、一元二次不等式及一元二次不等式的解集 只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.比如: 250x x -<.一元二次不等式的一般形式:20ax bx c ++>(0)a ≠或20ax bx c ++<(0)a ≠. 设一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x <,则不等式20ax bx c ++>的解集为 {}2 1 x x x x x ><或,不等式2 0ax bx c ++<的解集为{}21x x x x << 要点诠释:讨论一元二次不等式或其解法时要保证(0)a ≠成立. 要点二、一元二次不等式与相应函数、方程之间的联系 对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=?,它的解按照 0>?,0=?,0的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或 20ax bx c ++<(0)a >的解集.

二次函数 c bx ax y ++=2(0>a )的图象 20(0)ax bx c a ++=>的根 有两相异实 根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集 )0(02>>++a c bx ax {} 2 1 x x x x x ><或???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ? 要点诠释: (1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线=y c bx ax ++2与x 轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决; (3)解集分0,0,0?>?=?<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集. 要点三、解一元二次不等式的步骤 (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式?: ①0?>时,求出两根12x x 、,且12x x <②0?=时,求根a b x x 221- ==;

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

一元二次不等式的解法

- 2 - 一元二次不等式的解法 一、选择题 1.不等式x 2<3x 的解集是 ( ). A .{x |x >3} B .{x |x <0或x >3} C .R D .{x |0<x <3} 2.不等式-x 2-x +2≥0的解集是 ( ). A .{x |x ≤-2或x ≥1} B .{x |-2<x <1} C .{x |-2≤x ≤1} D .? 3.不等式x (x -a +1)>a 的解集是{x |x <-1或x >a },则 ( ). A .a ≥1 B .a <-1 C .a >-1 D .a ∈R 4.已知全集U =R 集合A ={x |x 2-2x >0},则?U A 等于 ( ). A .{x |0≤x ≤2} B .{x |0<x <2} C .{x |x <0或x >2} D .{x |x ≤0或x ≤2} 5.不等式ax 2+5x +c >0的解集为? ??? ?? x ?? 13 <x <12,则a ,c 的值为 ( ). A .a =6,c =1 B .a =-6,c =-1 C .a =1,c =1 D .a =-1,c =-6 6.已知集合M =? ????? ??? ?x ??? x +3 x -1<0,N ={} x | x ≤-3,则集合{x |x ≥1}等于 ( ). A .M ∩N B .M ∪N C .?R (M ∩N ) D .?R (M ∪N ) 7.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若 每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是 ( ). A .100台 B .120台 C .150台 D .180台 8.若集合A ={x |ax 2-ax +1<0}=?,则实数a 的值的集合是 ( ). A .{a |0<a <4} B .{a |0≤a <4} C .{a |0<a ≤4} D .{a |0≤a ≤4} 9.关于x 的不等式a -x x +b <0, a +b >0的解集是 ( ). A .{x |x >a } B .{x |x <-b ,或x >a } C .{x |x <a ,或x >-b } D .{x |-b <x <a } 10.在R 上定义运算?:x ?y =x (1-y ).若不等式(x -a )?(x +a )<1对任意实数x 恒成立,则( ). A .-1<a <1 B .0<a <2 C .-12<a <32 D .-32<a <1 2 11、函数y =log 3(9-x 2)的定义域为A ,值域为B ,则A ∩B =________. 12、二次函数y =ax 2+bx +c (a ≠0,x ∈R )的部分对应值如下表: 13、设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为________. 14、关于x 的不等式ax 2-2ax +2a +3>0的解集为R ,则实数a 的取值范围为________. 15、不等式(3x -4)(2x +1) (x -1)2 <0的解集为________. 三、解答题 16、解不等式1)-2x 2+103x -1 3>0; 2)x -1x -2≥0; 3)2x -13-4x >1.

分式不等式教案

2.3分式不等式的解法 上海市虹口高级中学 韩玺 一、教学内容分析 简单的分式不等式解法是高中数学不等式学习的一个基本内容.对一个不等式通过同解变形转化为熟悉的不等式是解不等式的一个重要方法.这两类不等式将在以后的数学学习中不断出现,所以需牢固掌握. 二、教学目标设计 1、掌握简单的分式不等式的解法. 2、体会化归、等价转换的数学思想方法. 三、教学重点及难点 重点 简单的分式不等式的解法. 难点 不等式的同解变形. 四、教学过程设计 一、分式不等式的解法 1、引入 某地铁上,甲乙两人为了赶乘地铁,分别从楼梯和运行中的自动扶梯上楼(楼梯和自动扶梯长度相同),如果甲的上楼速度是乙的2倍,他俩同时上楼,且甲比乙早到楼上,问甲的速度至少是自动扶梯运行速度的几倍. 设楼梯的长度为s ,甲的速度为v ,自动扶梯的运行速度为0v . 于是甲上楼所需时间为 s v ,乙上楼所需时间为02 s v v + . 由题意,得 2 s s v v v < +. 整理的 0122v v v <+. 由于此处速度为正值,因此上式可化为022v v v +<,即02v v >.所以,甲的速度应大于自动扶梯运行速度的2倍. 2、分式不等式的解法 例1 解不等式: 1 232 x x +>-.

解:(化分式不等式为一元一次不等式组) 1232x x +>-?12032x x +->-?()51032 x x -->-?1 032x x -<- ?10320x x -?或10320x x ->??-??或12 3x x >?? ??或 10 320 x x ->?? -?>,00a ab b -?12032x x +->-?()51032 x x -->-?1 032x x -<- ?()()3210x x --(0<)?()()0f x g x >(0<) ; (2) ()()0f x g x ≥(0≤)?()()()()000 f x g x g x ≥≤??? ≠??.

解绝对值不等式的方法总结

解绝对值不等式题根探讨 题根四 解不等式2|55|1x x -+<. [题根4]解不等式2 |55|1x x -+<. [思路]利用|f(x)|0) ?-a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即2 2 551(1)551 (2) x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >,所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的的图象,解方程 2551x x -+=,再对照图形写出此不等式的解集。 第1变 右边的常数变代数式 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x > 12或无解,所以原不等式的解集是{x |x >12 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2 226360(3)(2)032(1)(6)016263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x

不等式知识点及其解题技巧

不等式知识点及其解题技巧 1、不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:若,则(若,则),但异向不等式不可以相加;同向不等式不可以相减;(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若,则(若,则);(3)左右同正不等式:两边可以同时乘方或开方:若,则或 (4)若,,则;若,,则。如(1)对于实数中,给出下列命题:①;②; ③;④;⑤; ⑥;⑦;⑧,则。其中正确的命题是______(答:②③⑥⑦⑧);(2)已知,,则的取值范围是______(答:);(3)已知,且则的取值范围是______(答:) 2. 不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差 的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。如(1)设,比较的大小(答:当时,(时取等号);当时,(时取等号));(2)设,,,试比较的大小(答:);(3)比较1+与的大小(答:当或时,1+>;当时,1+<;当时,1+=) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。如(1)下列命题中正确的是A 、的最小值是2 B 、的最小值是 2 C 、的最大值是 D 、的最小值是(答:C );(2)若,则的最小值是______(答:);(3)正数满足,则的最小值为______(答:); ,a b c d >>a c b d +>+,a b c d >-0,0a b c d >>>>ac bd >0,0a b c d >><0a b >>n n a b >0ab >a b >11a b <0ab 11a b >c b a ,,22,bc ac b a >>则若b a bc ac >>则若,2222,0b ab a b a >><<则若b a b a 11,0<<<则若b a a b b a ><<则若, 0b a b a ><<则若,0b c b a c a b a c ->->>>则若,011,a b a b > >若0,0a b ><11x y -≤+≤13x y ≤- ≤3x y -137x y ≤-≤c b a >>,0=++c b a a c 12,2??-- ?? ?0,10>≠>t a a 且21log log 21+t t a a 和1a >11log log 22 a a t t +≤1t =01a <<11log log 22a a t t +≥1t =2a >12 p a a =+-2422-+-=a a q q p ,p q >3log x )10(2log 2≠>x x x 且01x <<43x > 3log x 2log 2x 413x <<3log x 2log 2x 43 x =3log x 2log 2x 1y x x =+ 2y =423(0)y x x x =-->2-423(0)y x x x =-->2-21x y +=24x y +,x y 21x y +=y x 11+3+

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2 x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是{} a x a x <<-; 当0的解集是{} R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{} c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{} c b ax c x <+<-; 当0+的解集是{} R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略)

(二)、定义法:即利用(0),0(0),(0).a a a a a a >?? ==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于2 x x +<0?x(x+2)<0?-2<x <0。 (三)、平方法:解()()f x g x >型不等式。 例3、解不等式123x x ->-。 解:原不等式?22(1)(23)x x ->-?22(23)(1)0x x ---< ?(2x-3+x-1)(2x-3-x+1)<0?(3x-4)(x-2)<0 ? 4 23 x <<。 说明:求解中以平方后移项再用平方差公式分解因式为宜。 二、分类讨论法:即通过合理分类去绝对值后再求解。 例4 解不等式125x x -++<。 分析:由01=-x ,02=+x ,得1=x 和2=x 。2-和1把实数集合分成三个区间,即2-x ,按这三个区间可去绝对值,故可按这三个区间讨论。 解:当x <-2时,得2 (1)(2)5x x x <-??---+x 时,得1, (1)(2) 5.x x x >??-++

相关文档
最新文档